首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
Social studies on biobanking have traditionally focused on public engagement, that is, engagement with donors, patients and the general public as an important factor of sustainability. In this article, we claim that, in order to fully understand the way biobanks work, it is necessary to pay attention to a number of other actors, which have an equal, if not greater, impact on their practices and strategies. This means taking a broadened approach to biobank engagement. By using data collected from interviews with different biobank experts based in five different countries (UK, Canada, Finland, Spain and Iceland), we identify seven communities, including the public, that emerge as relevant. Such relationships condition the way biobanks develop, act and plan. The discussion illustrates how the relationships with those seven communities are articulated. We conclude that there is a need for a broadened approach to biobank engagement in order to understand biobank sustainability.  相似文献   

2.
The interface between evolutionary biology and the biomedical sciences promises to advance understanding of the origins of genetic and infectious diseases in humans, potentially leading to improved medical diagnostics, therapies, and public health practices. The biomedical sciences also provide unparalleled examples for evolutionary biologists to explore. However, gaps persist between evolution and medicine, for historical reasons and because they are often perceived as having disparate goals. Evolutionary biologists have a role in building a bridge between the disciplines by presenting evolutionary biology in the context of human health and medical practice to undergraduates, including premedical and preprofessional students. We suggest that students will find medical examples of evolution engaging. By making the connections between evolution and medicine clear at the undergraduate level, the stage is set for future health providers and biomedical scientists to work productively in this synthetic area. Here, we frame key evolutionary concepts in terms of human health, so that biomedical examples may be more easily incorporated into evolution courses or more specialized courses on evolutionary medicine. Our goal is to aid in building the scientific foundation in evolutionary biology for all students, and to encourage evolutionary biologists to join in the integration of evolution and medicine.  相似文献   

3.
Undergraduate field experiences (UFEs) are a prominent element of science education across many disciplines; however, empirical data regarding the outcomes are often limited. UFEs are unique in that they typically take place in a field setting, are often interdisciplinary, and include diverse students. UFEs range from courses, to field trips, to residential research experiences, and thereby have the potential to yield a plethora of outcomes for undergraduate participants. The UFE community has expressed interest in better understanding how to assess the outcomes of UFEs. In response, we developed a guide for practitioners to use when assessing their UFE that promotes an evidence‐based, systematic, iterative approach. This essay guides practitioners through the steps of: identifying intended UFE outcomes, considering contextual factors, determining an assessment approach, and using the information gained to inform next steps. We provide a table of common learning outcomes with aligned assessment tools, and vignettes to illustrate using the assessment guide. We aim to support comprehensive, informed assessment of UFEs, thus leading to more inclusive and reflective UFE design, and ultimately improved student outcomes. We urge practitioners to move toward evidence‐based advocacy for continued support of UFEs.  相似文献   

4.
Healthcare is a critical service sector with a sizable environmental footprint from both direct activities and the indirect emissions of related products and infrastructure. As in all other sectors, the “inside‐out” environmental impacts of healthcare (e.g., from greenhouse gas emissions, smog‐forming emissions, and acidifying emissions) are harmful to public health. The environmental footprint of healthcare is subject to upward pressure from several factors, including the expansion of healthcare services in developing economies, global population growth, and aging demographics. These factors are compounded by the deployment of increasingly sophisticated medical procedures, equipment, and technologies that are energy‐ and resource‐intensive. From an “outside‐in” perspective, on the other hand, healthcare systems are increasingly susceptible to the effects of climate change, limited resource access, and other external influences. We conducted a comprehensive scoping review of the existing literature on environmental issues and other sustainability aspects in healthcare, based on a representative sample from over 1,700 articles published between 1987 and 2017. To guide our review of this fragmented literature, and to build a conceptual foundation for future research, we developed an industrial ecology framework for healthcare sustainability. Our framework conceptualizes the healthcare sector as comprising “foreground systems” of healthcare service delivery that are dependent on “background product systems.” By mapping the existing literature onto our framework, we highlight largely untapped opportunities for the industrial ecology community to use “top‐down” and “bottom‐up” approaches to build an evidence base for healthcare sustainability.  相似文献   

5.
First‐year majors organismal biology courses are frequently taught as survey courses that promote memorization rather than synthesis of biological concepts. To address the shortcomings of this approach, we redesigned the organismal portion of our introductory biology curriculum to create a “Foundations of Form and Function” course. Foundations of Form and Function introduces different organismal forms and focuses on the relationship between those forms and the execution of key physiological functions. Goals of our new course include the following: developing student recognition of common characteristics that unite living organisms as well as features that distinguish taxonomic groups, facilitating student understanding of how organisms accomplish similar functions through different forms, and reinforcing course themes with independent student research. In this paper, we describe course learning outcomes, organization, content, assessment, and laboratory activities. We also present student perspectives and outcomes of our course design based on data from four years of student evaluations. Finally, we explain how we modified our course to meet remote learning and social‐distancing challenges presented by the COVID‐19 pandemic in 2020 and 2021.  相似文献   

6.
In the world of higher education, one of the struggles instructors face in the classroom is engaging students in the material. A second discussion in higher education pedagogy is how to weigh content versus activity in the science classroom. How should college teaching be set up when students now have every fact ever found at their fingertips on a device no larger than a half sandwich? What is the correct balance in the classroom between content/ knowledge and activity? As instructors grapple with these questions, a new type of learning experience called the Course Based Undergraduate Research Experience (CURE) has been developed, whereby students engage in an authentic research question in a classroom and laboratory setting. CUREs have been shown to be effective learning experiences for students but can be difficult to implement. Saccharomyces cerevisiae is a versatile and easy to use organism in the classroom that can be used for a wide variety of classroom activities. Described herein are a number of ways an instructor can use yeast in the classroom for authentic research experiences, especially focused towards a CURE.  相似文献   

7.
The recently proposed education reform in Hong Kong takes the emphasis away from public examinations as the sole evaluation of student learning, and encourages alternative forms of assessment. This paper describes the background of the proposed reform, and reviews existing practices in science and biology assessment among teachers in Hong Kong. Current beliefs about science teaching and learning are then analysed. The analysis is followed by a discussion about the change in beliefs required in order to implement the proposed reform. Recommendations are given about the strategies needed to support teachers in making changes to their practice.  相似文献   

8.
9.
10.
11.
During the 2012–2013 academic year the University of North Dakota (UND) piloted the use of a Student Centered Active Learning Environment for Undergraduate Programs (SCALE-UP) classroom. Genetics, a 300 level class for Biology majors, and Concepts of Biology, an introductory course for non-majors were two of the classes piloted. Here, we examine the effects of this transition on overall academic performance, grade distribution, exam question performance classified by Bloom’s Taxonomy, student performance by quartile, and University Student Assessment of Teaching (USAT) surveys. Comparisons are made to historical data from a lecture-based setting to examine the effects of switching from an instructor-centered to a learner-centered format. Following the transition, both courses showed a higher proportion of students receiving an A/B/C grade and a concomitant decrease in D/F/W grades, and students continued to have positive perceptions about themselves, the course and the instructor. Paradoxically, both courses experienced a concerning decrease in performance by lower quartile students on comparable exam questions.  相似文献   

12.
Due to their important role in the ecosystem and high economic value, there is a need to assess the effect of anthropogenic impacts on marine fish assemblages. However, this can only be achieved if variations due to natural causes are known. Moreover, while most assessment tools rely on functional traits, bottom-up habitat classification frameworks tend to use species composition. The present study proposes an innovative framework to define fish assemblage types through metric pairwise constrained k-means (MPCK-means) clustering of sites based on functional guild categories and univariate metrics, an approach that takes into account within-site variability due to the sampling method and natural causes. This was followed by a label-based ensemble clustering approach, which finds patterns that minimise information loss when integrating clustering results from individual metrics. In order to test the method, fish assemblages on 14 nearshore rocky reefs along the Portuguese coast were sampled. The final typology configuration achieved through ensemble clustering consisted of three assemblage types and maintained an average normalised mutual information of 0.605 with the individual clustering results. Nested PERMANOVA found differences among types and the most variable metrics in the face of natural variation were identified. Ultimately, a k-nearest neighbours classifier is proposed to label new sites, based only on environmental variables that are unlikely to be directly affected by the presence of anthropogenic impacts. Optimal performance for the classification model was achieved with inverse distance-weighted voting of the 4 nearest neighbours with an average classification accuracy of 96.08%.  相似文献   

13.
陈向东 《微生物学通报》2020,47(4):1001-1003
突如其来的新型冠状病毒肺炎疫情使得网上在线教学成为这段时间的唯一教学方式。这一方面给高校的广大师生提出了新的挑战,但同时也给近年来一直进行的高等教育开放式教育教学改革发展潮流按下了加速键。《微生物学通报》以"第十七届全国微生物学教学和科研及成果产业化研讨会"为契机邀稿组织出版的这期"高等院校教学主题刊",很好地反映了近年来在开放式教育形势下我国微生物学教学改革与人才培养的最新进展和发展态势,其中也有文章介绍了疫情期间选择和使用线上教学技术的经验。期望该主题刊的出版有助于进一步促进广大微生物学教师强化互联网意识,打造"互联网+"思维,重塑课堂教学形态,通过广大教师间的教改经验交流与合作,进一步促进我国微生物学课程建设水平与教学质量的全面提升。  相似文献   

14.
Renewable‐electricity‐powered electrocatalytic CO2 reduction reactions (CO2RR) have been identified as an emerging technology to address the issue of rising CO2 emissions in the atmosphere. While the CO2RR has been demonstrated to be technically feasible, further improvements in catalyst performance through active sites engineering are a prerequisite to accelerate its commercial feasibility for utilization in large CO2‐emitting industrial sources. Over the years, the improved understanding of the interaction of CO2 with the active sites has allowed superior catalyst design and subsequent attainment of prominent CO2RR activity in literature. This review tracks the evolution of the understanding of CO2RR active sites on different electrocatalysts such as metals, metal‐oxides, single atoms, metal‐carbon, and subsequently metal‐free carbon‐based catalysts. Despite the tremendous research efforts in the field, many scientific questions on the role of various active sites in governing CO2RR activity, selectivity, stability, and pathways are still unanswered. These gaps in knowledge are highlighted and a discussion is set forth on the merits of utilizing advanced in‐situ and operando characterization techniques and machine learning (ML). Using this technique, the underlying mechanisms can be discerned, and as a result new strategies for designing active sites may be uncovered. Finally, this review advocates an interdisciplinary approach to discover and design CO2RR active sites (rather than focusing merely on catalyst activity) in a bid to stimulate practical research for industrial application.  相似文献   

15.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号