首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We analysed the relationship between three life history characteristics (mobility, length of flight period and body size) and niche breadth (larval host plant specificity and adult habitat breadth), resource availability (distribution and abundance of host plants) and range position (distance between the northernmost distribution record and southernmost point of Finland) of the butterfly fauna of Finland. The data is based on literature and questionnaires. Often in across species studies phylogeny may create spurious relationships between life-history and ecological variables. We took the phylogenetic relatedness of butterfly species into account by analysing the data with phylogenetically independent contrasts (CAIC method). Butterfly mobility was positively related to the niche breadth, resource availability and range position. The length of the flight period was negatively related to the range position, indicating that the species at the northern edge of their distribution range have shorter flight period than species which are further way from the range edge. After controlling for the phylogenetic relatedness we found no significant correlations between body size and niche breadth, resource availability or range position. We suggest that the relationship between the length of the flight period and range position may arise as a consequence of lower hatching asynchrony in edge species as a result of lower environmental variance in larval growth conditions. Our results on the mobility suggest that there is selection pressure towards lower migration rate in species that have restricted niche breadth, low resource availability and in species that are on the northern edge of their geographical distribution range. In such species, selection against mobile individuals is likely to result from the decreased probability of finding another habitat patch suitable for egg laying.  相似文献   

2.
The object of our study was to determine the effect of distribution and habitat specialization of odonate species on local extinction in streams in central Finland. We studied the local extinction of the 20 most abundant dragonfly (Odonata) species in 34 small creeks and brooks in central Finland. The historical presence of each studied species in our research area was confirmed using existing records gathered between 1930 and 1975. A minimum of five records was available for each species. During the summers of 1995 and 1996, we investigated the current persistence of 219 separate populations with historical presence. In total, 98 historical populations were vanished. As predicted, we found that species with a narrow distribution were less persistent than species with a broad distribution. Therefore, the extinction risk of a species was inversely related to the width of its regional distribution. Using reference works, species were categorized into two main breeding habitat types: lotic species or lentic species. The species main habitat type was a significant predictor of local extinction risk after statistical removal of the effect of regional distribution on extinction risk. The lotic species had lower local extinction risk than other species. Altogether, the highest extinction risk was found in habitat-specialist species associated with peatlands, probably due to loss of natural breeding habitat. On the other hand, extinction risk was lower in widely distributed habitat generalist species than true lotic species. The local extinction within species was more common in small dynamic upstream than in larger stable downstream habitats. The results of this study are consistent with meta-population theory.  相似文献   

3.
Aim I examine the relationship between geographical range size and three variables (body size, an index of habitat breadth, and an index of local abundance) within a phylogenetic framework in North American species of suckers and sunfishes. Location North America Methods Regressions after independent contrasts of geographical range size, body size, habitat breadth, and local abundance. Results Species with large range sizes tend to be larger-bodied, be more locally abundant, and have higher habitat breadths. Character reconstructions support the prediction that variables associated with rarity (small geographical range size, low local abundance, low niche breadth, and large body size) evolve in unison, although large body size was associated with the opposite traits in these taxa. Gaston & Blackburn (1996a) suggested using visual identification of the lower boundary of the geographical range-body size relationship to identify extinction-prone species; this resulted in thirteen species that are potentially extinction-prone. Main conclusions Similar evolutionary mechanisms appear to operate on body size and other variables related to rarity, even in distantly related taxa.  相似文献   

4.
Aim  Our aim was to test whether extinction risk of frog species could be predicted from their body size, fecundity or geographical range size. Because small geographical range size is a correlate of extinction risk in many taxa, we also tested hypotheses about correlates of range size in frogs.
Location  Global.
Methods  Using a large comparative data set ( n  = 527 species) compiled from the literature, we performed bivariate and multiple regressions through the origin of independent contrasts to test proposed macroecological patterns and correlates of extinction risk in frogs. We also created minimum adequate models to predict snout–vent length, clutch size, geographical range size and IUCN Red List status in frogs. Parallel non-phylogenetic analyses were also conducted. We verified the results of the phylogenetic analyses using gridded data accounting for spatial autocorrelation.
Results  The most threatened frog species tend to have small geographical ranges, although the relationship between range and extinction risk is not linear. In addition, tropical frogs with small clutches have the smallest ranges. Clutch size was strongly positively correlated with geographical range size ( r 2 = 0.22) and body size ( r 2 = 0.28).
Main conclusions  Our results suggest that body size and fecundity only affect extinction risk indirectly through their effect on geographical range size. Thus, although large frogs with small clutches tend to be endangered, there is no comparative evidence that this relationship is direct. If correct, this inference has consequences for conservation strategy: it would be inefficient to allocate conservation resources on the basis of low fecundity or large body size; instead it would be better to protect areas that contain many frog species with small geographical ranges.  相似文献   

5.
A quarter of all lagomorphs (pikas, rabbits, hares and jackrabbits) are threatened with extinction, including several genera that contain only one species. The number of species in a genus correlates with extinction risk in lagomorphs, but not in other mammal groups, and this is concerning because the non‐random extinction of small clades disproportionately threatens genetic diversity and phylogenetic history. Here, we use phylogenetic analyses to explore the properties of the lagomorph phylogeny and test if variation in evolution, biogeography and ecology between taxa explains current patterns of diversity and extinction risk. Threat status was not related to body size (and, by inference, its biological correlates), and there was no phylogenetic signal in extinction risk. We show that the lagomorph phylogeny has a similar clade‐size distribution to other mammals, and found that genus size was unrelated to present climate, topography, or geographic range size. Extinction risk was greater in areas of higher human population density and negatively correlated with anthropogenically modified habitat. Consistent with this, habitat generalists were less likely to be threatened. Our models did not predict threat status accurately for taxa that experience region‐specific threats. We suggest that pressure from human populations is so severe and widespread that it overrides ecological, biological, and geographic variation in extant lagomorphs.  相似文献   

6.
Geographic range and body size in Neotropical marsupials   总被引:2,自引:0,他引:2  
Aim Our aim is to investigate the relationship between body size and geographical range in Neotropical marsupials, considering the possible effects of latitude and phylogeny. Location Neotropical region. Methods Phylogenetic generalized least‐squares regression method (PGLS) is used to investigate the relationship between body size, geographical range, and latitude considering the phylogenetic relationship between species. Data for 22 species were compiled from the literature. Results The scattergram of body size vs. geographical range was triangular in shape. Body size and geographical range were positively correlated throughout the phylogeny. Latitude was not important to this relationship. Conclusions The polygonal relationship between geographical range and body size seems to be moulded by ecological and geographical constraints rather than by a common association with latitude.  相似文献   

7.
Recent attempts to explain the susceptibility of vertebrates to declines worldwide have largely focused on intrinsic factors such as body size, reproductive potential, ecological specialization, geographical range and phylogenetic longevity. Here, we use a database of 145 Australian marsupial species to test the effects of both intrinsic and extrinsic factors in a multivariate comparative approach. We model five intrinsic (body size, habitat specialization, diet, reproductive rate and range size) and four extrinsic (climate and range overlap with introduced foxes, sheep and rabbits) factors. We use quantitative measures of geographical range contraction as indices of decline. We also develop a new modelling approach of phylogenetically independent contrasts combined with imputation of missing values to deal simultaneously with phylogenetic structuring and missing data. One extrinsic variable-geographical range overlap with sheep-was the only consistent predictor of declines. Habitat specialization was independently but less consistently associated with declines. This suggests that extrinsic factors largely determine interspecific variation in extinction risk among Australian marsupials, and that the intrinsic factors that are consistently associated with extinction risk in other vertebrates are less important in this group. We conclude that recent anthropogenic changes have been profound enough to affect species on a continent-wide scale, regardless of their intrinsic biology.  相似文献   

8.
Current evolutionary models for amphibian life cycles reflect tradeoffs in size-specific growth and mortality rates between the aquatic and terrestrial stages. A limitation of these models is that they do not incorporate evolutionary phenomena that are associated with metapopulation structure. In this work I address components of the evolution of complex life cycles (CLCs) that are tied to the metapopulation dynamics of amphibians that use seasonal wetlands that vary in hydroperiod. In particular, I describe how selection for the minimum length of the larval period affects metapopulation viability and the selection/migration equilibrium. Selection to increase the minimum length of the larval period functionally reduces the number of viable breeding sites on the landscape, increases the average distance between neighboring sites, and increases the risk of metapopulation extinction. Within a metapopulation, asymmetric gene flow between populations that are adapted to different hydroperiods tends to swamp local selection for long larval periods at sites with long hydroperiods. The evolutionary stability of CLCs of many species with metapopulation structure may reflect the fact that extremely small metamorphs cannot survive on land, while lineages with long larval periods incur a high risk of metapopulation extinction. I encourage theorists to more carefully consider how life history traits and metapopulation viability are related for these and other taxa.  相似文献   

9.
10.
China is one of the countries with the richest snake biodiversity in the world. However, about one‐third of all 236 species are now considered threatened, partially due to the intense human overexploitation. Despite that, to date, no study has explicitly investigated the patterns and processes of extinction and threats of Chinese snakes, or between human exploited and unexploited snake subgroups. We addressed the following three questions: 1) which snake families proportionally include more human exploited species than expected by chance? 2) Which species traits and extrinsic factors are correlated with their extinction risk? 3) Are there differences between human exploited and unexploited species in terms of patterns and processes of extinction? We found that the family Elapidae contained a significantly higher number of exploited species. Considering eight species traits and four extrinsic factors, we performed phylogenetic correlation tests, finding that small geographic range size, large body length, oviparous reproduction, diurnal activity and high human exploitation were important in determining the extinction risk of all Chinese snakes. Moreover, human exploited snakes had a higher percentage of threatened species and large‐bodied species than unexploited snakes. Extinction risk of human exploited species was related to body length, reproduction mode and activity period, whereas that of human unexploited species were associated with geographic range size, microhabitat and annual temperature. Overall, we highlight the phylogenetic non‐random exploitation of snakes, and different factors underlying species response to human overexploitation. We suggest that conservation priority should be given to exploitation‐prone families and species with extinction‐prone traits, as identified in this study. Moreover, human exploited and unexploited species should be managed considering different strategies since their extinction risk was associated with different ecological traits. Conservation actions should also focus on preventing human threats, such as human overexploitation and habitat loss, for the effective preservation of Chinese snakes.  相似文献   

11.
1. A critical need in conservation biology is to determine which species are most vulnerable to extinction. Freshwater mussels (Bivalvia: Unionacea) are one of the most imperilled faunal groups globally. Freshwater mussel larvae are ectoparasites on fish and depend on the movement of their hosts to maintain connectivity among local populations in a metapopulation. 2. I calculated local colonisation and extinction rates for 16 mussel species from 14 local populations in the Red River drainage of Oklahoma and Texas, U.S. I used general linear models and AIC comparisons to determine which mussel life history traits best predicted local colonisation and extinction rates. 3. Traits related to larval dispersal ability (host infection mode, whether a mussel species was a host generalist or specialist) were the best predictors of local colonisation. 4. Traits related to local population size (regional abundance, time spent brooding) were the best predictors of local extinction. The group of fish species used as hosts by mussels also predicted local extinction and was probably related to habitat fragmentation and host dispersal abilities. 5. Overall, local extinction rates exceeded local colonisation rates, indicating that local populations are becoming increasingly isolated and suffering an ‘extinction debt’. This study demonstrates that analysis of species traits can be used to predict local colonisation and extinction patterns and provide insight into the long‐term persistence of populations.  相似文献   

12.
It would be very useful for conservation biologists to be able to predict threat status from ecological characteristics of species, and past studies have shown promising results. Regarding one important threat indicator taxon, the butterflies, results from a study on Finnish species by Kotiaho et al. (Proc Natl Acad Sci USA 102:1963–1967, 2005), suggested that threatened butterflies on average have narrower niches, more restricted distributions of the larval host plants, poorer dispersal abilities and shorter flight periods. However, this study did not control for phylogenetic relatedness of species. To examine the effects of phylogenetic control, and to see how far it is possible to generalize from specific investigations, we compared the ecological characteristics of threatened and non-threatened butterfly species at two different geographical scales: Sweden and Europe. Our results illustrate the difficulties of generalizing between sites, geographical scales, scoring methods, and phylogenetic versus non-phylogenetic analyses. Controlling for phylogeny is shown to be essential. The most robust result is that threatened species have narrower habitat ranges at the local scale.  相似文献   

13.
Attempts to explain the orders-of-magnitude variation observed in animal population sizes have principally focused on intrinsic differences between the taxa compared, but with limited success: most variation remains unexplained by such studies. However, animal population sizes may also vary in response to extrinsic factors, such as the environment occupied or the influence of human activities. Here, we use new estimates of the global population sizes of threatened bird species to examine extrinsic correlates of variation in their numbers, using general linear modelling and methods to control for phylogenetic relatedness. Threatened bird population sizes varied significantly with several extrinsic factors, including altitude, biogeographical region inhabited, type of extinction threat faced, and habitat used. They also vary with geographical range size, which was included in the analysis to control for its potentially confounding effects on the results. Details of the observed relationships, which vary with analytical method, are discussed. However, apart from geographical range size, none of the extrinsic variables analysed here explain more than a small percentage of the variation in threatened bird population sizes. Thus, it seems likely that a comprehensive explanation for why some species are common while others are rare will not be dominated by a single factor.  相似文献   

14.
Following habitat fragmentation, the remnant faunal community will undergo a period of species loss or 'relaxation.' Theory predicts that species with particular life-history traits, such as a small population size, small geographical range, low fecundity and large body size, should be more vulnerable to fragmentation. In this study, we investigated the relationships between the above life-history traits and the fragmentation vulnerability index (the number of islands occupied) of five lizard species inhabiting recently isolated land-bridge islands in the Thousand Island Lake, China. Data on life-history traits were collected from field surveys (population density) and from the literature (body size, clutch size and geographical range size). The species–area relationships for lizards sampled from the mainland versus on the islands differed significantly (i.e. the number of species inhabiting islands was decreased relative to similar-sized areas on the mainland), indicating that species extinction has occurred on all of the study islands following isolation. For the fragmentation vulnerability index, model selection based on Akaike's information criterion identified natural density at mainland sites as the best correlate of vulnerability to fragmentation, supporting the hypothesis that rare species are most vulnerable to local extinction and will be lost first from fragmented landscapes. In contrast, there was little evidence for an effect of lizards' snout–vent length, clutch size or geographical range size on fragmentation vulnerability. Identification of species traits that render some species more vulnerable to fragmentation than others has important implications for conservation and can be used to aid direct management efforts.  相似文献   

15.
China is one of the countries with the richest bird biodiversity in the world. Among the 1372 Chinese birds, 146 species are considered threatened and three species are regionally extinct according to the officially released China Biodiversity Red List in 2015. Here, we conducted the first extensive analysis to systematically investigate the patterns and processes of extinction and threat in Chinese birds. We addressed the following four questions. First, is extinction risk randomly distributed among avian families in Chinese birds? Second, which families contain more threatened species than would be expected by chance? Third, which species traits are important in determining the extinction risk in Chinese birds using a multivariate phylogenetic comparative approach? Finally, is the form of the relationship between traits additive or nonadditive (synergistic)? We found that the extinction risk of Chinese birds was not randomly distributed among taxonomic families. The families that contained significantly more threatened species than expected were the hornbills, cranes, pittas, pheasants and hawks and eagles. We obtained eleven species traits that are commonly hypothesized to influence extinction risk from the literature: body size, clutch size, trophic level, mobility, habitat specificity, geographical range size, nest type, nest site, flocking tendency, migrant status and hunting vulnerability. After phylogenetic correction, model selection based on Akaike's information criterion identified the synergistic interaction between body size and hunting vulnerability as the single best correlate of extinction risk in Chinese birds. Our results suggest that, in order to be effective, priority management efforts should be given both to certain extinction‐prone families, particularly the hornbills, pelicans, cranes, pittas, pheasants and hawks and eagles, and to bird species with large body size and high hunting vulnerability.  相似文献   

16.
We combine evolutionary biology and community ecology to test whether two species traits, body size and geographic range, explain long term variation in local scale freshwater stream fish assemblages. Body size and geographic range are expected to influence several aspects of fish ecology, via relationships with niche breadth, dispersal, and abundance. These traits are expected to scale inversely with niche breadth or current abundance, and to scale directly with dispersal potential. However, their utility to explain long term temporal patterns in local scale abundance is not known. Comparative methods employing an existing molecular phylogeny were used to incorporate evolutionary relatedness in a test for covariation of body size and geographic range with long term (1983 – 2010) local scale population variation of fishes in West Fork White River (Indiana, USA). The Bayesian model incorporating phylogenetic uncertainty and correlated predictors indicated that neither body size nor geographic range explained significant variation in population fluctuations over a 28 year period. Phylogenetic signal data indicated that body size and geographic range were less similar among taxa than expected if trait evolution followed a purely random walk. We interpret this as evidence that local scale population variation may be influenced less by species-level traits such as body size or geographic range, and instead may be influenced more strongly by a taxon’s local scale habitat and biotic assemblages.  相似文献   

17.
Aim To analyse the global patterns in species richness of Viperidae snakes through the deconstruction of richness into sets of species according to their distribution models, range size, body size and phylogenetic structure, and to test if environmental drivers explaining the geographical ranges of species are similar to those explaining richness patterns, something we called the extreme deconstruction principle. Location Global. Methods We generated a global dataset of 228 terrestrial viperid snakes, which included geographical ranges (mapped at 1° resolution, for a grid with 7331 cells world‐wide), body sizes and phylogenetic relationships among species. We used logistic regression (generalized linear model; GLM) to model species geographical ranges with five environmental predictors. Sets of species richness were also generated for large and small‐bodied species, for basal and derived species and for four classes of geographical range sizes. Richness patterns were also modelled against the five environmental variables through standard ordinary least squares (OLS) multiple regressions. These subsets are replications to test if environmental factors driving species geographical ranges can be directly associated with those explaining richness patterns. Results Around 48% of the total variance in viperid richness was explained by the environmental model, but richness sets revealed different patterns across the world. The similarity between OLS coefficients and the primacy of variables across species geographical range GLMs was equal to 0.645 when analysing all viperid snakes. Thus, in general, when an environmental predictor it is important to model species geographical ranges, this predictor is also important when modelling richness, so that the extreme deconstruction principle holds. However, replicating this correlation using subsets of species within different categories in body size, range size and phylogenetic structure gave more variable results, with correlations between GLM and OLS coefficients varying from –0.46 up to 0.83. Despite this, there is a relatively high correspondence (r = 0.73) between the similarity of GLM‐OLS coefficients and R2 values of richness models, indicating that when richness is well explained by the environment, the relative importance of environmental drivers is similar in the richness OLS and its corresponding set of GLMs. Main conclusions The deconstruction of species richness based on macroecological traits revealed that, at least for range size and phylogenetic level, the causes underlying patterns in viperid richness differ for the various sets of species. On the other hand, our analyses of extreme deconstruction using GLM for species geographical range support the idea that, if environmental drivers determine the geographical distribution of species by establishing niche boundaries, it is expected, at least in theory, that the overlap among ranges (i.e. richness) will reveal similar effects of these environmental drivers. Richness patterns may be indeed viewed as macroecological consequences of population‐level processes acting on species geographical ranges.  相似文献   

18.
The constraint envelope describing the relationship between geographical range size and body size has usually been explained by a minimum viable population size model, furnishing a strong argument for species selection if geographical range size turns out to be ‘heritable’. Recent papers have questioned this assumption of nonzero geographical range heritability at a phylogenetic level, meaning that the logic that constraint envelopes provide support for higher‐level selection fails. However, I believe that analysis of constraint envelopes can still furnish insights for the hierarchical expansion of evolutionary theory because the fitness furnished by variation in body size, which is frequently measured as a highly ‘heritable’ trait at the species level, can be partitioned into anagenetic and cladogenetic components. The constraint envelope furnishes an explicit mechanism for large‐body biased extinction rates influencing the distribution of body size. More importantly, it is possible to envisage a scenario in which anagenetic trends driving an increase in body size in higher latitudes within species (Bergmann's rule) are counteracted by available habitat area or continental edges constraining overall species distribution in these higher latitudes, increasing the probability of extinction. Under this combined model, faunas at higher latitudes and under habitat constraints may reach equilibrium points between these opposing hierarchical adaptive forces at smaller body size than faunas with less intense higher‐level constraints and will tend to be more right‐skewed.  相似文献   

19.
Although mammalian carnivores are vulnerable to habitat fragmentation and require landscape connectivity, their global patterns of fragmentation and connectivity have not been examined. We use recently developed high-resolution habitat suitability models to conduct comparative analyses and to identify global hotspots of fragmentation and connectivity for the world's terrestrial carnivores. Species with less fragmentation (i.e. more interior high-quality habitat) had larger geographical ranges, a greater proportion of habitat within their range, greater habitat connectivity and a lower risk of extinction. Species with higher connectivity (i.e. less habitat isolation) also had a greater proportion of high-quality habitat, but had smaller, not larger, ranges, probably reflecting shorter distances between habitat patches for species with restricted distributions; such species were also more threatened, as would be expected given the negative relationship between range size and extinction risk. Fragmentation and connectivity did not differ among Carnivora families, and body mass was associated with connectivity but not fragmentation. On average, only 54.3 per cent of a species' geographical range comprised high-quality habitat, and more troubling, only 5.2 per cent of the range comprised such habitat within protected areas. Identification of global hotspots of fragmentation and connectivity will help guide strategic priorities for carnivore conservation.  相似文献   

20.
Species can be rare or common in three different dimensions: geographic range size, habitat breadth, and local abundance. Understanding drivers of rarity are not only fundamentally interesting; it is also pertinent for their conservation. We addressed this challenge by analyzing the rarity of 291 native freshwater fishes occurring in ca 3500 independent stream reaches that span a broad environmental gradient across continental USA. Using phylogenetic regression and path analysis, we examined the concordance among the three rarity dimensions, and identified possible mechanisms by which species life‐history, habitat affinities, and biogeography drive variation in rarity. Weak double extinction jeopardies were driven by weakly positive correlations between habitat breadth and local abundance, and between habitat breadth and geographic range size. However, a triple extinction jeopardy was averted as local abundance and range size were not positively linked in our study. This is because large‐river and lacustrine habitat use mediated a trade‐off between local abundance and range size. Large rivers and lacustrine habitats represent important dispersal pathways and refugia that enabled fishes to acquire wide ranges; however, species using these habitats are less abundant overall because they are less adapted to small lotic channels, which comprise the majority of stream habitats in the US. Life‐history traits were key in governing the relationship between abundance and range size as large‐river and lacustrine habitat use were driven by body size, egg size, and parental care. Our analysis contributes novel insights into mechanisms that underlie multiple dimensions of rarity in freshwater fish and informs the prioritization of multiply rare species for conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号