首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yeast fatty acid synthetase at 4 degrees C was stable during 1- and 2-h exposures to oxygen at 100 atm, but was 48% and 90% inactivated after 20 h and 40 h, respectively, with fatty acid synthesis measured by both radioactive and optical assays. Incubation with dithiothreitol did not restore activity. Component enzyme activities were compared before and after 40 h in 100 atm of oxygen. Ketoacyl reductase activity was most reduced followed by ketoacyl synthetase and then acetyl transferase while malonyl transferase, enoyl reductase and palmitoyl transferase were not significantly inactivated.  相似文献   

2.
Death Resulting from Fatty Acid Starvation in Yeast   总被引:12,自引:9,他引:3       下载免费PDF全文
Mutants of Saccharomyces cerevisiae having the genotypes fas1 (fatty acid synthetase minus) and fas1, ole1 (fatty acid synthetase and fatty acid desaturase minus) were found to undergo logarithmic death when deprived of required fatty acids, whereas ole1 strains did not. During the first 2 to 3 h of fatty acid starvation, macromolecular synthesis occurred at apparently normal rates, although cell division stopped by the end of the 1st h. Cell death commenced at approximately the 2nd to the 3rd h, and within 24 h, depending upon conditions, 2 to 4 log orders of death had occurred. The loss of viability was accelerated by the addition of detergent, but could be largely prevented by the interruption of protein synthesis, either by amino acid starvation or by the use of cycloheximide. The possible significance of this phenomenon in terms of membrane biosynthesis is discussed.  相似文献   

3.
The polar lipids of Halobacterium cutirubrum are known to consist exclusively of diether derivatives of glycerol, and do not contain fatty acids. However, cerulenin, a specific and potent inhibitor of fatty acid synthesis, was shown to inhibit the growth of this organism. Protection from growth inhibition was demonstrated when fatty acids of 18 carbons were added to the growth medium, but not when palmitic or palmitoleic acids were used. Cerulenin appears to affect synthesis of all polar lipids in this organism while relative levels of protein and nucleic acids were not significantly affected. Growth inhibition by cerulenin supports the conclusion that the fatty acid synthetase system present in H. cutirubrum is necessary for lipid biosynthesis, despite the fact that fatty acids are not structural components of the lipids of this bacterium. A pathway is proposed to account for these observations.  相似文献   

4.
1. The utilization of methyl[2-14C]malonyl-CoA for fatty acid synthesis was investigated using synthetase preparations from chicken liver and sheep adipose tissue. 2. The rate of fatty acid synthesis from acetyl-CoA and malonyl-CoA was greatly diminished in the presence of methylmalonyl-CoA. 3. In the absence of malonyl-CoA, methylmalonyl-CoA was utilized for fatty acid synthesis only very slowly by the synthetase from sheep adipose tissue and not at all by that from chicken liver. 4. Despite the inhibitory effect of methylmalonyl-CoA on fatty acid synthesis from malonyl-CoA, it was utilized by the synthetase preparations from both species to produce a complex mixture of methyl-branched fatty acids.  相似文献   

5.
The activities of microsomal fatty acid elongation and cytoplasmic de novo fatty acid synthesis were measured in human cultured skin fibroblasts. Both activities in fibroblasts from normal controls and patients with adrenoleukodystrophy (ALD) were compared and slight but a significant increase of elongation activities in ALD fibroblasts was demonstrated. On the other hand, there were no significant differences in the fatty acid synthetase activities. In this study, we measured microsomal fatty acid elongation activities in the presence of N-ethylmaleimide, which completely inhibited the activity of contaminating fatty acid synthetase and also the degradation of fatty acids, and made accurate determination of the elongation activities possible.  相似文献   

6.
J Knudsen  S Clark    R Dils 《The Biochemical journal》1976,160(3):683-691
1. An acyl-thioester hydrolase was isolated from the cytosol of lactating-rabbit mammary gland. The purified enzyme terminates fatty acid synthesis at medium-chain (C8:0-C12:0) acids when it is incubated with fatty acid synthetase and rate-limiting concentrations of malonyl-CoA. These acids are characteristic products of the lactating gland. 2. The mol.wt. of the enzyme is 29000+/-500 (mean+/-S.D. of three independent preparations), as estimated by polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate. 3. The enzyme also hydrolyses acyl-CoA esters of chain lengths C10:0-C16:0 when these are used as model substrates. The greatest activity was towards dodecanoyl-CoA, and the three preparations had specific activities of 305, 1130 and 2010 nmol of dodecanoyl-CoA hydrolysed/min per mg of protein when 56muM substrate was used. 4. The way in which this enzyme controls the synthesis of medium-chain fatty acids by fatty acid synthetase is briefly discussed.  相似文献   

7.
Addition of cerulenin to the incubation medium severely inhibited fatty acid biosynthesis in leaf tissue, chloroplasts and stromal preparations. Simultaneous with this overall inhibition, formation of medium-chain acids (C8-C12) was greatly enhanced, while increasing cerulenin concentrations favored synthesis of the shorter chain-length acids. This was ascribed to the binding of cerulenin to β-ketoacyl-ACP synthetase during the incubation which prevented further condensation and caused the release of the saturated acyl group thus formed.The proportion of linoleate synthesized in all the leaf tissues examined increased as a response to treatment with cerulenin, apparently at the expense of oleate. Cerulenin did not modify the mechanisms of synthesis of the C18 unsaturated acids. The fragmentation patterns obtained after reductive ozonolysis of the material derived from the treated groups were similar in all cases to those obtained from the controls.  相似文献   

8.
The concentration of medium-chain acyl thioester hydrolase and of fatty acid synthetase was determined by rocket immunoelectrophoresis in nine different particle-free supernatant fractions from lactating-rabbit mammary gland. The molar ratio of the hydrolase to fatty acid synthetase was 1.99 +/- 0.66 (mean +/- S.D.). A rate-limiting concentration of malonyl-CoA was required to ensure the predominant synthesis of medium-chain fatty acids when 2 mol of the hydrolase was added per mol of fatty acid synthetase. The interaction of the hydrolase with fatty acid synthetase was concentration-dependent, though an optimum concentration of hydrolase to synthetase could not be obtained. The lactating-rabbit mammary gland hydrolase altered the pattern of fatty acids synthesized by fatty acid synthetases prepared from cow, goat, sheep and rabbit lactating mammary glands, rabbit liver and cow adipose tissue.  相似文献   

9.
Analyses were made of the phsopholipid fatty acids and the antioxidant enzymes in the carp (Cyprinus carpio morpha) at three different oxygen concentrations, corresponding to hyperoxia, hypoxia and anoxia. Variations of the oxygen concentration were found to influence the quantities of phsopholipid fatty acids, as well as the antioxidant enzyme activities. In hyperoxia and hypoxia the amount of polyunsaturated fatty acids in carp liver was higher than in anoxia, but in other tissues there was no significant differences. As to the antioxidant enzyme system, the glutathione peroxidase activity and the lipid peroxidation value increased significantly with decrease of the oxygen concentration, while the total superoxide dismutase activity decreased on lowering of the oxygen level.  相似文献   

10.
Male chicks were fed a commercial ration and were given drinking water which contained 0, 50, 100, 150, 200 or 300 mug of mercury/ml as mercuric chloride from hatching to 3 weeks of age. In one experiment, the mercuric chloride was administered by injection into the abdominal cavity rather than in the drinking water. At 3 weeks the chicks were killed, and the livers were removed and weighed. The activity of fatty acid synthetase in the 800 X gav supernatant fractions of the liver homogenates and in vivo incorporation of [14C]acetate into liver and carcass fatty acids and respiratory 14CO2 was determined as indicated. Administration of mercury at a treatment level of 300 mug/ml of drinking water depressed growth, feed and water consumption, liver weight, hepatic fatty acid synthetase activity, and in vivo incorporation of [14C]acetate into liver and carcass fatty acids, and increased the production of respiratory 14CO2 as compared with controls. In experiments in which graded doses of mercury were administered, body weights, liver weights, and feed and water intakes of the chicks receiving 0, 50 and 100 mug of mercury/ml of drinking water were similar to each other, but these parameters were severely depressed by 200 mug of mercury/ml of drinking water. Mercury caused a dose-related decrease of fatty acid synthetase activity. Incorporation of [14C]acetate into carcass fatty acid was depressed by 50 and 200 mug of mercury/ml of drinking water; incorporation into liver fatty acids and production of respiratory 14CO2 was not affected by mercury. Intra-abdominal injection of 6 mg of mercury/100 g body weight (as mercuric chloride) into well alimented chicks depressed hepatic fatty acid synthetase activity at 1 h post-injection. The data are consistent with the hypothesis that a portion of the effects of mercury on fatty acid synthesis are direct rather than a secondary effect of inanition.  相似文献   

11.
An acyl coenzyme A hydrolase (thioesterase II) has been purified to near homogeneity from lactating rat mammary gland. The enzyme is a monomer of molecular weight 33,000 and contains a single active site residue. The enzyme is specific for acyl groups, as acyl-CoA thioesters, containing eight or more carbon atoms and can also hydrolyze oxygen esters. Thioesterase II is capable of shifting the product specificity of rat mammary gland fatty acid synthetase from predominately long chain fatty acids (C14, C16, and C18) to mainly medium chain fatty acids (C8, C10, and C12). Thioesterase II can restore the capacity for fatty acid synthesis to fatty acid synthetase in which the thioesterase component (thioesterase I) has been inactivated with phenylmethanesulfonyl fluoride or removed by trypsinization. No evidence was found of significant levels of thioesterase II in lactating rat liver. The presence of thioesterase II in the lactating mammary gland and the ability of the enzyme to hydrolyze acyl-fatty acid synthetase thioesters of intermediate chain length, are indicative of a major role for this enzyme in the synthesis of the medium chain fatty acids characteristic of milk fat.  相似文献   

12.
Abstract— C6 glial cells in culture were utilized to study the regulation of the important lipogenic enzymes, fatty acid synthetase and acetyl-CoA carboxylase, and the synthesis of fatty acids and sterols. Regulation of these phenomena by lipid was demonstrated by the following observations. First, removal of serum from the culture medium was accompanied over the next five days by 2–3-fold increases in the lipogenic enzymatic activities and in 5–15-fold increases in rates of incorporation of acetate into fatty acids and sterols. Second, cells grown in delipidated serum exhibited approx 2-fold higher levels of activity of the lipogenic enzymes and 5–10-fold higher rates of synthesis of fatty acids and sterols than cells grown in normal calf serum. Third, cells grown in serum-free medium supplemented with concentrations of fatty acid comparable to those present in medium supplemented with serum exhibited activities of fatty acid synthetase comparable to those exhibited by cells grown in the serum-supplemented medium. The mechanism of these effects on fatty acid synthetase was shown by immunochemical techniques to involve alterations in content rather than in catalytic efficiency of the enzyme. The changes in content of the synthetase were caused by alterations in enzyme synthesis. In view of morphological and biochemical data suggesting that C6 cells are related to differentiating cells with properties of both astrocytes and oligodendroglia, the present data may indicate that regulation of palmitic acid synthesis by fatty acid or a product thereof occurs in brain during development.  相似文献   

13.
W D Nunn 《Biochemistry》1977,16(6):1077-1081
Experiments were performed to determine how phenethyl alcohol inhibits phospholipid synthesis in E. coli. At a nonbacteriostatic concentration, the drug reduces the rate of de novo fatty acid and phospholipid synthesis by 60 to 70%. The inhibition of fatty acid synthesis was found to be a secondary consequence of the inhibition of phospholipid synthesis. Phenethyl alcohol reduces the rate of incorporation of exogenous fatty acids into the phospholipids of a fatty acid auxotroph by 60%. These results indicate that this drug controls phospholipid synthesis beyond the level of fatty acid synthesis. Phenethyl alcohol inhibits the synthesis of phospholipids containing saturated fatty acids to a greater extent than it does the synthesis of phospholipids containing unsaturated fatty acids. It controls the synthesis of phospholipids containing saturated fatty acids at both the level of fatty acid synthesis and the level of incorporation of the saturated fatty acids into phospholipids. The synthesis of phospholipids containing unsaturated fatty acids is inhibited at the level of incorporation of the fatty acids into phospholipids.  相似文献   

14.
15.
We have previously shown that bolus intravenous administration of tumor necrosis factor (TNF) to normal rats results in a rapid (within 90 min) stimulation of hepatic fatty acid synthesis, which is sustained for 17 hr. We now demonstrate that TNF stimulates fatty acid synthesis by several mechanisms. Fatty acid synthetase and acetyl-CoA carboxylase (measured after maximal stimulation by citrate) were not higher in livers from animals that had been treated with TNF 90 min before study compared to controls. In contrast, 16 hr after treatment with TNF, fatty acid synthetase was slightly elevated (35%) while acetyl-CoA carboxylase was increased by 58%. To explain the early rise in the hepatic synthesis of fatty acids, we examined the regulation of acetyl-CoA carboxylase. The acute increase in fatty acid synthesis was not due to activation of acetyl-CoA carboxylase by change in its phosphorylation state (as calculated by the ratio of activity in the absence and presence of 2 mM citrate). However, hepatic levels of citrate, an allosteric activator of acetyl-CoA carboxylase, were significantly elevated (51%) within 90 min of TNF treatment. TNF also induces an acute increase (within 90 min) in the plasma levels of free fatty acids. However, hepatic levels of fatty acyl-CoA, which can inhibit acetyl-CoA carboxylase, did not rise 90 min following TNF treatment and were 35% lower than in control livers by 16 hr after TNF. These data suggest that TNF acutely regulates hepatic fatty acid synthesis in vivo by raising hepatic levels of citrate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The adaptive synthesis of fatty acid synthetase in the livers of rats fed a fat-free diet following 48 hr of fasting has been studied using immunochemical methods. The development of fatty acid synthetase activity during adaptive synthesis occurs about 3 hr following feeding, whereas the synthesis of material precipitable by anti-fatty acid synthetase serum, as judged by the incorporation of 3H-labeled amino acids into the immunoprecipitate, commenced within 1 hr. Extracts of liver of rats fed a fat-free diet for 1–3 hr following fasting contain increasing amounts of material which competes with purified fatty acid synthetase for antibody binding sites, even though they have no fatty acid synthetase activity. This suggests the presence of enzymatically inactive precursors of fatty acid synthetase in the liver extracts. The incorporation of [14C]pantothenate into fatty acid synthetase during adaptive synthesis follows the same pattern as the development of enzyme activity, indicating that these enzymatically inactive precursors of fatty acid synthetase may represent an apoenzyme which is converted to the enzymatically active holoenzyme by the incorporation of the 4′-phosphopantetheine prosthetic group. The subcellular site of synthesis of fatty acid synthetase was shown to be in the pool of polysomes that are not membrane bound, rather than in the rough endoplasmic reticulum.  相似文献   

17.
T M Buttke  L O Ingram 《Biochemistry》1978,17(24):5282-5286
Low concentrations of cerulenin inhibit the growth of Escherichia coli by selectively blocking unsaturated fatty acid synthesis. This inhibition was relieved by unsaturated fatty acid supplements alone but not by saturated fatty acid supplements. The utilization of exogenous unsaturated fatty acids to sustain growth in the presence of cerulenin was confirmed by the analysis of bulk lipid composition. The effects of cerulenin on fatty acid synthesis were examined in vivo by pulse labeling with [14C]acetate and in vitro using [14C]malonyl-coenzyme A. In both cases, unsaturated fatty acid synthesis was inhibited by low concentrations of cerulenin with a stimulation of saturated fatty acid synthesis. Using mutant strains deficient in fatty acid synthesis, the effects of cerulenin on beta-ketoacyl-[acyl-carrier-protein] synthetases I and II were examined. Our results indicate that beta-ketoacyl-[acyl-carrier-protein] synthetase I is more sensitive to inhibition by cerulenin than beta-ketoacyl-[acyl-carrier-protein] synthetase II.  相似文献   

18.
Branched long-chain fatty acids of the iso and anteiso series are synthesized in many bacteria from the branched-chain alpha-keto acids of valine, leucine, and isoleucine after their decarboxylation followed by chain elongation. Two distinct branched-chain alpha-keto acid (BCKA) and pyruvate decarboxylases, which are considered to be responsible for primer synthesis, were detected in, and purified in homogenous form from Bacillus subtilis 168 strain by procedures including ammonium sulfate fractionation and chromatography on ion exchange, reversed-phase, and gel absorption columns. The chemical and catalytic properties of the two decarboxylases were studied in detail. The removal of BCKA decarboxylase, using chromatographic fractionation, from the fatty acid synthetase significantly reduced its activity. The synthetase activity was completely lost upon immunoprecipitation of the decarboxylase. The removal of pyruvate decarboxylase by the above two methods, however, did not affect any activity of the fatty acid synthetase. Thus, BCKA decarboxylase, but not pyruvate decarboxylase, is essential for the synthesis of branched-chain fatty acids. The very high affinity of BCKA decarboxylase toward branched-chain alpha-keto acids is responsible for its function in fatty acid synthesis.  相似文献   

19.
Administration of estradiol-17 beta to male Xenopus laevis evokes the proliferation of the endoplasmic reticulum and the Golgi apparatus and the synthesis and secretion by the liver of massive amounts of the egg yolk precursor phospholipoglycoprotein, vitellogenin. We have investigated the effects of estrogen on three key regulatory enzymes in lipid biosynthesis, 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase, the major regulatory enzyme in cholesterol and isoprenoid synthesis, and acetyl-CoA carboxylase and fatty acid synthetase, which regulate fatty acid biosynthesis. HMG-CoA reductase activity and cholesterol synthesis increase in parallel following estrogen administration. Reductase activity in estrogen stimulated Xenopus liver cells peaks at 40-100 times the activity observed in control liver cells. The increased rate of reduction of HMG-CoA to mevalonic acid is not due to activation of pre-existing HMG-CoA reductase by dephosphorylation, as the fold induction is unchanged when reductase from control and estrogen-stimulated animals is fully activated prior to assay. The estrogen-induced increase of fatty acid synthesis is paralleled by a 16- to 20-fold increase of acetyl-CoA carboxylase activity, indicating that estrogen regulates fatty acid synthesis at the level of acetyl-CoA carboxylase. Fatty acid synthetase activity was unchanged during the induction of fatty acid biosynthesis by estrogen. The induction of HMG-CoA reductase and of acetyl-CoA carboxylase by estradiol-17 beta provides a useful model for regulation of these enzymes by steroid hormones.  相似文献   

20.
In studies on the metabolism of polyunsaturated fatty acids, acyl-CoA synthetase for 5,8,11,14-20:4 (arachidonic acid) and 5,8,11,14,17-20:5 (eicosapentaenoic acid) and the incorporation of these fatty acids into complex lipids and their conversion to CO2 were investigated in rat aorta. The activity of acyl-CoA synthetase was 35.9 for arachidonic acid and 63.0 for eicosapentaenoic acid (nmol/mg protein per 10 min) and the apparent Km values were 45 microM for arachidonic acid and 56 microM for eicosapentaenoic acid. Inhibition of eicosapentaenoyl-CoA synthesis by arachidonic acid was stronger than that of arachidonyl-CoA synthesis by eicosapentaenoic acid. Arachidonic acid and eicosapentaenoic acid were mostly incorporated into phospholipids. The incorporation of these fatty acids into cholesterol ester and their conversion to CO2 were less than those of palmitic acid, but their incorporation into triacyglycerol was greater. The incorporation of these fatty acids into phosphatidylserine + phosphatidylinositol and phosphatidylethanolamine was also greater than that of palmitic acid. The patterns of incorporation of arachidonic acid and eicosapentaenoic acid were similar. The physiological roles of these polyunsaturated fatty acids and the interference of eicosapentaenoic acid in arachidonic acid metabolism are discussed on the basis of these results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号