首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In long‐lived polygynous species, male reproductive success is often monopolized by a few mature dominant individuals. Young males are generally too small to be dominant and may employ alternative tactics; however, little is known about the determinants of reproductive success for young males. Understanding the causes and consequences of variability in early reproductive success may be crucial to assess the strength of sexual selection and possible long‐term trade‐offs among life‐history traits. Selective pressures driven by fluctuating environmental conditions may depend on age class. We evaluated the determinants of reproduction in male bighorn sheep (Ovis canadensis) aged 2–4 years using 30 years of individual‐level data. These young males cannot defend estrous ewes and use alternative mating tactics. We also investigated how the age of first detected reproduction was correlated to lifetime reproductive success and longevity. We found that reproductive success of males aged 3 years was positively correlated to body mass, to the proportion of males aged 2–4 years in the competitor pool, and to the number of females available per adult male. These results suggest that reproductive success depends on both competitive ability and population age–sex structure. None of these variables, however, had significant effects on the reproductive success of males aged 2 or 4 years. Known reproduction before the age of five increased lifetime reproductive success but decreased longevity, suggesting a long‐term survival cost of early reproduction. Our analyses reveal that both individual‐level phenotypic and population‐level demographic variables influence reproductive success by young males and provide a rare assessment of fitness trade‐offs in wild polygynous males.  相似文献   

2.
In polygynous ungulates, males may achieve fertilization through the use of alternative reproductive tactics (ARTs), discrete phenotypic variations evolved to maximize fitness. ARTs are often associated with different male spatial strategies during the rut, from territoriality to female‐following. Although variation in space use patterns of rutting male ungulates is known to be largely affected by the spatial distribution of females, information on the year‐round habitat selection of alternative reproductive types is scant. Here, we investigate the seasonal variation in habitat choice of a large mammal with ARTs (territoriality and nonterritoriality), the Northern chamois Rupicapra rupicapra. Global Positioning System (GPS) data on 28 adult males were collected between February 2010 and December 2013 in the Gran Paradiso National Park (Italy) and used to fit resource selection functions to explore the ART‐specific use of key topographic features, such as elevation, aspect, and slope, and vegetation phenology expressed as NDVI values. Territorial and nonterritorial chamois profoundly differed in their habitat selection not only during the rutting season. Compared to nonterritorial males, territorial males used lower elevations in summer and autumn, preferred southern slopes in spring and summer, and used steeper areas in summer but not in winter. We found no difference in seasonal selection of NDVI values between males adopting ARTs. Our results suggest that territorial males tend to occupy warmer, lower‐food‐quality habitats in late spring and summer, whereas nonterritorial males are free to follow and exploit vegetation phenology and more favorable temperatures. Different patterns of habitat selection may reflect different trade‐offs between the optimization of energy balances throughout the year and the increase of mating opportunities during the rut in males adopting alternative reproductive tactics.  相似文献   

3.
I made observations of a central California population of Wilson''s Warbler, Cardellina pusilla, after July 1 over 10 breeding seasons. I sighted males in definitive prebasic molt from July 4 (in 2007) to September 1 (in 1999). Most territorial males molted on their breeding territories, and individual molt lasted up to 46 days. Following prebasic molt, territorial males engaged in subdued “post‐molt singing,” which lasted about 7 days in some males, and which I first heard on August 13 (in 2004) and last heard on September 6 (in 1999). I sighted no female in definitive prebasic molt, or in fresh basic plumage, during the study. Of 13 females sighted ≥ July 21, 11 were in late breeding season uniparental brood care, and I could not rule out late brood care for the other two. Most, and possibly all, females not engaged in late season uniparental brood care apparently vacated their breeding territories before July 21. This departure was much earlier than for resident males, the last of which I sighted on September 10 (in 1999). Early‐departing females presumably underwent prebasic molt after July 21 at locations not known. Remaining late‐nesting females must have molted much later than resident males and likely later than early‐departing females, and at locations unknown. I last sighted two uniparental brood‐tending females, still in worn plumage, on August 26 and 29, respectively. Two unique findings of this study are a male/female difference in location of prebasic molt, and a likely dichotomy of prebasic molt timing between females leaving their breeding territories early and those remaining in uniparental brood care. Another finding, post‐molt singing in most and possible all territorial males, is a largely unrecognized behavior, but one previously reported in several passerine species. Post‐molt singing may reliably indicate completion of prebasic molt.  相似文献   

4.
Male mating strategies respond to female availability such that variation in resources that affect spatial distribution can also alter cost–benefit tradeoffs within a population. In arid‐adapted species, rainfall alters reproduction, behavior, morphology, and population density such that populations differing in resource availability may also differ in successful reproductive strategies. Here, we compare two populations of Cape ground squirrels (Xerus inauris), a sub‐Saharan species with year‐round breeding and intense mating competition. Unlike most mammals where males resort to aggressive interactions over females, male X. inauris are tolerant of one another, relying instead on other nonaggressive pre‐ and postcopulatory strategies to determine reproductive success. Our findings suggest that differences in resource availability affect female distribution, which ultimately leads to intraspecific variation in male reproductive tactics and sexual morphology. Sperm competition, assessed by reproductive morphometrics, was more pronounced in our high resource site where females were distributed evenly across the landscape, whereas dominance seemed to be an important determinant of success in our low resource site where females were more aggregated. Both sites had similar mating intensities, and most males did not sire any offspring. However, our low resource site had a higher variance in fertilization success with fewer males siring multiple offspring compared with our high resource site where more individuals were successful. Our results lend support to resource models where variations in female spatial distribution attributed to environmental resources ultimately impact male reproductive behaviors and morphology.  相似文献   

5.
In polygynous ungulates, the rut imposes constraints on male time budgets that generate a trade‐off between maintenance and reproduction, leading to a reduction in time spent foraging. As mating activities can incur substantial somatic costs, males are expected to spend their ‘non‐rutting’ time recovering during the breeding season. If the diminution in time allocated to foraging by males is only a consequence of time budget constraints, males should keep a similar ratio of time spent foraging to lying to that observed in the pre‐rut, leading to an overall reduction of these two activities (the ‘foraging constraint’ hypothesis). Alternatively, if males adopt an energy‐saving strategy, they should limit energy expenditures by reducing foraging but not lying time, as the energy gains of forage intake may not meet the basal energetic requirements, especially in northern and temperate regions (the ‘energy‐saving’ hypothesis). Here, we contrast these two hypotheses by comparing individual daily time budgets of marked adult bighorn sheep rams (Ovis canadensis) and male mountain goats (Oreamnos americanus) during the pre‐rut and the rut. Concordant results for both species support the ‘foraging constraint’ hypothesis, as sexually‐active males reduced time spent foraging and lying from the pre‐rut to the rut because of an increase in time spent in mating‐related activities. Bighorn sheep rams also increased time spent foraging when not engaged in mating tactics, providing further support for a ‘maximisation’ of energy intake in the absence of reproductive opportunities. Because there are also known physiological changes that occur during the rut which may cause appetite suppression, for example to produce metabolic compounds linked with olfactory communication (the ‘scent‐urination’ hypothesis) or to cope with increased burden of parasites (the ‘parasite‐induced anorexia’ hypothesis), further research should aim at simultaneously testing these current hypotheses to better understand rut‐induced hypophagia and its effects on the life histories of male ungulates.  相似文献   

6.
Most animals concentrate their movement into certain hours of the day depending on drivers such as photoperiod, ambient temperature, inter‐ or intraspecific competition, and predation risk. The main activity periods of many mammal species, especially in human‐dominated landscapes, are commonly set at dusk, dawn, and during nighttime hours. Large carnivores, such as brown bears, often display great flexibility in diel movement patterns throughout their range, and even within populations, striking between individual differences in movement have been demonstrated. Here, we evaluated how seasonality and reproductive class affected diel movement patterns of brown bears of the Dinaric‐Pindos and Carpathian bear populations in Serbia. We analyzed the movement distances and general probability of movement of 13 brown bears (8 males and 5 females) equipped with GPS collars and monitored over 1–3 years. Our analyses revealed that movement distances and probability of bear movement differed between seasons (mating versus hyperphagia) and reproductive classes. Adult males, solitary females, and subadult males showed a crepuscular movement pattern. Compared with other reproductive classes, females with offspring were moving significantly less during crepuscular hours and during the night, particularly during the mating season, suggesting temporal niche partitioning among different reproductive classes. Adult males, solitary females, and in particular subadult males traveled greater hourly distances during the mating season in May‐June than the hyperphagia in July–October. Subadult males significantly decreased their movement from the mating season to hyperphagia, whereas females with offspring exhibited an opposite pattern with almost doubling their movement from the mating to hyperphagia season. Our results provide insights into how seasonality and reproductive class drive intrapopulation differences in movement distances and probability of movement in a recovering, to date little studied, brown bear population in southeastern Europe.  相似文献   

7.
Understanding reproductive patterns in endangered species is critical for supporting their recovery efforts. In this study we use a combination of paired‐parent and single‐parent assignments to examine the reproductive patterns in an endangered population of sockeye salmon (Oncorhynchus nerka) that uses Redfish Lake in central Idaho as a spawning and nursery lake. Recovery efforts include the release of maturing adults into the lake for volitional spawning. The lake is also inhabited by a population of resident O. nerka that is genetically indistinguishable, but phenotypically smaller, to the maturing adults released into the lake. The resident population is difficult to sample and the reproductive patterns between the two groups are unknown. We used results of paired‐ and single‐parentage assignments to specifically examine the reproductive patterns of male fish released into the lake under an equal sex ratio and a male‐biased sex ratio. Assignment results of offspring leaving the lake indicated a reproductive shift by males under the two scenarios. Males displayed an assortative mating pattern under an equal sex ratio and spawned almost exclusively with the released females. Under a male‐biased sex ratio most males shifted to a negative‐assortative mating pattern and spawned with smaller females from the resident population. These males were younger and smaller than males that spawned with released females suggesting they were unable to compete with larger males for spawning opportunities with the larger, released females. The results provided insights into the reproductive behavior of this endangered population and has implications for recovery efforts.  相似文献   

8.
In mid‐May, 2019, the fall armyworm (FAW) Spodoptera frugiperda invaded Jiangxi Province, China, and caused extensive damage to corn crops. However, little attention has been given to the life‐history traits of the FAW. In the present study, we systematically investigated the life‐history traits of the newly invasive FAW on corn leaves at 19, 22, 25, 28, and 31°C under a photoperiod of LD 15:9 hr. The FAW thrived on the corn leaves with short developmental periods, high survival rates of larvae and pupae, very high mating success rates, and high fecundity. The pupal developmental stage was significantly longer in males than females at all temperatures, thus resulting in a protogyny phenomenon. The pupal weight was heaviest after a relatively shorter larval development stage at a higher temperature (25°C); thus, the FAW did not follow the temperature–size rule. Females were smaller than males, indicating sexual size dimorphism. A small proportion of females delayed their pre‐oviposition period and began to lay eggs on the 7th to 9th day after adult emergence. There were positive relationships between pupal weight and larval developmental time and between adult weight and fecundity. There was a negative relationship between fecundity and longevity. These findings can help us to predict the population dynamics of the FAW on corn and to develop a suitable and practical management strategy.  相似文献   

9.
10.
Previous studies on the mating system of the Asian black bear (Ursus thibetanus) have been limited to observations of captive populations and estimations of multiple paternities. Hence, the mating system of wild bears remains poorly understood. Animal‐borne camera systems (i.e., cameras mounted on animals) provide novel tools to study the behavior of elusive animals. Here, we used an animal‐borne video system to record the activities of wild bears during the mating season. Video camera collars were attached to four adult Asian black bears (male “A” and “B,” and female “A” and “B”) captured in Tokyo, central Japan, in May and June 2018. The collars were retrieved in July 2018, after which the video data were downloaded and analyzed in terms of bear activity and mating behavior. All the bears were found to interact with other uniquely identifiable bears for some of the time (range 9–22 days) during the deployment period (range 36–45 days), and multiple mating in males was documented. Both males and females exhibited different behaviors on social days (i.e., days when the bear interacted with conspecifics) compared with solitary days (i.e., days with no observed interactions with conspecifics). Compared with solitary days, the bears spent a lower proportion of time on foraging activities and higher proportion of time on resting activities on social days. Our results suggest that Asian black bears have a polygamous mating system, as both sexes consort and potentially mate with multiple partners during a given mating season. Furthermore, bears appeared to reduce their foraging activities on social days and engaged more in social interactions.  相似文献   

11.
Understanding patterns of animal space use and range fidelity has important implications for species and habitat conservation. For species that live in highly seasonal environments, such as mountain goats (Oreamnos americanus), spatial use patterns are expected to vary in relation to seasonal changes in environmental conditions and sex‐ or age‐specific selection pressures. To address hypotheses about sex, age, and seasonality influence on space‐use ecology, we collected GPS location data from 263 radio‐collared mountain goats (males, n = 140; females, n = 123) in coastal Alaska during 2005–2016. Location data were analyzed to derive seasonal and sex‐specific fixed‐kernel home range estimates and to quantify the degree of seasonal range and utilization distribution overlap. Overall, we determined that home range size was smallest during winter, expanded coincident with the onset of green‐up and parturition, and was largest during summer. Home range size of males and females did not differ significantly during winter, but females had larger home ranges than males during summer, a relationship that was switched during the mating season. Pairwise comparisons involving individual females across subsequent years indicated home ranges were significantly smaller during years when they gave birth to offspring. Mountain goats exhibited a strong degree of range fidelity, and 99% (n = 138) of individual animals returned to their previous year''s seasonal range with an average annual Bhattacharyya''s affinity utilization distribution overlap index of 68%. Similarity of seasonal home range utilization distributions varied in relation to sex and season in some respects. Home range overlap was highest during the summer vegetation growing season, particularly among females. These findings advance our understanding about how environmental variation and sex‐ and age‐related reproductive constraints influence space use and range fidelity among alpine ungulates. Documentation of the high degree of range fidelity among mountain goats has important conservation implications in landscapes increasingly altered by anthropogenic activities.  相似文献   

12.
Knowledge about intraspecific and individual variation in bird migration behavior is important to predict spatiotemporal distribution, patterns of phenology, breeding success, and interactions with the surrounding environment (e.g., human livelihoods). Such variation is key to adaptive, evolutionary responses, i.e., how individuals respond spatiotemporally to the environment to maximize fitness. In this study we used GPS location data from one to three full annual cycles from 76 Greylag geese (Anser anser) to test the hypothesis that geese originating at five latitudinally separated capture sites in Sweden have different migration strategies. We also assessed individual consistency in movement strategy over consecutive annual cycles. We used the scale‐independent net squared displacement modeling framework to quantify variables of autumn and spring migration for geese from each capture site: distance, timing, and duration. Our results demonstrate a positive correlation between migration distance and latitudinal origin. Geese from the northernmost site on average migrated farther south and about 15 times as far as the short‐moving or resident geese from the two southernmost sites. Movement strategies of individual geese varied considerably both within and among capture sites. Individual consistency in movement strategy from one annual cycle to the consecutive was high in geese from the northern sites moving the farthest, whereas the resident or short‐moving geese from the southernmost sites generally showed lower or no individual consistency. These changes have come about during a time span so short (i.e., ca. 35 years or 8–10 generations) that it can unlikely be explained by classical Darwinian between‐generation adaptation. Consequently, and given that young geese follow their parents during their first migration, we presume an important role of within‐family, inter‐generation change as a driver behind the large‐scale changed migration habits in Swedish Greylag geese.  相似文献   

13.
Full factorial breeding designs are useful for quantifying the amount of additive genetic, nonadditive genetic, and maternal variance that explain phenotypic traits. Such variance estimates are important for examining evolutionary potential. Traditionally, full factorial mating designs have been analyzed using a two‐way analysis of variance, which may produce negative variance values and is not suited for unbalanced designs. Mixed‐effects models do not produce negative variance values and are suited for unbalanced designs. However, extracting the variance components, calculating significance values, and estimating confidence intervals and/or power values for the components are not straightforward using traditional analytic methods. We introduce fullfact – an R package that addresses these issues and facilitates the analysis of full factorial mating designs with mixed‐effects models. Here, we summarize the functions of the fullfact package. The observed data functions extract the variance explained by random and fixed effects and provide their significance. We then calculate the additive genetic, nonadditive genetic, and maternal variance components explaining the phenotype. In particular, we integrate nonnormal error structures for estimating these components for nonnormal data types. The resampled data functions are used to produce bootstrap‐t confidence intervals, which can then be plotted using a simple function. We explore the fullfact package through a worked example. This package will facilitate the analyses of full factorial mating designs in R, especially for the analysis of binary, proportion, and/or count data types and for the ability to incorporate additional random and fixed effects and power analyses.  相似文献   

14.
Investigating whether mating patterns are biased in relation to kinship in isolated populations can provide a better understanding of the occurrence of inbreeding avoidance mechanisms in wild populations. Here, we report on the genetic relatedness (r) among breeding pairs in a relict population of Thorn‐tailed Rayadito (Aphrastura spinicauda) in north‐central Chile that has experienced a long‐term history of isolation. We used simulations based on 8 years of data to assess whether mating is random with respect to relatedness. We found that mean and median population values of pair relatedness tended to be lower than randomly generated values, suggesting that mating is not random with respect to kinship. We hypothesize that female‐biased dispersal is the main mechanism reducing the likelihood of mating among kin, and that the proportion of related pairs (i.e., r > 0.125) in the study population (25%) would presumably be higher in the absence of sex‐biased dispersal. The occurrence of other mechanisms such as extra‐pair copulations, delayed breeding, and active inbreeding avoidance through kin discrimination cannot be dismissed and require further study.  相似文献   

15.
In reptiles, reproductive maturity is often determined by size rather than age. Consequently, growth early in life may influence population dynamics through effects on generation time and survival to reproduction. Because reproductive phenology and pre‐ and post‐natal growth are temperature dependent, environmental conditions may induce multi‐species cohort effects on body size in sympatric reptiles. I present evidence of this using 10 years of neonatal size data for three sympatric viviparous snakes, Dekay''s Brown snakes (Storeria dekayi), Red‐bellied Snakes (S. occipitomaculata), and Common Garter snakes (Thamnophis sirtalis). End‐of‐season neonatal size varied in parallel across species such that snout–vent length was 36%–61% greater and mass was 65%–223% greater in years when gestating females could achieve higher April–May (vs. June–July or August–September) operative temperatures. Thus, temperature had a larger impact during follicular enlargement and ovulation than during gestation or post‐natal growth. Multi‐species cohort effects like these may affect population dynamics and the magnitude of these effects may increase with climate change.  相似文献   

16.
In fish species with alternative male mating tactics, sperm competition typically occurs when small males that are unsuccessful in direct contests steal fertilization opportunities from large dominant males. In the grass goby Zosterisessor ophiocephalus, large territorial males defend and court females from nest sites, while small sneaker males obtain matings by sneaking into nests. Parentage assignment of 688 eggs from 8 different nests sampled in the 2003–2004 breeding season revealed a high level of sperm competition. Fertilization success of territorial males was very high but in all nests sneakers also contributed to the progeny. In territorial males, fertilization success correlated positively with male body size. Gonadal investment was explored in a sample of 126 grass gobies collected during the period 1995–1996 in the same area (61 territorial males and 65 sneakers). Correlation between body weight and testis weight was positive and significant for sneaker males, while correlation was virtually equal to zero in territorial males. That body size in territorial males is correlated with fertilization success but not gonad size suggests that males allocate much more energy into growth and relatively little into sperm production once the needed size to become territorial is attained. The increased paternity of larger territorial males might be due to a more effective defense of the nest in comparison with smaller territorial males.  相似文献   

17.
Over the past decade, the high-dose refuge (HDR) strategy, aimed at delaying the evolution of pest resistance to Bacillus thuringiensis (Bt) toxins produced by transgenic crops, became mandatory in the United States and is being discussed for Europe. However, precopulatory dispersal and the mating rate between resident and immigrant individuals, two features influencing the efficiency of this strategy, have seldom been quantified in pests targeted by these toxins. We combined mark-recapture and biogeochemical marking over three breeding seasons to quantify these features directly in natural populations of Ostrinia nubilalis, a major lepidopteran corn pest. At the local scale, resident females mated regardless of males having dispersed beforehand or not, as assumed in the HDR strategy. Accordingly, 0–67% of resident females mating before dispersal did so with resident males, this percentage depending on the local proportion of resident males (0% to 67.2%). However, resident males rarely mated with immigrant females (which mostly arrived mated), the fraction of females mating before dispersal was variable and sometimes substantial (4.8% to 56.8%), and there was no evidence for male premating dispersal being higher. Hence, O. nubilalis probably mates at a more restricted spatial scale than previously assumed, a feature that may decrease the efficiency of the HDR strategy under certain circumstances, depending for example on crop rotation practices.  相似文献   

18.
In canids, resident breeders hold territories but require different resources than transient individuals (i.e., dispersers), which may result in differential use of space, land cover, and food by residents and transients. In the southeastern United States, coyote (Canis latrans) reproduction occurs during spring and is energetically demanding for residents, but transients do not reproduce and therefore can exhibit feeding behaviors with lower energetic rewards. Hence, how coyotes behave in their environment likely differs between resident and transient coyotes. We captured and monitored 36 coyotes in Georgia during 2018–2019 and used data from 11 resident breeders, 12 predispersing residents (i.e., offspring of resident breeders), and 11 transients to determine space use, movements, and relationships between these behaviors and landcover characteristics. Average home range size for resident breeders and predispersing offspring was 20.7 ± 2.5 km² and 50.7 ± 10.0 km², respectively. Average size of transient ranges was 241.4 ± 114.5 km². Daily distance moved was 6.3 ± 3.0 km for resident males, 5.5 ± 2.7 km for resident females, and 6.9 ± 4.2 km for transients. We estimated first‐passage time values to assess the scale at which coyotes respond to their environment, and used behavioral change‐point analysis to determine that coyotes exhibited three behavioral states. We found notable differences between resident and transient coyotes in regard to how landcover characteristics influenced their behavioral states. Resident coyotes tended to select for areas with denser vegetation while resting and foraging, but for areas with less dense vegetation and canopy cover when walking. Transient coyotes selected areas closer to roads and with lower canopy cover while resting, but for areas farther from roads when foraging and walking. Our findings suggest that behaviors of both resident and transient coyotes are influenced by varying landcover characteristics, which could have implications for prey.  相似文献   

19.
In this study, we investigated the impact of domestic and wild prey availability on snow leopard prey preference in the Kangchenjunga Conservation Area of eastern Nepal—a region where small domestic livestock are absent and small wild ungulate prey are present. We took a comprehensive approach that combined fecal genetic sampling, macro‐ and microscopic analyses of snow leopard diets, and direct observation of blue sheep and livestock in the KCA. Out of the collected 88 putative snow leopard scat samples from 140 transects (290 km) in 27 (4 × 4 km2) sampling grid cells, 73 (83%) were confirmed to be from snow leopard. The genetic analysis accounted for 19 individual snow leopards (10 males and 9 females), with a mean population size estimate of 24 (95% CI: 19–29) and an average density of 3.9 snow leopards/100 km2 within 609 km2. The total available prey biomass of blue sheep and yak was estimated at 355,236 kg (505 kg yak/km2 and 78 kg blue sheep/km2). From the available prey biomass, we estimated snow leopards consumed 7% annually, which comprised wild prey (49%), domestic livestock (45%), and 6% unidentified items. The estimated 47,736 kg blue sheep biomass gives a snow leopard‐to‐blue sheep ratio of 1:59 on a weight basis. The high preference of snow leopard to domestic livestock appears to be influenced by a much smaller available biomass of wild prey than in other regions of Nepal (e.g., 78 kg/km2 in the KCA compared with a range of 200–300 kg/km2 in other regions of Nepal). Along with livestock insurance scheme improvement, there needs to be a focus on improved livestock guarding, predator‐proof corrals as well as engaging and educating local people to be citizen scientists on the importance of snow leopard conservation, involving them in long‐term monitoring programs and promotion of ecotourism.  相似文献   

20.
The Cretaceous–Paleogene (K–Pg) mass extinction 66 million years ago was characterized by a worldwide ecological catastrophe and rapid species turnover. Large‐scale devastation of forested environments resulting from the Chicxulub asteroid impact likely influenced the evolutionary trajectories of multiple clades in terrestrial environments, and it has been hypothesized to have biased survivorship in favour of nonarboreal lineages across the K–Pg boundary. Here, we evaluate patterns of substrate preferences across the K–Pg boundary among crown group mammals, a group that underwent rapid diversification following the mass extinction. Using Bayesian, likelihood, and parsimony reconstructions, we identify patterns of mammalian ecological selectivity that are broadly similar to those previously hypothesized for birds. Models based on extant taxa indicate predominant K–Pg survivorship among semi‐ or nonarboreal taxa, followed by numerous independent transitions to arboreality in the early Cenozoic. However, contrary to the predominant signal, some or all members of total‐clade Euarchonta (Primates + Dermoptera + Scandentia) appear to have maintained arboreal habits across the K–Pg boundary, suggesting ecological flexibility during an interval of global habitat instability. We further observe a pronounced shift in character state transitions away from plesiomorphic arboreality associated with the K–Pg transition. Our findings are consistent with the hypothesis that predominantly nonarboreal taxa preferentially survived the end‐Cretaceous mass extinction, and emphasize the pivotal influence of the K‐Pg transition in shaping the early evolutionary trajectories of extant terrestrial vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号