首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wu L  Cai C  Wang X  Liu M  Li X  Tang H 《FEBS letters》2011,585(9):1322-1330
RAC1 regulates a diverse array of cellular events including migration and invasion. MicroRNAs (miRNAs) have a key role in the regulation of gene expression. In this study, we demonstrated that microRNA-142-3p (miR-142-3p) acted as a negative regulator of human RAC1. Overexpression of miR-142-3p decreased RAC1 mRNA and protein levels. Moreover, the overexpression of miR-142-3p suppressed, while blocking of miR-142-3p increased colony formation, migration and invasion in hepatocellular carcinoma (HCC) cell lines (QGY-7703 and SMMC-7721). RAC1 overexpression without the 3'untranslated region abolished the effect of miR-142-3p in the QGY-7703 and SMMC-7721 cells. These results demonstrated that miR-142-3p directly and negatively regulates RAC1 in HCC cells, which highlights the importance of miRNAs in tumorigenesis.  相似文献   

2.
3.

Background

Two mature miRNA species may be generated from the 5’ and 3’ arms of a pre-miRNA precursor. In most cases, only one species remains while the complementary species is degraded. However, co-existence of miRNA-5p and -3p species is increasingly being reported. In this work, we aimed to systematically investigate co-expression of miRNA-5p/3p in colon cancer cells in a genome-wide analysis, and to examine cross-targeting of the dysregulated miRNAs and 5p/3p species.

Results

Four colon cancer cell lines were examined relative to two normal colon tissues. Of the 1,190 miRNAs analyzed, 92 and 36 were found to be up- or down-regulated, respectively, in cancer cells. Nineteen co-expressed miRNA-5p/3p pairs were further identified suggesting frequent 5p/3p co-accumulation in colon cancer cells. Of these, 14 pairs were co-up-regulated and 3 pairs were co-down-regulated indicating concerted 5p/3p dysregulation. Nine dysregulated miRNA pairs fell into three miRNA gene families, namely let-7, mir-8/200 and mir-17, which showed frequent cross-targeting in the metastasis process. Focusing on the let-7d-5p/3p pair, the respectively targeted IGF1R and KRAS were shown to be in a reverse relationship with expression of the respective miRNA, which was confirmed in transient transfection assays using let-7d mimic or inhibitor. Targeting of KRAS by let-7d was previous reported; targeting of IGF1R by let-7d-5p was confirmed in luciferase assays in this study. The findings of let-7d-5p/3p and multiple other miRNAs targeting IGF1R, KRAS and other metastasis-related factors suggest that 5p/3p miRNAs contribute to cross-targeting of multiple cancer-associated factors and processes possibly to evade functional abolishment when any one of the crucial factors are inactivated.

Conclusions

miRNA-5p/3p species are frequently co-expressed and are coordinately regulated in colon cancer cells. In cancer cells, multiple cross-targeting by the miRNAs, including the co-existing 5p/3p species, frequently occurs in an apparent safe-proof scheme of miRNA regulation of important tumorigenesis processes. Further systematic analysis of co-existing miRNA-5p/3p pairs in clinical tissues is important in elucidating 5p/3p contributions to cancer pathogenesis.

Electronic supplementary material

The online version of this article (doi:10.1186/s12929-014-0095-x) contains supplementary material, which is available to authorized users.  相似文献   

4.
Circulating microRNAs (miRNAs) are emerging as promising biomarkers for several disorders and related pain. In equine practice, acute laminitis is a common disease characterised by intense pain that severely compromises horse welfare. Recently, the Horse Grimace Scale (HGS), a facial expression-based pain coding system, was shown to be a valid welfare indicator to identify pain linked to acute laminitis. The present study aimed to: determine whether miRNAs can be used as biomarkers for acute pain in horses (Equus caballus) affected by laminitis; integrate miRNAs to their target genes and to categorise target genes for biological processes; gather additional evidence on concurrent validity of HGS by investigating how it correlates to miRNAs. Nine horses presenting acute laminitis with no prior treatment were recruited. As control group, nine healthy horses were further included in the experimental design. Samples were collected from horses with laminitis at admission before any treatment (‘pre-treatment’) and 7 days after routine laminitis treatment (‘post-treatment’). The expression levels of nine circulating miRNAs, namely hsa-miR-532-3p, hsa-miR-219-5p, mmu-miR-134-5p, mmu-miR-124a-3p, hsa-miR-200b-3p, hsa-miR-146a-5p, hsa-miR-23b-3p, hsa-miR-145-5p and hsa-miR-181a-5p, were detected and assessed as potential biomarkers of pain by quantitative PCR using TaqMan® probes. The area under the receiver operating curve (AUC) was then used to evaluate the diagnostic performance of miRNAs. Molecular data were integrated with HGS scores assessed by one trained treatment and time point blind veterinarian. The comparative analysis demonstrated that the levels of miR-23b-3p (P=0.029), miR-145-5p (P=0.015) and miR-200b-3p (P=0.023) were significantly higher in pre-treatment and the AUCs were 0.854, 0.859 and 0.841, respectively. MiR-200b-3p decreased after routine laminitis treatment (P=0.043). Combining two miRNAs in a panel, namely miR-145-5p and miR-200b-3p, increased efficiency in distinguishing animals with acute pain from controls. In addition, deregulated miRNAs were positively correlated to HGS scores. Computational target prediction and functional enrichment identified common biological pathways between different miRNAs. In particular, the glutamatergic pathway was affected by all three miRNAs, suggesting a crucial role in the pathogenesis of pain. In conclusion, the dynamic expression of circulating miR-23b-3p, miR-145-5p and miR-200b-3p was detected in horses with acute laminitis and miRNAs can be considered potentially promising pain biomarkers. Further studies are needed in order to assess their relevancy in other painful conditions severely compromising horse welfare. An important implication would be the possibility to use them for the concurrent validation of non-invasive indicators of pain in horses.  相似文献   

5.
Chemoresistance prevents effective cancer therapy and is rarely predictable prior to treatment, particularly for hepatocellular carcinoma (HCC). Following the chemoresistance profiling of eight HCC cell lines to each of nine chemotherapeutics, two cell lines (QGY-7703 as a sensitive and SMMC-7721 as a resistant cell line to 5-fluorouracil (5-FU) treatment) were systematically studied for mechanistic insights underpinning HCC 5-FU chemoresistance. Genomic profiling at both DNA methylation and microRNA (miR) levels and subsequent mechanistic studies illustrate a new mechanism for how DNA methylation-regulated miR-193a-3p dictates the 5-FU resistance of HCC cells via repression of serine/arginine-rich splicing factor 2 (SRSF2) expression. In turn, SRSF2 preferentially up-regulates the proapoptotic splicing form of caspase 2 (CASP2L) and sensitizes HCC cells to 5-FU. Forced changes of miR-193a-3p level reverse all of the phenotypic features examined, including cell proliferation, cell cycle progression, and 5-FU sensitivity, in cell culture and in nude mice. Importantly, the siRNA-mediated repression of SRSF2 phenocopies all of the miR-193a-3p mimic-triggered changes in QGY-7703. This newly identified miR-193a-3p-SRSF2 axis highlights a new set of companion diagnostics required for optimal 5-FU therapy of HCC, which involve assaying both the DNA methylation state of the miR-193a gene and the expression of miR-193a-3p and SRSF2 and the relative level of the proapoptotic versus antiapoptotic splicing forms of caspase 2 in clinical samples.  相似文献   

6.
《Genomics》2020,112(1):669-676
This investigation profiled circulating serum concentrations of microRNAs (miRNAs) in premature cardiovascular disease (CVD) patients screened for the 677C > T polymorphism in methylenetetrahydrofolate reductase (MTHFR), a risk factor for hypertension. Serum samples from 75 premature CVD patients of known MTHFR genotype were analysed for CVD-related miRNA expression, to identify those that were associated with blood pressure. Samples were collected at baseline and following intervention with riboflavin as part of a randomized controlled trial. In patients with the MTHFR 677TT genotype, expression of miR-199a-5p in serum was inversely correlated with hypertension at baseline, and with change in blood pressure in TT genotype patients who responded to riboflavin intervention. These correlations were not observed in MTHFR 677CC genotype patients. In vitro experiments and in silico data analysis provided evidence that miR-199a-5p targets SMAD4. This is the first study to link miR-199a-5p expression with hypertension in a genetically at-risk cohort of premature CVD patients.  相似文献   

7.
8.
DNA structure and expression of p53 gene in human hepatoma cell lines SMMC-7721, YY-8103 and a spontaneously transformed liver cell line L-02 were analysed using the following method: analysis of allelic losses on chromosome 17p, PCR/SSCP, Northern blot and immunoprecipitation. There was no point mutation found in the exons 4-9 of the p53 gene, and a low level of expression of p53 gene was detected in the three cell lines. These observations were in agreement to the reported results of the relevant experiment using the human hepatoma cell line QGY-7703. Sensitivities of these cell lines and other eight human hepatoma cell lines (QGY-7703, PLC/PRF/5, Tong/HCC, Huh-7, FOCUS, Hep3B, SK-Hep-1, HepG2) with known p53 backgrounds to parvovirus H-1 was assayed using MTT method. Abnormality in the structure and/or function was observed in all of the cell lines examined except HepG2. The cell line HepG2 with normal structure and function of the p53 gene was found to be the least sensitive to H-1 in comparison to all the cell lines which have defeated structure and/or function of the p53 gene. The present study serves as a preliminary evidence that enhancement of the sensitivity of human hepatoma cell lines to H-1 is correlated to the abnormality of the structure and/or function of the p53 gene.  相似文献   

9.
An increasing body of evidence indicates that miR-149 can both suppress and promote tumor growth depending on the tumor type. However, the role of miR-149 in the progression of gastric cancer (GC) remains unknown. Here we report that miR-149 is a tumor suppressor in human gastric cancer. miR-149 expression is decreased in GC cell lines and clinical specimens in comparison to normal gastric epithelial cell and tissues, respectively. The expression levels of miR-149 also correlate with the differentiation degree of GC cells and tissues. Moreover, ectopic expression of miR-149 in gastric cancer cells inhibits proliferation and cell cycle progression by down-regulating ZBTB2, a potent repressor of the ARF-HDM2-p53-p21 pathway, with a potential binding site for miR-149 in its mRNA''s 3′UTR. It is also found that ZBTB2 expression increases in GC cells and tissues compared to normal gastric epithelial cell and tissues, respectively. Silencing of ZBTB2 leads to suppression of cell growth and cell cycle arrest in G0/G1 phase, indicating that ZBTB2 may act as an oncogene in GC. Furthermore, transfection of miR-149 mimics into gastric cancer cells induces down-regulation of ZBTB2 and HDM2, and up-regulation of ARF, p53, and p21 compared to the controls. In summary, our data suggest that miR-149 functions as a tumor suppressor in human gastric cancer by, at least partially through, targeting ZBTB2.  相似文献   

10.
MicroRNAs (miRNAs) are regulatory small non-coding RNAs that can regulate gene expression by binding to gene elements, such as the gene promotor 5'UTR, mainly in the 3'UTR of mRNA. One miRNA targets many mRNAs, which can be regulated by many miRNAs, leading to a complex metabolic network. In our study, we found that the expression level of miR-590-5p is higher in the human hepatocellular carcinoma cell line HepG2 than in the normal hepatocellular cell line L02. Downregulation of miR-590-5p inhibited proliferation and invasion of hepatocellular carcinoma cells (HCCs). We also showed that expression of TGF-beta RII, which has been regarded as a regulator of tumor proliferation, invasion, and migration in hepatocellular carcinoma, is regulated by miRNA-590-5p. In addition, miR-590-5p downregulated the expression of TGF-beta RII by targeting the 3'UTR of mRNA. We also found that downregulation of miR-590-5p was associated with an elevation of TGF-beta RII and inhibition of proliferation and invasion in HepG2 cells. Furthermore, overexpression of miR-590-5p was associated with upregulation of TGF-beta RII and could promote proliferation and invasion in L02 cells. In conclusion, we determined that TGF-beta RII is a novel target of miRNA-590-5p. Thus, the role of TGF-beta RII in regulating proliferation and invasion of human HCCs is controlled by miR-590-5p. In other words, miR-590-5p promotes proliferation and invasion in human HCCs by directly targeting TGF-beta RII.  相似文献   

11.
Despite advances in chronic hepatitis C treatment, a proportion of patients respond poorly to treatment. This study aimed to explore hepatic mRNA and microRNA signatures involved in hepatitis C treatment resistance. Global hepatic mRNA and microRNA expression profiles were compared using microarray data between treatment responses. Quantitative real-time polymerase chain reaction validated the gene signatures from 130 patients who were infected with hepatitis C virus genotype 1b and treated with pegylated interferon-alpha and ribavirin combination therapy. The correlation between mRNA and microRNA was evaluated using in silico analysis and in vitro siRNA and microRNA inhibition/overexpression experiments. Multivariate regression analysis identified that the independent variables IL28B SNP rs8099917, hsa-miR-122-5p, hsa-miR-17-5p, and MAP3K8 were significantly associated with a poor virologic response. MAP3K8 and miR-17-5p expression were inversely correlated with treatment response. Furthermore, miR-17-5p repressed HCV production by targeting MAP3K8. Collectively, the data suggest that several molecules and the inverse correlation between mRNA and microRNA contributed to a host genetic refractory hepatitis C treatment response.  相似文献   

12.
Recently, circulating miRNAs have been reported as promising biomarkers for various pathologic conditions including cancer. Certain microRNAs (miRNAs) have been shown early diagnostic potential for many types of cancer. The objective of this study was to investigate the potential of certain serum/plasma miRNAs as novel non-invasive biomarkers for early diagnosis of hepatitis B virus (HBV) related hepatocellular carcinoma (HCC). For this reason, the expression levels of 24 miRNA (let-7c, miR-92a-3p, 423-5p, 150-5p, 223-3p, 125b-5p, 342-3p, miR-206, 122-5p, 375, 223-5p, 10a-5p, 23b-5p, 99a-5p, 23a-5p, 10a-3p, 122-3p, 125b-1-3p, 23b-3p, 125b-2-3p, 23a-3p, 92a-1-5p, 92a-2-5p, 99a-3p) were analyzed in plasma of patients with chronic hepatitis B, HBV-positive cirrhosis and HBV-positive HCC and compared with control group samples. Totally 94 plasma samples; 28 control and 66 patient plasma (24 CHB, 22 HBV-positive cirrhosis, 20 HBV-positive HCC) and were included in this study. The expression levels of 24 miRNAs were detected for all control and patient group plasma samples by qRT-PCR using BioMark? 96.96 Dynamic Array (Fluidigm Corporation) system. The expression levels of miR-125b-5p were detected 2.85 fold, 2.46 fold and 1.89 fold (p = 0.01513, p = 0.0009440, p = 0.0001446) up regulated in CHB, HBV-positive cirrhosis and HBV-positive HCC, respectively when compared versus control group individually by Mann–Whitney U test. The expression levels of miR-223-3p were detected 5.55 fold, 13.88 fold and 12.65 fold (p = 0.01513, p = 0.0009440, p = 0.0001446) down regulated in same comparisons. When all groups were compared versus control group by one-way ANOVA test, the expression levels of miR-223-3p were also found statistically significant (p < 0.05). Although not statistically significant, miR-125b-5p tended to be upregulated. (p = 0.07192). These results significantly imply that miR-125b-5p and miR223-3p could be used as novel non-invasive biomarkers of HBV-positive HCC in very early, even at CHB stage of liver disease.  相似文献   

13.
14.
MicroRNA-30e-5p (miR-30e-5p) is a tumor suppressor that is known to be downregulated in non-small cell lung cancer (NSCLC). However, how miR-30e-5p inhibits NSCLC tumorigenesis is not known. Ubiquitin-specific peptidase 22 (USP22) is upregulated in NSCLC and promotes tumorigenesis via a Sirt1-JAK-STAT3 pathway. In this study, we investigated whether miR-30e-5p inhibits tumor growth by targeting USP22 in NSCLC. Our results reveal that miR-30e-5p expression was correlated negatively with USP22 in NSCLC tissues. Luciferase reporter assays showed that miR-30e-5p negatively regulated USP22 expression by binding to a specific sequence in the 3?UTR. MiR-30e-5p overexpression and USP22 knockdown significantly inhibited tumor growth in vivo and induced cell cycle arrest and apoptosis in NSCLC cells in vitro. The effects of miR-30e-5p inhibition were prevented by USP22 knockdown. MiR-30e-5p inhibited SIRT1 expression and increased expression of p53 and the phosphorylated form of STAT3 (pSTAT3). Furthermore, miR-30e-5p prevented USP22-mediated regulation of SIRT1, pSTAT3, and p53 expression. Taken together, these findings suggest that miR-30e-5p suppresses NSCLC tumorigenesis by downregulatingUSP22-mediated Sirt1/JAK/STAT3 signaling. Our study has identified miR-30e-5p as a potential therapeutic target for the treatment of NSCLC.  相似文献   

15.
16.
为了探讨MKI67在肝癌细胞发生发展中的作用,采用实时定量 PCR 方法检测人肝细胞癌 QGY 7703 细胞中MKI67 基因表达水平, 以及 MKI67在肝细胞癌组织和癌旁正常组织中的表达情况,设计并合成针对MKI67 的siRNA,利用脂质体转染法将其转入QGY-7703 细胞内,通过MTT和细胞集落形成实验观察MKI67-siRNA 对QGY-7703细胞生长活性和增殖能力的影响.实时定量PCR结果表明,MKI67在肝细胞癌组织中的表达水平明显高于癌旁正常组织(P< 0.01). MTT和细胞集落形成实验结果显示,转染MKI67-siRNA 的QGY-7703细胞生长活性和集落形成率明显低于对照组(P< 0.01).由此得出结论:MKI67 在肝癌细胞系QGY-7703细胞中的表达水平较高,且它在肝癌组织中的表达水平明显上调. 同时,MKI67-siRNA 可以有效抑制QGY-7703细胞的生长活性和增殖能力,提示MKI67可能与肝细胞癌的发生、发展相关.  相似文献   

17.
The molecular mechanism underlying constitutive activation of AKT signaling, which plays essential roles in astrocytoma progression, is not fully characterized. Increasing numbers of studies have reported that microRNAs are involved in the malignant behavior of astrocytoma cells via directly targeting multiple oncogenes or tumor suppressors. Here, we found that microRNA (miR)-542-3p expression was decreased in glioblastoma cell lines and astrocytoma tissues, and reduced levels of miR-542-3p expression correlated with high histopathological grades and poor prognosis of astrocytoma patients. Exogenous miR-542-3p suppressed glioblastoma cell invasion through not only targeting AKT1 itself but also directly down-regulating its two important upstream regulators, namely, integrin-linked kinase and PIK3R1. Notably, overexpressing miR-542-3p decreased AKT1 phosphorylation and directly and indirectly repressed nuclear translocation and transactivation activity of β-catenin to exert its anti-invasive effect. Furthermore, the miR-542-3p expression level negatively correlated with AKT activity as well as levels of integrin-linked kinase and PIK3R1 in human astrocytoma specimens. These findings suggest that miR-542-3p acts as a negative regulator in astrocytoma progression and that miR-542-3p down-regulation contributes to aberrant activation of AKT signaling, leaving open the possibility that miR-542-3p may be a potential therapeutic target for high grade astrocytoma.  相似文献   

18.
本文利用单链构象多态性分析,17号染色体短臂等位基因杂合性分析,Northern印迹,免疫沉淀,p53基因第7外显子酶切等技术检测了两个中国人肝癌细胞系SMMC-7721,YY-8103和一个自发转化的人肝细胞系L-02的p53基因结构与表达。实验表明,这三个细胞系中没有出现17号染色体短臂等位基因杂合性缺失,第4—9外显子也没发生突变,但其mRNA和蛋白表达水平很低。利用MTT比色分析法研究了这三个细胞系和其他已知p53基因背景的八个人肝癌细胞系(QGY-7703、PLC/PRF/5、Huh-7、Hep3B、FOCUS、Tong/ HCC、SK-Hep-1、HepG2)对自主性细小病毒H-1的敏感性。除HepG2细胞外,其他十个细胞系p53基因的结构和/或表达都不正常。经H-1感染(moi=20)后,其敏感性均高于HepG2细胞。本研究初步表明了p53基因结构或表达的不正常可能导致人肝癌或转化细胞对H-1的敏感性的提高。  相似文献   

19.
Rutin, the main component of Potentilla discolor Bunge, was proven to exhibit anti-tumor properties. Sorafenib (SO) is conventionally used in chemotherapy against hepatocellular carcinoma (HCC), but acquired resistance developed during long-term therapy limits its benefits. This study aimed to explore the molecular mechanism of rutin in SO-induced autophagy and chemoresistance in HCC. Sixty-eight paired HCC patients who received the same chemotherapy treatment were obtained. We also established two SO resistance cell lines and then utilized high-throughput RNA sequencing to explore their long non-coding RNA (lncRNA) expression profiles. The target microRNA (miRNA) and downstream mRNA were also explored. Our results indicated that rutin treatment attenuates autophagy and BANCR expression in SO resistance cells. Transmission electron microscopy clearly showed a significantly decreased number of autophagosomes after rutin-treated HepG2/SO and HCCLM3/SO cells. BANCR knockdown promotes the sensitivity of SO resistance cells to SO. Further study found that BANCR acts as a molecular sponge of miR-590-5P to sequester miR-590-5P away from oxidized low-density lipoprotein receptor 1 (OLR1) in HCC cells. Furthermore, in vivo study demonstrated that rutin could inhibit autophagy through the BANCR/miRNA-590-5P/OLR1 axis. Our findings suggest that rutin could regulate autophagy by regulating BANCR/miRNA-590-5P/OLR1 axis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号