首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
In vitro activation of matrix metalloproteinase-9 (MMP-9) (Gelatinase B) with MMP-3 shows the presence of two different forms: an 82 kDa, N-terminal truncated form, and a 65 kDa, N- and C-terminal truncated form. So far the presence of the 65 kDa form has not been reported in vivo. Affinity chromatography was performed to separate MMP-9 from MMP-2 and immunoprecipitation to isolate ~65 kDa MMP-9 from 82 kDa MMP-9 in sera of healthy donors. The presence of ~65 kDa active MMP-9 was demonstrated both with gelatin zymography and western blot analysis. The ~65 kDa MMP-9 lacks the haemopexin domain required for the high-affinity binding of the tissue inhibitor TIMP-1, and can be evaluated by activity assay in the presence of TIMP-1. This opens the possibility to investigate the role of this form of MMP-9 that escapes physiological regulation.  相似文献   

2.
MMP-9 (matrix metalloproteinase 9) plays a critical role in tumour progression. Although the biochemical properties of the secreted form of proMMP-9 are well characterized, little is known about the function and activity of cell surface-associated proMMP-9. We purified a novel 82 kDa species of proMMP-9 from the plasma membrane of THP-1 leukaemic cells, which has substantial differences from the secreted 94 kDa proMMP-9. The 82 kDa form was not detected in the medium even upon stimulation with a phorbol ester. It is truncated by nine amino acid residues at its N-terminus, lacks O-linked oligosaccharides present in the 94 kDa proMMP-9, but retains N-linked carbohydrates. Incubation of 94 kDa proMMP-9 with MMP-3 generated the well-known 82 kDa active form, but the 82 kDa proMMP-9 was converted into an active species of 35 kDa, which was also produced by autocatalytic processing in the absence of activating enzymes. The activated 35 kDa MMP-9 efficiently degraded gelatins, native collagen type IV and fibronectin. The enzyme was less sensitive to TIMP-1 (tissue inhibitor of metalloproteinase 1) inhibition with IC50 values of 82 nM compared with 1 nM for the 82 kDa active MMP-9. The synthetic MMP inhibitor GM6001 blocked the activity of both enzymes, with similar IC50 values below 1 nM. The 82 kDa proMMP-9 is also produced in HL-60 and NB4 leukaemic cell lines as well as ex vivo leukaemic blast cells. It is, however, absent from neutrophils and mononuclear cells isolated from peripheral blood of healthy individuals. Thus, the 82 kDa proMMP-9 expressed on the surface of malignant cells may escape inhibition by natural TIMP-1, thereby facilitating cellular invasion in vivo.  相似文献   

3.
The protease activity secreted by the Chinese Hamster Ovary (CHO-K1) cell line grown in serum-free medium was examined by substrate gel electrophoresis (zymography). The cell line expressed extracellular proteases that were active on gelatin zymograms but not on casein zymograms. The main protease band visible by gelatin zymography was approx. 92 kDa. Incubation of the conditioned medium with aminophenylmercuric acetate (APMA) resulted in the appearance of gelatinase activity at 82 kDa. Incubation of the conditioned media with EDTA significantly decreased the gelatinolytic activity of both the 92 kDa and 82 kDa forms, indicating the gelatinase responsible was a metalloprotease. Immunoblotting of the conditioned medium showed the gelatinase to be the pro- form of matrix metalloprotease-9 (pro-MMP-9), also known as gelatinase B.  相似文献   

4.
Abstract: Matrix metalloproteinases (MMPs) were analyzed by immunohistochemistry and zymography in amyotrophic lateral sclerosis (ALS) and control brain and spinal cord specimens. Three major bands of enzyme activity (70, 100, and 130 kDa) were consistently observed and were subsequently identified as MMP-2 (70 kDa; also known as EC 3.4.24.24 or gelatinase A) and MMP-9 (100 and 130 kDa; also known as EC 3.4.24.35 or gelatinase B). Immunohistochemical studies established the presence of MMP-2 in astrocytes and MMP-9 in pyramidal neurons in the motor cortex and motor neurons in the spinal cord of ALS patients. Although a significant decrease in MMP-2 activity was noticed in the ALS motor cortex, statistically significant increases in MMP-9 (100-kDa) activity were observed in ALS frontal and occipital cortices (BA10 and 17) and all three spinal cord regions when compared with control specimens. The highest MMP-9 (100-kDa) activities in ALS were found in the motor cortex and thoracic and lumbar cord specimens. The abnormally high amount of MMP-9 and its possible release at the synapse may destroy the structural integrity of the surrounding matrix, thereby contributing to the pathogenesis of ALS.  相似文献   

5.
Here we describe a new principle for accessing the activity of the different members of the human matrix-metalloproteinases (MMPs) by a colorimetric assay. Using protein engineering, a modified pro-urokinase was made in which the activation sequence, normally recognized by plasmin (ProArgPheLys↓IleIleGlyGly), was replaced by a sequence that is specifically recognized by MMPs (ArgProLueGly↓IleIleGlyGly). The active urokinase resulting from the activation of this modified pro-urokinase by MMPs can measured directly using a chromogenic peptide substrate for urokinase. The assay has been specific for MMP-9 using an MMP-9 specific monoclonal antibody. Using this body MMp-9 is captured from biological fluids or tissue culture media, and MMP-activity of both active and latent MMP-9 can be analysed.We determined the gelatinase-B (MMP-9) activity present in saliva from patients with Sjögren's syndrome. Using a general gelatinase assay with radioactively-labeled gelatinated collagen it was observed that gelatinase activity was slightly, though not significantly, increased in patients: general gelatinase activity in patients versus healthy controls: 17.0 ± 4.9 vs 12.2 ± 2.5 × 104 cpm/ml (p > 0.05, and 44.0 (4.0 vs 36.1 ± 1.9 × 104 cmp/ml (p > 0.05), for active and latent gelatinase, respectively. However, using the immunocapture activity assay (using modified urokinase) specifically MMP-9 activity was measured, which was significantly increased in saliva from patients compared to healthy controls: MMP-9 (already active): patients 8.9 ± 2.5 U/mg, controls 1.0 ± 0.5 U/mg (p = 0.002); latent plus active MMP-9: patients 53.1 ± 9.8 U/mg, controls 16.5 ± 2.6 U/mg (p = 0.01).  相似文献   

6.
Neuroblastoma accounts for 15% of childhood cancer deaths and presents with metastatic disease of the bone and the bone marrow at diagnosis in 70% of the cases. Previous studies have shown that the Mesenchymal Stromal Cell (MSC) secretome, triggers metastases in several cancer types such as breast and prostate cancer, but the specific role of the MSC factors in neuroblastoma metastasis is unclear. To better understand the effect of MSC secretome on chemokine receptors in neuroblastoma, and its role in metastasis, we studied a panel of 20 neuroblastoma cell lines, and compared their invasive potential towards MSC-conditioned-RPMI (mRPMI) and their cytokine receptor expression profiles. Western blot analysis revealed the expression of multiple CXCR4 isoforms in neuroblastoma cells. Among the five major isoforms, the expression of the 47 kDa isoform showed significant correlation with high invasiveness. Pretreatment with mRPMI up-regulated the expression of the 47 kDa CXCR4 isoform and also increased MMP-9 secretion, expression of integrin α3 and integrin β1, and the invasive potential of the cell; while blocking CXCR4 either with AMD 3100, a CXCR4 antagonist, or with an anti-47 kDa CXCR4 neutralizing antibody decreased the secretion of MMP-9, the expression of integrin α3 and integrin β1, and the invasive potential of the cell. Pretreatment with mRPMI also protected the 47 kDa CXCR4 isoform from ubiquitination and subsequent degradation. Our data suggest a modulatory role of the MSC secretome on the expression of the 47 kDa CXCR4 isoform and invasion potential of the neuroblastoma cells to the bone marrow.  相似文献   

7.
Members of both the Wnt and bone morphogenetic protein (BMP) families of signaling molecules have been implicated in the regulation of cartilage development. We explored the underlying mechanism of BMP-2-induced chondrocyte commitment of C3H10T1/2 cells. Treating cells with exogenous BMP-2 was tied to chondrocyte commitment by inhibiting matrix metalloproteinase-9 activity (MMP-9: 92 kDa type IV collagenase/gelatinase B). Glycogen synthase kinase (GSK)-3β inhibition by its specific inhibitor blocked BMP-2-induced chondrocyte commitment by stimulating MMP-9 activity. These findings indicate that the downregulation of MMP-9 by BMP-2 is associated with chondrocyte commitment, and that the GSK-3β signaling pathway is involved in this process.  相似文献   

8.
Traumatic brain injury (TBI) is a leading cause of death and long-term disability. Following the initial insult, severe TBI progresses to a secondary injury phase associated with biochemical and cellular changes. The secondary injury is thought to be responsible for the development of many of the neurological deficits observed after TBI and also provides a window of opportunity for therapeutic intervention. Matrix metalloproteinase-9 (MMP-9 or gelatinase B) expression is elevated in neurological diseases and its activation is an important factor in detrimental outcomes including excitotoxicity, mitochondrial dysfunction and apoptosis, and increases in inflammatory responses and astrogliosis. In this study, we used an experimental mouse model of TBI to examine the role of MMP-9 and the therapeutic potential of SB-3CT, a mechanism-based gelatinase selective inhibitor, in ameliorating the secondary injury. We observed that activation of MMP-9 occurred within one day following TBI, and remained elevated for 7 days after the initial insult. SB-3CT effectively attenuated MMP-9 activity, reduced brain lesion volumes and prevented neuronal loss and dendritic degeneration. Pharmacokinetic studies revealed that SB-3CT and its active metabolite, p-OH SB-3CT, were rapidly absorbed and distributed to the brain. Moreover, SB-3CT treatment mitigated microglial activation and astrogliosis after TBI. Importantly, SB-3CT treatment improved long-term neurobehavioral outcomes, including sensorimotor function, and hippocampus-associated spatial learning and memory. These results demonstrate that MMP-9 is a key target for therapy to attenuate secondary injury cascades and that this class of mechanism-based gelatinase inhibitor–with such desirable pharmacokinetic properties–holds considerable promise as a potential pharmacological treatment of TBI.  相似文献   

9.
Gelatinases A and B, which are members of the matrix metalloproteinase (MMP) family, play essential roles in cancer development and metastasis, as they can break down basal membranes. Therefore, the determination and inhibition of gelatinases is essential for cancer treatment. Peptides that can specifically block each gelatinase may, therefore, be useful for cancer treatment. In this study, subtractive panning was carried out using a 12-mer peptide library to identify peptides that block gelatinase A activity (MMP-2), which is a key pharmacological target. Using this method, 17 unique peptide sequences were determined. MMP-2 inhibition by these peptides was evaluated through zymogram analyses, which revealed that four peptides inhibited MMP-2 activity by at least 65%. These four peptides were synthesized and used for in vitro wound healing using human umbilical vein endothelial cells, and two peptides, AOMP12 and AOMP29, were found to inhibit wound healing by 40%. These peptides are, thus, potential candidates for MMP-2 inhibition for cancer treatment. Furthermore, our findings suggest that our substractive biopanning screening method is a suitable strategy for identifying peptides that selectively inhibit MMP-2.  相似文献   

10.
11.
目的研究c—Met蛋白在人乳腺癌组织中的表达及其临床意义,探讨其与乳腺癌明胶酶(MMP-2和MMP-9)关系。方法应用免疫组织化学方法检测86例乳腺癌组织c—Met蛋白的表达情况,分析它们与患者临床病理特征和预后的关系;使用siRNA技术特异性下调乳腺癌细胞内源性c—Met后,westernblot方法检测乳腺癌细胞MMP-2和MMP-9表达水平。结果人乳腺癌c—Met蛋白表达阳性率为58.1%,其表达与肿瘤淋巴结转移和临床分期均呈显著正相关(P〈O.01),与患者总生存期和无复发生存期均呈负相关(P〈O.01);相关性分析显示:乳腺癌c—Met和MMP-2及MMP-9表达均呈显著正相关(r=0.314和0.322,P〈O.01);使用siRNA特异性下调乳腺癌MDA—M13-231细胞c—Met表达后,MMP-2和MMP-9表达也显著降低。结论乳腺癌c—Met表达状况与侵袭转移密切相关,其功能可能是通过调控MMP-2和MMP-9表达而发挥作用。  相似文献   

12.
Various proteases are involved in cancer progression and metastasis. In particular, gelatinases, matrix metalloproteinase-2 (MMP-2) and MMP-9, have been implicated to play a role in colon cancer progression and metastasis in animal models and patients. In the present review, the clinical relevance and the prognostic value of messenger ribonucleic acid (mRNA) and protein expression and proenzyme activation of MMP-2 and MMP-9 are evaluated in relation to colorectal cancer. Expression of tissue inhibitors of MMPs (TIMPs) in relation with MMP expression in cancer tissues and the relevance of detection of plasma or serum levels of MMP-2 and/or MMP-9 and TIMPs for prognosis are also discussed. Furthermore, involvement of MMP-2 and MMP-9 in experimental models of colorectal cancer is reviewed. In vitro studies have suggested that gelatinase is expressed in cancer cells but animal models indicated that gelatinase expression in non-cancer cells in tumors contributes to cancer progression. In fact, interactions between cancer cells and host tissues have been shown to modulate gelatinase expression in host cells. Inhibition of gelatinases by synthetic MMP inhibitors has been considered to be an attractive approach to block cancer progression. However, despite promising results in animal models, clinical trials with MMP inhibitors have been disappointing so far. To obtain more insight in the (patho)physiological functions of gelatinases, regulation of MMP-2 and MMP-9 expression is discussed. Mitogen activated protein kinase (MAPK) signalling has been shown to be involved in regulation of gelatinase expression in both cancer cells and non-cancer cells. Expression can be triggered by a variety of stimuli including growth factors, cytokines and extracellular matrix (ECM) components. On the other hand, MMP-2 and MMP-9 activity regulates bioavailability and activity of growth factors and cytokines, affects the immune response and is involved in angiogenesis. Because of the multifunctionality of gelatinases, it is unpredictable at what stage of cancer development and in which processes gelatinase activity is involved. Therefore, it is concluded that the use of MMP inhibitors to treat cancer should be considered carefully.  相似文献   

13.
Gelatinase A (MMP-2) and gelatinase B (MMP-9) are proteolytic enzymes involved in process of tumor invasion, and they are considered as possible tumor markers in breast cancer patients. In this study, we measured activity of latent and active form of MMP-2 and MMP-9 in tumor and adjacent tissue of 60 breast cancer patients by SDS-PAGE zymography. The activity of both form of gelatinases significantly increased with each advancing clinical stage of disease. ProMMP-9 and aMMP-9 activity in tumor tissue shows a positive association with tumor size. Patients with lymph node involvement have higher proMMP-2, aMMP-2 and aMMP-9 activity than node negative patients. Steroid receptor-negative tumors had enhanced aMMP-2 and aMMP-9 activity. Patients with basal-like cancers had higher proMMP-2 tumor activity and aMMP-2 adjacent tissue activity compared to patients with luminal A tumors. Patients with negative hormone receptors are associated with increased activity of both form of gelatinases in adjacent tissue. Reported increased activity of MMP-2 in tumor and adjacent tissue of basal-like tumors implicates that MMP-2 might have a role in aggressive biology of basal-like cancers. Additional investigations regarding molecular pathways in adjacent tissue could give better insight into aggressive nature of basal-like carcinomas.  相似文献   

14.
15.
Matrix metalloproteinase 9 (MMP-9), also known as 92-kDa gelatinase/type IV collagenase, is secreted from neutrophils, macrophages, and a number of transformed cells in zymogen form. Here we report that matrix metalloproteinase 3 (MMP-3/stromelysin) is an activator of the precursor of matrix metalloproteinase 9 (proMMP-9). MMP-3 initially cleaves proMMP-9 at the Glu40-Met41 bond located in the middle of the propeptide to generate an 86-kDa intermediate. Cleavage of this bond triggers a change in proMMP-9 that renders the Arg87-Phe88 bond susceptible to the second cleavage by MMP-3, resulting in conversion to an 82-kDa form. alpha 2-Macroglobulin binding studies of partially activated MMP-9 demonstrate that the 82-kDa species is proteolytically active, but not the initial intermediate of 86 kDa. This stepwise activation mechanism of proMMP-9 is analogous to those of other members of the MMP family, but the action of MMP-3 on proMMP-9 is the first example of zymogen activation that can be triggered by another member of the MMP family. The results imply that MMP-3 may be an effective activator of proMMP-9 in vivo.  相似文献   

16.
Whereas the mammalian fertilization environment consists of possible products of the mutual interaction between oviductal and follicular fluids in addition to both fluid components, little is known regarding the interaction. In the present study, we have demonstrated that a mutual interaction occurs, resulting in the biochemical changes of follicular fluid components. Gelatin zymographic analyses of bovine follicular fluid (bFF) showed consistently a distinct, gelatinolytic activity having a molecular weight of 110 kDa (GA110) in addition to other gelatinases, whereas bovine oviductal fluid (bOF) showed a lack of GA110. Surprisingly, when bFF was mixed with bOF before zymography, the GA110 of bFF mostly disappeared at a 1:1 (v/v) mixture, completely disappeared at a 1:10 mixture, as fast as within 30 min after mixing. Other bFF gelatinase activities were not affected by bOF at 1:1 or 10:1 mixtures. Addition of EDTA or phenanthroline, but not of phenylmethylsulfonyl fluoride or trypsin inhibitor, to the mixture greatly increased the gelatinolytic activity of bFF GA110. The increased activity of bFF GA110 by EDTA was again abolished by subsequent bOF treatment. Addition of aminophenylmercuric acetate to the EDTA-treated bFF also abolished GA110; however, this was accompanied by the disappearance of other gelatinases, except the 62-kDa gelatinase, the activity of which increased as the treatment continued up to 24 h. Addition of EDTA or phenanthroline to the gelatin gel incubation buffer after electrophoresis abolished almost all gelatinases of bFF, except those of 88-84 kDa, demonstrating that they were indeed gelatinases or isoforms. Bovine serum and fetal bovine serum also showed the presence of GA110, the activity of which was increased by EDTA. However, ovarian granulosa cell homogenate did not exhibit GA110. Immunoblot experiments using antibodies against matrix metalloproteinase (MMP)-2 and MMP-9 demonstrated that bFF GA110 was an isoform of MMP-2, and that the 62-kDa form was an active form of MMP-2. Disappearance of immunoreactive GA110 of bFF and serum by bOF was also observed. Based on these observations, we conclude that bFF and bovine serum share a unique isoform of MMP-2, and that bOF can specifically degrade the isoform, suggesting that a mutual interaction between bFF and bOF could occur at the time of ovulation.  相似文献   

17.
18.
Matrix metalloproteinases (MMPs) are hypothesized to play an important role in the pathogenesis of several central nervous system disorders. Increased levels of expression of MMP-9 (gelatinase B) and MMP-2 (gelatinase A) have been observed in Alzheimer's disease, stroke, multiple sclerosis, and amyotrophic lateral sclerosis. This suggests an aberrant regulation of MMPs that could lead to inappropriate expression of MMP activity. To allow us to evaluate the effect of increased levels of active MMP-9 in the central nervous system, mutant forms of the enzyme were designed to autocatalytically remove the pro domain, yielding active enzyme. This was accomplished by modifying residues in the cysteine switch autoinhibitor region of the propeptide. Stable cell lines and transgenic mice that express G100L and D103N autoactive forms of human MMP-9 were developed to study the role of dysregulation of MMP-9 in disease.  相似文献   

19.
Matrix metalloproteinases (MMPs) are a large family (>20) of cation-dependent proteinases believed to be important modulators of normal human lung development and potentially harmful mediators of lung damage. Little is known about MMP production and secretion by the lung during childhood or how alterations in MMP levels may be involved in lung damage. We examined endotracheal aspirates from children (<19 years) without lung disease for the presence of MMP activity. Only gelatinase activity was detectable, and inhibitor profiles suggest they represented one or more MMPs. Comparison of gelatinase activity, MMP expression, and MMP activity in children without pulmonary disease with children who required mechanical ventilation for respiratory failure show: 1) gelatinase activity was approximately five- to sixfold higher in respiratory failure; 2) MMP-7, MMP-8, and MMP-9 concentrations and MMP-8 and MMP-9 activities were markedly elevated in respiratory failure; and 3) MMP-7, MMP-8, and MMP-9 levels were significantly correlated in children with lung disease. These studies provide compelling evidence that specific MMPs are present in the diseased lung and may participate in the pathogenesis of pediatric respiratory failure.  相似文献   

20.
The urokinase-type plasminogen activator (uPA) and the matrix-degrading metalloproteinases MMP-2 and MMP-9 (type IV collagenases/gelatinases) have been implicated in a variety of invasive processes, including tumor invasion, metastasis and angiogenesis. MMP-2 and MMP-9 are secreted in the form of inactive zymogens that are activated extracellularly, a fundamental process for the control of their activity. The physiological mechanism(s) of gelatinase activation are still poorly understood; their comprehension may provide tools to control cell invasion. The data reported in this paper show multiple roles of the uPA-plasmin system in the control of gelatinase activity: (i) both gelatinases are associated with the cell surface; binding of uPA and plasmin(ogen) to the cell surface results in gelatinase activation without the action of other metallo- or acid proteinases; (ii) inhibition of uPA or plasminogen binding to the cell surface blocks gelatinase activation; (iii) in soluble phase plasmin degrades both gelatinases; and (iv) gelatinase activation and degradation occur in a dose- and time-dependent manner in the presence of physiological plasminogen and uPA concentrations. Thus, the uPA-plasmin system may represent a physiological mechanism for the control of gelatinase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号