首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of Physiology》2013,107(5):338-348
Ganglion cells in the vertebrate retina integrate visual information over their receptive fields. They do so by pooling presynaptic excitatory inputs from typically many bipolar cells, which themselves collect inputs from several photoreceptors. In addition, inhibitory interactions mediated by horizontal cells and amacrine cells modulate the structure of the receptive field. In many models, this spatial integration is assumed to occur in a linear fashion. Yet, it has long been known that spatial integration by retinal ganglion cells also incurs nonlinear phenomena. Moreover, several recent examples have shown that nonlinear spatial integration is tightly connected to specific visual functions performed by different types of retinal ganglion cells. This work discusses these advances in understanding the role of nonlinear spatial integration and reviews recent efforts to quantitatively study the nature and mechanisms underlying spatial nonlinearities. These new insights point towards a critical role of nonlinearities within ganglion cell receptive fields for capturing responses of the cells to natural and behaviorally relevant visual stimuli. In the long run, nonlinear phenomena of spatial integration may also prove important for implementing the actual neural code of retinal neurons when designing visual prostheses for the eye.  相似文献   

2.
Helene Marianne Schreyer  Tim Gollisch 《Neuron》2021,109(10):1692-1706.e8
  相似文献   

3.
BACKGROUND: Different types of retinal ganglion cells convey different messages to the brain. Messages are in the form of spike patterns, and the number of possible patterns per second sets the coding capacity. We asked if different ganglion cell types make equally efficient use of their coding capacity or whether efficiency depends on the message conveyed. RESULTS: We recorded spike trains from retinal ganglion cells in an in vitro preparation of the guinea pig retina. By calculating, for the observed spike rate, the number of possible spike patterns per second, we calculated coding capacity, and by counting the actual number of patterns, we estimated information rate. Cells with "brisk" responses, i.e., high firing rates, and a general message transmitted information at high rates (21 +/- 9 bits s(-1)). Cells with "sluggish" responses, i.e., lower firing rates, and specific messages (direction of motion, local-edge) transmitted information at lower rates (13 +/- 7 bits s(-1)). Yet, for every type of ganglion cell examined, the information rate was about one-third of coding capacity. For every ganglion cell, information rate was very close (within 4%) to that predicted from Poisson noise and the cell's actual time-modulated rate. CONCLUSIONS: Different messages are transmitted with similar efficiency. Efficiency is limited by temporal correlations, but correlations may be essential to improve decoding in the presence of irreducible noise.  相似文献   

4.
The retinohypothalamic tract (RHT) originates from a subset of retinal ganglion cells (RGCs). The cells of the RHT co-store the neurotransmitters PACAP and glutamate, which in a complex interplay mediate light information to the circadian clock located in the suprachiasmatic nuclei (SCN). These ganglion cells are intrinsically photosensitive probably due to expression of melanopsin, a putative photoreceptor involved in light entrainment. In the present study we examined PACAP-containing retinal projections to the brain using intravitreal injection of the anterograde tracer cholera toxin subunit B (ChB) and double immunostaining for PACAP and ChB. Our results show that the PACAP-containing nerve fibres not only constituted the major projections to the SCN and the intergeniculate leaflet of the thalamus but also had a large terminal field in the olivary pretectal nucleus. The contralateral projection dominated except for the SCN, which showed bilateral innervation. PACAP-containing retinal fibres were also found in the ventrolateral preoptic nucleus, the anterior and lateral hypothalamic area, the subparaventricular zone, the ventral part of the lateral geniculate nucleus and the nucleus of the optic tract. Retinal projections not previously described in the rat also contained PACAP. These new projections were found in the lateral posterior nucleus, the posterior limitans nucleus, the dorsal part of the anterior pretectal nucleus and the posterior and medial pretectal nuclei. Only a few PACAP-containing retinal fibres were found in the superior colliculus. Areas innervated by PACAP-immunoreactive fibres also expressed the PACAP-specific PAC1 receptor as shown by in situ hybridization histochemistry. The findings suggest that PACAP plays a role as neurotransmitter in non-imaging photoperception to target areas in the brain regulating circadian timing, masking, regulation of sleep-wake cycle and pupillary reflex.Abbreviations 3v Third ventricle - ac Anterior commissure - AD Anterodorsal thalamic nucleus - AH Anterior hypothalamic area - APTD Anterior pretectal nucleus, dorsal part - ChB Cholera toxin subunit B - CPu Caudate putamen - CPT Commissural pretectal nucleus - DGL Dorsal geniculate nucleus - IGL Intergeniculate leaflet - LH Lateral hypothalamic area - LP Lateral posterior thalamic nucleus - LS Lateral septum - MB Mammillary body - MPO Medial preoptic nucleus - MPT Medial pretectal nucleus - oc Optic chiasma - OPT Olivary pretectal nucleus - OT Nucleus of the optic tract - PACAP Pituitary adenylate cyclase-activating polypeptide - PAC1 PACAP receptor type 1 - PAG Periaqueductal gray - Pe Periventricular hypothalamic nucleus - PLi Posterior limitans thalamic nucleus - PPT Posterior pretectal nucleus - PVT Paraventricular thalamic nucleus - PVN Paraventricular hypothalamic nucleus - RGCs Retinal ganglion cells - RHT Retinohypothalamic tract - SCN Suprachiasmatic nucleus - SC Superior colliculus - SNR Substantia nigra, reticular part - SON Supraoptic nucleus - SPVZ Subparaventricular zone - VGL Ventral geniculate nucleus - VIP Vasoactive intestinal peptide - VPAC1 VIP/PACAP receptor type 1 - VPAC2 VIP/PACAP receptor type 2 - VLPO Ventrolateral preoptic nucleus - VTA Ventral tegmental areaThis study was supported by The Danish Biotechnology Center for Cellular Communication and The Danish Neuroscience Programme. J.H. is postdoc funded by the Danish Medical Research Council (Jr. No. 0001716)  相似文献   

5.
6.
Neighboring ganglion cells in the vertebrate retina not only respond to the same stimuli but also display cross-correlated activity on a millisecond time scale. Recent studies of this cross-correlation have indicated that simple linear addition of common variability to each ganglion cell signal does not account for the observations (Levine 1997). In this report, Monte Carlo simulations of various linear and nonlinear models are presented that confirm the earlier speculations. Models in which common variability alters the leakages of a pair of leaky integrate-and-fire neurons account for the data and predict the cross-correlogram lag without invoking temporal delay lines. Received: 23 August 1996 / Received after review process: 18 June 1998 / Accepted in revised form: 13 July 1998  相似文献   

7.
Fu Z  Kuang HY  Hao M  Gao XY  Liu Y  Shao N 《Peptides》2012,37(1):25-31
Exendin-4 is a peptide resembling glucagon-like peptide-1 (GLP-1), which has protective effects on nerve cells. However, the effects of Exendin-4 on retinal ganglion cells (RGC) are still under clear. The purpose of the present study is to demonstrate that exenatide prevents high- or low-glucose-induced retinal ganglion cell impairment. We observed the expression of GLP-1R in RGC-5 cells by immunofluorescence and Western blot. To investigate the effect of exenatide on RGC-5 cells incubated different glucose concentrations, CCK-8 measured the survival rates and electron microscopy detected cellular injury. The expression levels of Bcl-2 and Bax were analyzed by immunocytochemistry and Western blot. Exenatide protects RGC-5 from high- or low-glucose-induced cellular injury and the optimum concentration was 0.5μg/ml. Exenatide can inhibit high- or low-glucose-induced mitochondrial changes. Exenatide protects RGC-5 from high- or low-glucose-induced Bax increased and Bcl-2 decreased. Furthermore, the protective effect of exenatide could be inhibited by Exendin (9-39). These findings indicate that exenatide shows a neuroprotective effect for different glucose concentrations-induced RGC-5 cells injury. Exenatide could protect RGC-5 cells from degeneration or death, which may protect retinal function and have a potential value for patients with diabetic retinopathy.  相似文献   

8.
9.
Like all cells, neurons adapt to stress by transient alterations in phenotype, an epigenetic response that forms the basis for preconditioning against acute ischemic injury in the central nervous system. We recently showed that a modified repetitive hypoxic preconditioning (RHP) regimen significantly extends the window of ischemic tolerance to acute retinal ischemic injury from days to months. The present study was undertaken to determine if this uniquely protracted neuroprotective phenotype would also confer resistance to glaucomatous neurodegeneration. Retinal ganglion cell death at somatic and axonal levels was assessed after both 3 and 10 wks of sustained intraocular hypertension in an adult mouse model of inducible, open-angle glaucoma, with or without RHP before intraocular pressure elevation. Loss of brn3-positive ganglion cell soma after 3 wks of experimental glaucoma, along with increases in several apoptotic endpoints, were all significantly and robustly attenuated in mice subjected to RHP. Soma protection by RHP was also confirmed after 10 wks of intraocular hypertension by brn3 and SMI32 immunostaining. In addition, quantification of axon density in the postlaminar optic nerve documented robust preservation in RHP-treated mice, and neurofilament immunostaining also revealed preconditioning-induced improvements in axon integrity/survival in both retina and optic nerve after 10 wks of experimental glaucoma. This uniquely protracted period of phenotypic change, established in retinal ganglion cells by the activation of latent antiapoptotic, prosurvival mechanisms at both somatic and axonal levels, reflects a novel form of inducible neuronal plasticity that may provide innovative therapeutic targets for preventing and treating glaucoma and other neurodegenerative diseases.  相似文献   

10.

Background  

The neural retina is a highly structured tissue of the central nervous system that is formed by seven different cell types that are arranged in layers. Despite much effort, the genetic mechanisms that underlie retinal development are still poorly understood. In recent years, large-scale genomic analyses have identified candidate genes that may play a role in retinal neurogenesis, axon guidance and other key processes during the development of the visual system. Thus, new and rapid techniques are now required to carry out high-throughput analyses of all these candidate genes in mammals. Gene delivery techniques have been described to express exogenous proteins in the retina of newborn mice but these approaches do not efficiently introduce genes into the only retinal cell type that transmits visual information to the brain, the retinal ganglion cells (RGCs).  相似文献   

11.
This work presents unified analyses of spatial and temporal visual information processing in a feed-forward network of neurons that obey membrane, or shunting equations. The feed-forward shunting network possesses properties that make it well suited for processing of static, spatial information. However, it is shown here that those same properties of the shunting network that lead to good spatial processing imply poor temporal processing characteristics. This article presents an extension of the feed-forward shunting network model that solves this problem by means of preprocessing layers. The anatomical interpretation of the resulting model is structurally analogous to recently discovered data on a retinal circuit connecting cones to retinal ganglion cells through pairs of pushpull bipolar cells. Mathematical analysis of the lumped model leads to the hypothesis that X and Y retinal ganglion cells may consist of a single mechanism acting in different parameter ranges. This hypothesis is confirmed in the companion article, wherein the model in conjunction with a nonlinear temporal adaptation mechanism — is used to reproduce experimental data of both X and Y cells by simple changes in morphological and physiological parameters.  相似文献   

12.
The active component of Wolfberry (Lycium barbarum), lycium barbarum polysaccharides (LBP), has been shown to be neuroprotective to retinal ganglion cells (RGCs) against ocular hypertension (OH). Aiming to study whether this neuroprotection is mediated via modulating immune cells in the retina, we used multiphoton confocal microscopy to investigate morphological changes of microglia in whole-mounted retinas. Retinas under OH displayed slightly activated microglia. One to 100 mg/kg LBP exerted the best neuroprotection and elicited moderately activated microglia in the inner retina with ramified appearance but thicker and focally enlarged processes. Intravitreous injection of lipopolysaccharide decreased the survival of RGCs at 4 weeks, and the activated microglia exhibited amoeboid appearance as fully activated phenotype. When activation of microglia was attenuated by intravitreous injection of macrophage/microglia inhibitory factor, protective effect of 10 mg/kg LBP was attenuated. The results implicated that neuroprotective effects of LBP were partly due to modulating the activation of microglia.  相似文献   

13.
The active component of Wolfberry (Lycium barbarum), lycium barbarum polysaccharides (LBP), has been shown to be neuroprotective to retinal ganglion cells (RGCs) against ocular hypertension (OH). Aiming to study whether this neuroprotection is mediated via modulating immune cells in the retina, we used multiphoton confocal microscopy to investigate morphological changes of microglia in whole-mounted retinas. Retinas under OH displayed slightly activated microglia. One to 100 mg/kg LBP exerted the best neuroprotection and elicited moderately activated microglia in the inner retina with ramified appearance but thicker and focally enlarged processes. Intravitreous injection of bacterial endotoxin lipopolysaccharide (LPS) decreased the survival of RGCs at 4 weeks, and the activated microglia exhibited amoeboid appearance as fully activated phenotype. When activation of microglia was attenuated by intravitreous injection of macrophage/microglia inhibitory factor, protective effect of 10 mg/kg LBP was attenuated. The results implicated that neuroprotective effects of LBP were partly due to modulating the activation of microglia.  相似文献   

14.
The inner plexiform layer (IPL) of the vertebrate retina comprises functionally specialized sublaminae, representing connections between bipolar, amacrine and ganglion cells with distinct visual functions. Developmental mechanisms that target neurites to the correct synaptic sublaminae are largely unknown. Using transgenic zebrafish expressing GFP in subsets of amacrine cells, we imaged IPL formation and sublamination in vivo and asked whether the major postsynaptic cells in this circuit, the ganglion cells, organize the presynaptic inputs. We found that in the lak/ath5 mutant retina, where ganglion cells are never born, formation of the IPL is delayed, with initial neurite outgrowth ectopically located and grossly disorganized. Over time, the majority of early neurite projection errors are corrected, and major ON and OFF sublaminae do form. However, focal regions of disarray persist where sublaminae do not form properly. Bipolar axons, which arrive later, are targeted correctly, except at places where amacrine stratification is disrupted. The lak mutant phenotype reveals that ganglion cells have a transient role organizing the earliest amacrine projections to the IPL. However, it also suggests that amacrine cells interact with each other during IPL formation; these interactions alone appear sufficient to form the IPL. Furthermore, our results suggest that amacrines may guide IPL sublamination by providing stratification cues for other cell types.  相似文献   

15.
Manookin MB  Demb JB 《Neuron》2006,50(3):453-464
Visual neurons, from retina to cortex, adapt slowly to stimulus contrast. Following a switch from high to low contrast, a neuron rapidly decreases its responsiveness and recovers over 5-20 s. Cortical adaptation arises from an intrinsic cellular mechanism: a sodium-dependent potassium conductance that causes prolonged hyperpolarization. Spiking can drive this mechanism, raising the possibility that the same mechanism exists in retinal ganglion cells. We found that adaptation in ganglion cells corresponds to a slowly recovering afterhyperpolarization (AHP), but, unlike in cortical cells, this AHP is not primarily driven by an intrinsic cellular property: spiking was not sufficient to generate adaptation. Adaptation was strongest following spatial stimuli tuned to presynaptic bipolar cells rather than the ganglion cell; it was driven by a reduced excitatory conductance, and it persisted while blocking GABA and glycine receptors, K((Ca)) channels, or mGluRs. Thus, slow adaptation arises from reduced glutamate release from presynaptic (nonspiking) bipolar cells.  相似文献   

16.
Intrinsically photosensitive melanopsin-containing retinal ganglion cells (ipRGCs) control important physiological processes, including the circadian rhythm, the pupillary reflex, and the suppression of locomotor behavior (reviewed in [1]). ipRGCs are also activated by classical photoreceptors, the rods and cones, through local retinal circuits [2, 3]. ipRGCs can be transsynaptically labeled through the pupillary-reflex circuit with the derivatives of the Bartha strain of the alphaherpesvirus pseudorabies virus(PRV) [4, 5] that express GFP [6-12]. Bartha-strain derivatives spread only in the retrograde direction [13]. There is evidence that infected cells function normally for a while during GFP expression [7]. Here we combine transsynaptic PRV labeling, two-photon laser microscopy, and electrophysiological techniques to trace the local circuit of different ipRGC subtypes in the mouse retina and record light-evoked activity from the transsynaptically labeled ganglion cells. First, we show that ipRGCs are connected by monostratified amacrine cells that provide strong inhibition from classical-photoreceptor-driven circuits. Second, we show evidence that dopaminergic interplexiform cells are synaptically connected to ipRGCs. The latter finding provides a circuitry link between light-dark adaptation and ipRGC function.  相似文献   

17.
This article makes use of a push-pull shunting network, which was introduced in the companion article, to model certain properties of X and Y retinal ganglion cells. Input to the push-pull network is preprocessed by a nonlinear mechanism for temporal adaptation, which is ascribed here to photoreceptor dynamics. The complete circuit is used to show that a simple change in receptive field morphology within a single model equation can change the network's response characteristics to closely resemble those of either X or Y cells. Specifically, an increase in width of the receptive field center mechanism is sufficient to account for generation of on-off (Y-like) instead of null (X-like) responses to modulated gratings. In agreement with experimental data, the Y cell on-off response is independent of spatial phase. Also, the model accurately predicts that on-off responses can be observed in X cells for particular stimulus configurations. Taken together, the results show how the retina combines individually inadequate modules to efficiently handle the tasks required for accurate spatial and temporal visual information processing. The model is also able to clarify a number of controversial experimental findings on the nature of spatiotemporal visual processing in the retina.  相似文献   

18.
Primary open‐angle glaucoma (POAG) is one of the most common causes for blindness worldwide. Although an elevated intraocular pressure (IOP) is the main risk factor, the exact pathology remained indistinguishable. Therefore, it is necessary to have appropriate models to investigate these mechanisms. Here, we analysed a transgenic glaucoma mouse model (βB1‐CTGF) to elucidate new possible mechanisms of the disease. Therefore, IOP was measured in βB1‐CTGF and wildtype mice at 5, 10 and 15 weeks of age. At 5 and 10 weeks, the IOP in both groups were comparable (P > 0.05). After 15 weeks, a significant elevated IOP was measured in βB1‐CTGF mice (P < 0.001). At 15 weeks, electroretinogram measurements were performed and both the a‐ and b‐wave amplitudes were significantly decreased in βB1‐CTGF retinae (both P < 0.01). Significantly fewer Brn‐3a+ retinal ganglion cells (RGCs) were observed in the βB1‐CTGF group on flatmounts (P = 0.02), cross‐sections (P < 0.001) and also via quantitative real‐time PCR (P = 0.02). Additionally, significantly more cleaved caspase 3+ RGCs were seen in the βB1‐CTGF group (P = 0.002). Furthermore, a decrease in recoverin+ cells was observable in the βB1‐CTGF animals (P = 0.004). Accordingly, a significant down‐regulation of Recoverin mRNA levels were noted (P < 0.001). Gfap expression, on the other hand, was higher in βB1‐CTGF retinae (P = 0.023). Additionally, more glutamine synthetase signal was noted (P = 0.04). Although no alterations were observed regarding photoreceptors via immunohistology, a significant decrease of Rhodopsin (P = 0.003) and Opsin mRNA (P = 0.03) was noted. We therefore assume that the βB1‐CTGF mouse could serve as an excellent model for better understanding the pathomechanisms in POAG.  相似文献   

19.
Diabetic retinopathy (DR), the most common and serious ocular complication, recently has been perceived as a neurovascular inflammatory disease. However, role of adaptive immune inflammation driven by T lymphocytes in DR is not yet well elucidated. Therefore, this study aimed to clarify the role of interleukin (IL)-17A, a proinflammatory cytokine mainly produced by T lymphocytes, in retinal pathophysiology particularly in retinal neuronal death during DR process. Ins2Akita (Akita) diabetic mice 12 weeks after the onset of diabetes were used as a DR model. IL-17A-deficient diabetic mice were obtained by hybridization of IL-17A-knockout (IL-17A-KO) mouse with Akita mouse. Primarily cultured retinal Müller cells (RMCs) and retinal ganglion cells (RGCs) were treated with IL-17A in high-glucose (HG) condition. A transwell coculture of RGCs and RMCs whose IL-17 receptor A (IL-17RA) gene had been silenced with IL-17RA-shRNA was exposed to IL-17A in HG condition and the cocultured RGCs were assessed on their survival. Diabetic mice manifested increased retinal microvascular lesions, RMC activation and dysfunction, as well as RGC apoptosis. IL-17A-KO diabetic mice showed reduced retinal microvascular impairments, RMC abnormalities, and RGC apoptosis compared with diabetic mice. RMCs expressed IL-17RA. IL-17A exacerbated HG-induced RMC activation and dysfunction in vitro and silencing IL-17RA gene in RMCs abolished the IL-17A deleterious effects. In contrast, RGCs did not express IL-17RA and IL-17A did not further alter HG-induced RGC death. Notably, IL-17A aggravated HG-induced RGC death in the presence of intact RMCs but not in the presence of RMCs in which IL-17RA gene had been knocked down. These findings establish that IL-17A is actively involved in DR pathophysiology and particularly by RMC mediation it promotes RGC death. Collectively, we propose that antagonizing IL-17RA on RMCs may prevent retinal neuronal death and thereby slow down DR progression.Subject terms: Cell death, Medical research  相似文献   

20.
In the retina, the firing behaviors that ganglion cells exhibit when exposed to light stimuli are very important due to the significant roles they play in encoding the visual information. However, the detailed mechanisms, especially the intrinsic properties that generate and modulate these firing behaviors is not completely clear yet. In this study, 2 typical firing behaviors—i.e., tonic and phasic activities, which are widely observed in retinal ganglion cells (RGCs)—are investigated. A modified computational model was developed to explore the possible ionic mechanisms that underlie the generation of these 2 firing patterns. Computational results indicate that the generation of tonic and phasic activities may be attributed to the collective actions of 2 kinds of adaptation currents, i.e., an inactivating sodium current and a delayed-rectifier potassium current. The concentration of magnesium ions has crucial but differential effects in the modulation of tonic and phasic firings, when the model neuron is driven by N-methyl-D-aspartate (NMDA) -type synaptic input instead of constant current injections. The proposed model has robust features that account for the ionic mechanisms underlying the tonic and phasic firing behaviors, and it may also be used as a good candidate for modeling some other firing patterns in RGCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号