首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyinosinic:polycytidylic acid (poly(I:C)) is a ligand of toll-like receptor (TLR) 3 that has been used as an immunostimulant in humans and mice against viral diseases based on its ability to enhance innate and adapt immunity. Antiviral effect of poly(I:C) has also been observed in teleost, however, the underling mechanism is not clear. In this study, we investigated the potential and signaling mechanism of poly(I:C) as an antiviral agent in a model of Japanese flounder (Paralichthys olivaceus) infected with megalocytivirus. We found that poly(I:C) exhibited strong antiviral activity and enhanced activation of head kidney macrophages and peripheral blood leukocytes. In vivo studies showed that (i) TLR3 as well as MDA5 knockdown reduced poly(I:C)-mediated immune response and antiviral activity to significant extents; (ii) when Myd88 was overexpressed in flounder, poly(I:C)-mediated antiviral activity was significantly decreased; (iii) when Myd88 was inactivated, the antiviral effect of poly(I:C) was significantly increased. Cellular study showed that (i) the NF-κB activity induced by poly(I:C) was upregulated in Myd88-overexpressing cells and unaffected in Myd88-inactivated cells; (ii) Myd88 overexpression inhibited and upregulated the expression of poly(I:C)-induced antiviral genes and inflammatory genes respectively; (iii) Myd88 inactivation enhanced the expression of the antiviral genes induced by poly(I:C). Taken together, these results indicate that poly(I:C) is an immunostimulant with antiviral potential, and that the immune response of poly(I:C) requires TLR3 and MDA5 and is negatively regulated by Myd88 in a manner not involving NK-κB. These results provide insights to the working mechanism of poly(I:C), TLR3, and Myd88 in fish.  相似文献   

2.
As sentinels of host defense, intestinal epithelial cells respond to the viral pathogen rotavirus by activating a gene expression that promotes immune cell recruitment and activation. We hypothesized that epithelial sensing of rotavirus might target dsRNA, which can be detected by TLR3 or protein kinase R (PKR). Accordingly, we observed that synthetic dsRNA, polyinosinic acid:cytidylic acid (poly(I:C)), potently induced gene remodeling in model intestinal epithelia with the specific pattern of expressed genes, including both classic proinflammatory genes (e.g., IL-8), as well as genes that are classically activated in virus-infected cells (e.g., IFN-responsive genes). Poly(I:C)-induced IL-8 was concentration dependent (2-100 mug/ml) and displayed slower kinetics compared with IL-8 induced by bacterial flagellin (ET(50) approximately 24 vs 8 h poly(I:C) vs flagellin, respectively). Although model epithelia expressed detectable TLR3 mRNA, neither TLR3-neutralizing Abs nor chloroquine, which blocks activation of intracellular TLR3, attenuated epithelial responses to poly(I:C). Conversely, poly(I:C)-induced phosphorylation of PKR and inhibitors of PKR, 2-aminopurine and adenine, ablated poly(I:C)-induced gene expression but had no effect on gene expression induced by flagellin, thus suggesting that intestinal epithelial cell detection of dsRNA relies on PKR. Consistent with poly(I:C) detection by an intracellular molecule such as PKR, we observed that both uptake of and responses to poly(I:C) were polarized to the basolateral side. Lastly, we observed that the pattern of pharmacologic inhibition of responses to poly(I:C) was identical to that seen in response to infection by live rotavirus, indicating a potentially important role for PKR in activating intestinal epithelial gene expression in rotavirus infection.  相似文献   

3.
ObjectivesAlthough the exact etiology of biliary atresia (BA) is still elusive, inflammation plays a key role. Release of proinflammatory cytokines from activated immune cells perpetuates the injury and causes biliary destruction. We aimed to study interleukin (IL)-2 and IL-8 expression in liver tissue of BA patients compared with other neonatal cholestatic disorders.MethodsThe study included 59 infants with neonatal cholestasis in two groups; BA group (n = 31) and non-BA group (n = 28) with cholestatic disorders other than BA as controls. Demographic, clinical, laboratory, and histopathological parameters were collected. IL-2 and IL-8 immunostaining was performed. Immunostaining in portal cellular infiltrate was scored as positive or negative and expressed as the mean cell count in three portal tracts.ResultsThe mean value of IL-2 and IL-8 positive inflammatory cells was significantly higher in BA than in non-BA group (P-values of 0.004 and 0.002 respectively). IL-2 correlated significantly with IL-8 immunostaining in both BA and non-BA group (P < 0.0001 for both). Furthermore, both cytokines in both groups correlated significantly with inflammatory activity in liver biopsy while there was no significant correlation with the other studied parameters. Yet, there was a trend of increased expression of IL-2 and IL-8 with increasing stage of fibrosis in BA group. This trend was not observed in non-BA group.ConclusionThe significantly higher expression of IL-2 and IL-8 in patients with BA compared to non-BA suggests a potential role for these cytokines in the pathogenesis in therapy of this devastating neonatal hepatic disorder.  相似文献   

4.
Toll‐like receptor (TLR)‐mediated signalling plays a role in cerebral ischaemia/reperfusion (I/R) injury. Modulation of TLRs has been reported to protect against cerebral I/R injury. This study examined whether modulation of TLR3 with poly (I:C) will induce protection against cerebral I/R injury. Mice were treated with or without Poly (I:C) (n = 8/group) 1 hr prior to cerebral ischaemia (60 min.) followed by reperfusion (24 hrs). Poly (I:C) pre‐treatment significantly reduced the infarct volume by 57.2% compared with untreated I/R mice. Therapeutic administration of Poly (I:C), administered 30 min. after cerebral ischaemia, markedly decreased infarct volume by 34.9%. However, Poly (I:C)‐induced protection was lost in TLR3 knockout mice. In poly (I:C)‐treated mice, there was less neuronal damage in the hippocampus compared with untreated I/R mice. Poly (I:C) treatment induced IRF3 phosphorylation, but it inhibited NF‐κB activation in the brain. Poly (I:C) also decreased I/R‐induced apoptosis by attenuation of Fas/FasL‐mediated apoptotic signalling. In addition, Poly (I:C) treatment decreased microglial cell caspase‐3 activity. In vitro data showed that Poly (I:C) prevented hypoxia/reoxygenation (H/R)‐induced interaction between Fas and FADD as well as caspase‐3 and ‐8 activation in microglial cells. Importantly, Poly (I:C) treatment induced co‐association between TLR3 and Fas. Our data suggest that Poly (I:C) decreases in cerebral I/R injury via TLR3 which associates with Fas, thereby preventing the interaction of Fas and FADD, as well as microglial cell caspase‐3 and ‐8 activities. We conclude that TLR3 modulation by Poly (I:C) could be a potential approach for protection against ischaemic stroke.  相似文献   

5.
Administration of double-stranded synthetic polynucleotide, polyribosinic-polyribocytidylic acid [poly(I · C)] to animals sensitized once to Trichinella spiralis antigen + complete adjuvant (Difco's H37 Ra) did not affect induction or transfer of delayed hypersensitivity. Poly (I · C) did not enhance antibody production in animals sensitized only once when tested by passive cutaneous anaphylaxis (PCA). However, it appeared to enhance antibody production in hypersensitized animals. Several of the undiluted serum samples from hypersensitized animals treated with 3 mg of poly(I · C) were anaphylactogenic and inhibitory when tested by PCA, but not when serum samples were diluted 1:80. Possible reasons for these phenomena are discussed.  相似文献   

6.
Biliary atresia (BA) is a devastating cholestatic liver disease targeting infants. Current diagnosis depends on surgical exploration of the biliary tree. The aim of the present study was to identify potential biomarkers for the diagnosis of biliary atresia (BA). Two-dimensional electrophoresis was utilized for the identification of proteins that were differentially expressed in liver biopsies of 20 BA patients and 12 infants with non-BA neonatal cholestasis (NC) as controls. Using mass spectrometry, we identified 15 proteins with expressions significantly altered. Out of the 15 proteins identified, heat shock protein (HSP) 90 was the most significantly altered and was down-regulated in BA samples compared to NC samples using immunoblotting analysis. Our findings suggest that HSP90 might be a potential biomarker for the diagnosis of BA and may be used for monitoring further development and therapy for BA. This study demonstrated that a comprehensive strategy of proteomic identification combined with further validation should be adopted in biomarker discovery.  相似文献   

7.
8.
9.
Calcific aortic valve disease (CAVD) is characterized by chronic inflammation and progressive calcification in valve leaflets. Aortic valve interstitial cells (AVICs) play a critical role in the pathogenesis of CAVD. Previous studies show that stimulation of Toll-like receptor (TLR) 2 or TLR4 in AVICs in vitro up-regulates the expression of osteogenic mediators. Double-stranded RNA (dsRNA) can activate pro-inflammatory signaling through TLR3, the NLRP3 inflammasome and RIG-I-like receptors. The objective of this study is to determine the effect of dsRNA on AVIC osteogenic activities and the mechanism of its action. Methods and results: AVICs isolated from normal human valves were exposed to polyinosinic-polycytidylic acid [poly(I:C)], a mimic of dsRNA. Treatment with poly(I:C) increased the production of bone morphogenetic protein-2 (BMP-2), transforming growth factor beta-1 (TGF-β1) and alkaline phosphatase (ALP), and resulted in calcium deposit formation. Poly(I:C) induced the phosphorylation of NF-κB and ERK1/2. Knockdown of TLR3 essentially abrogated NF-κB and ERK1/2 phosphorylation, and markedly reduced the effect of poly(I:C) on the production of BMP-2, TGF-β1 and ALP. Further, inhibition of either NF-κB or ERK1/2 markedly reduced the levels of BMP-2, TGF-β1 and ALP in cells exposed to poly(I:C). Conclusion: Poly(I:C) up-regulates the production of BMP-2, TGF-β1 and ALP, and promotes calcium deposit formation in human AVICs. The pro-osteogenic effect of poly(I:C) is mediated primarily by TLR3 and the NF-κB and ERK1/2 pathways. These findings suggest that dsRNA, when present in aortic valve tissue, may promote CAVD progression through up-regulation of AVIC osteogenic activities.  相似文献   

10.
11.
12.
Antimicrobial peptides (AMPs) are a conserved component of the innate immune response in many species. In the present study, the cDNA sequences encoding two AMPs (cathelicidin and NK‐lysin, comprising 1,576 and 606 bp, respectively) were cloned from Dabry's sturgeon (Acipenser dabryanus). Phylogenetic analysis demonstrated that the two AMPs were clustered together with homologous protein sequences from other fish. NK‐lysin was highly expressed during early embryonic development, suggesting maternal transmission. Tissue distribution analysis showed that cathelicidin had the highest expression in the liver and NK‐lysin was most abundantly expressed in the spleen. In response to Poly I:C treatment, the expression of cathelicidin was upregulated at 12 and 24 hr post induction (hpi), but downregulated at 72 hpi. NK‐lysin mRNA expression increased after treatment with Poly I:C, reaching a peak at 24 hpi. Lipopolysaccharide treatment also induced the expression of two antimicrobial peptide genes. Lipopolysaccharide treatment significantly upregulated the expression of cathelicidin at 6, 24, and 48 hpi, and upregulated NK‐lysin expression at 6 and 12 hpi. These results suggested that two AMPs could participate in the immune response induced by poly I:C or LPS stimulation.  相似文献   

13.
14.
Poly(inosinic) and poly(cytidylic) acids (Poly I:Poly C) have been used to induce the production of endogenous interferon or release preformed interferon in mammals. Interferon increases the resistance of the cells. Sixty guinea pigs were used to investigate whether Poly I:Poly C gave protection from gentamicin nephrotoxicity. The animals were divided into six equal groups. Group 1 were controls; group 2 received gentamicin intramuscularly; group 3 received gentamicin and 12 h later frusemide; group 4 received gentamicin and 12 h later 1-deamino-8-D-argine vasopressin (DDAVP) intramuscularly; group 5 received subcutaneously Poly I:Poly C; group 6 received Poly I:Poly C and 24 h later gentamicin. Frusemide in group 3 potentiated gentamicin nephrotoxicity while DDAVP in group 4 ameliorated gentamicin nephrotoxicity. Poly I:Poly C itself had no toxic effect on renal tissue, while Poly I:Poly C followed 24 h later by gentamicin indicated a protective effect from the gentamicin nephrotoxicity as the functional and histological investigations indicated.  相似文献   

15.
Human immunodeficiency virus (HIV) is taken up by and replicates in immature dendritic cells (imDCs), which can then transfer virus to T cells, amplifying the infection. Strategies known to boost DC function were tested for their ability to overcome this exploitation when added after HIV exposure. Poly(I:C), but not single-stranded RNA (ssRNA) or a standard DC maturation cocktail, elicited type I interferon (IFN) and interleukin-12 (IL-12) p70 production and the appearance of unique small (15- to 20-kDa) fragments of APOBEC3G (A3G) and impeded HIVBal replication in imDCs when added up to 60 h after virus exposure. Comparable effects were mediated by recombinant alpha/beta IFN (IFN-α/β). Neutralizing the anti-IFN-α/β receptor reversed poly(I:C)-induced inhibition of HIV replication and blocked the appearance of the small A3G proteins. The poly(I:C)-induced appearance of small A3G proteins was not accompanied by significant differences in A3G mRNA or A3G monomer expression. Small interfering RNA (siRNA) knockdown of A3G could not be used to reverse the poly(I:C)-induced protective effect, since siRNAs nonspecifically activated the DCs, inducing the appearance of the small A3G proteins and inhibiting HIV infection. Notably, the appearance of small A3G proteins coincided with the shift of high-molecular-mass inactive A3G complexes to the low-molecular-mass (LMM) active A3G complexes. The unique immune stimulation by poly(I:C) with its antiviral effects on imDCs marked by the expression of IFN-α/β and active LMM A3G renders poly(I:C) a promising novel strategy to combat early HIV infection in vivo.  相似文献   

16.
ABSTRACT: BACKGROUND: Double-stranded RNA (dsRNA) and its mimic, polyinosinic acid: polycytidylic acid [Poly (I:C)], are recognized by toll-like receptor 3 (TLR3) and induce interferon (IFN)-beta in many cell types. Poly (I:C) is the most potent IFN inducer. In in vivo mouse studies, intraperitoneal injection of Poly (I:C) elicited IFN-alpha/beta production and natural killer (NK) cells activation. The TLR3 pathway is suggested to contribute to innate immune responses against many viruses, including influenza virus, respiratory syncytial virus, herpes simplex virus 2, and murine cytomegalovirus. In Chikungunya virus (CHIKV) infection, the viruses are cleared within 7-10 days postinfection before adaptive immune responses emerge. The innate immune response is important for CHIKV clearance. RESULTS: The effects of Poly (I:C) on the replication of CHIKV in human bronchial epithelial cells, BEAS-2B, were studied. Poly (I:C) suppressed cytopathic effects (CPE) induced by CHIKV infection in BEAS-2B cells in the presence of Poly (I:C) and inhibited the replication of CHIKV in the cells. The virus titers of Poly (I:C)-treated cells were much lower compared with those of untreated cells. CHIKV infection and Poly (I:C) treatment of BEAS-2B cells induced the production of IFN-beta and increased the expression of anti-viral genes, including IFN-alpha, IFN-beta, MxA, and OAS. Both Poly (I:C) and CHIKV infection upregulate the expression of TLR3 in BEAS-2B cells. CONCLUSIONS: CHIKV is sensitive to innate immune response induced by Poly (I:C). The inhibition of CHIKV replication by Poly (I:C) may be through the induction of TLR3, which triggers the production of IFNs and other anti-viral genes. The innate immune response is important to clear CHIKV in infected cells.  相似文献   

17.
Chemically synthesized 2-azaadenosine 5'-diphosphate (n2ADP) and 2-azainosine 5'-diphosphate (n2IDP) were polymerized to yield poly(2-azaadenylic acid), poly(n2A), and poly(2-azainosinic acid), poly(n2I), using Escherichia coli polynucleotide phosphorylase. In neutral solution, poly(n2A) and poly(n2I) had hypochromicities of 32 and 5.5%, respectively. Poly(n2A) formed an ordered structure, which had a melting temperature (Rm) of 20 degrees C at 0.15 M salt concentration. Upon mixing with poly(U), poly(n2A) formed a 1 : 2 complex with Tm of 41 degrees C at 0.15 M salt concentration. Poly(n2A) and poly(n2I) formed three-stranded complexes with poly(I), and poly(A), respectively. Poly(n2A) . 2poly(I), poly(A) . 2poly(n2I), and poly(n2A) . 2poly(n2I) complexes had Tm values of 23, 48, and 31 degrees C at 0.15 M salt concentration, respectively. Poly(n2I) formed a double-stranded complex with poly(C), but its Tm was very low.  相似文献   

18.
The effects of some synthetic polyribonucleotides on induction of differentiation of mouse myeloid leukemic M1 cells were examined. Poly(I) was found to be a potent inducer; on treatment with 100--200 microgram/ml of poly(I) for 2--4 days, M1 cells differentiated into cells resembling macrophages and granulocytes and developed phagocytosis and locomotive activities, Fc receptors and lysozyme activity. Poly(C) was less effective than poly(I) for induction of phagocytic activity, while the other single-stranded RNAs, poly(U) and poly(A), had no effect. Double-stranded RNAs, such as poly(I) . poly(C) and poly(A) . poly(U), were cytotoxic to M1 cells, and differentiation of the cells could not be detected even at the highest tolerable concentrations of these double-stranded RNAs.  相似文献   

19.
聚肌胞(Poly I:C)是一种天然双链RNA(Double strand RNA, dsRNA)的拟似物,能够模拟病毒感染后所形成的dsRNA及刺激机体产生抗病毒免疫反应。文章以抗病力存在差异的大蒲莲和长白仔猪为研究对象,分离外周血单核细胞(Peripheral blood mononuclear cell, PBMC),在20 μg/mL的Poly I:C的免疫刺激下体外培养24 h,对影响免疫应答过程中的7个细胞因子(IRF3、IL6、IL8、IL10、TNFα、IFNγ和IFNα)和3个模式识别受体(TLR3、TLR4和RIG1)利用实时荧光定量PCR检测Poly I:C免疫刺激组相对于对照组的基因表达变化倍数。结果表明:检测的大部分细胞因子和受体(6个)表达量变化倍数很大,其中3种白细胞介素IL6、IL8和IL10免疫刺激变化倍数最大,平均变化倍数分别为20.71、10.87和5.18倍。对不同个体和品种间的比较发现,不仅大蒲莲和长白两品种间(大蒲莲猪的变化倍数平均高于长白猪)而且同品种的3头全同胞仔猪间对Poly I:C免疫刺激的应答也存在较大的变化。文章利用Poly I:C体外模拟dsRNA对PBMC的感染,为下一步筛选仔猪对Poly I:C刺激的免疫应答基因及鉴定大蒲莲猪特殊的抗性基因奠定了基础。  相似文献   

20.
Poly (2'-chloro-2'-deoxyinosinic acid) [poly(Icl)] was synthesized from Icl 5'-DP by polymerization with polynucleotide phosphorylase. UV absorption properties of poly(Icl) are very similar to those of poly(I). Poly(Icl) adopted a multi-stranded ordered form in the presence of 0.95M Na ion. The Tm value of this form was 36 degrees, which resembles that of poly(I) quadruple-stranded form at high salt. CD spectra also suggested presence of these two forms. Upon mixing with poly(C), poly-(Icl) forms a double-stranded 1 : 1 complex, which had very similar Tm-log[Na+] relationship to that of poly(I) . poly(C). Thus it was concluded that the chlorine substitution at 2'-position of the polynucleotide had the similar effect to OH on physical properties of polynucleotides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号