首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Sleep and Biological Rhythms - The aim of this study was to investigate whether evening circadian preference, as measured by the Horne and Östberg questionnaire, is associated with disrupted...  相似文献   

2.
Bright light can influence human psychophysiology instantaneously by inducing endocrine (suppression of melatonin, increasing cortisol levels), other physiological changes (enhancement of core body temperature), and psychological changes (reduction of sleepiness, increase of alertness). Its broad range of action is reflected in the wide field of applications, ranging from optimizing a work environment to treating depressed patients. For optimally applying bright light and understanding its mechanism, it is crucial to know whether its effects depend on the time of day. In this paper, we report the effects of bright light given at two different times of day on psychological and physiological parameters. Twenty-four subjects participated in two experiments (n = 12 each). All subjects were nonsmoking, healthy young males (18-30 yr). In both experiments, subjects were exposed to either bright light (5,000 lux) or dim light <10 lux (control condition) either between 12:00 P.M. and 4:00 P.M. (experiment A) or between midnight and 4:00 A.M. (experiment B). Hourly measurements included salivary cortisol concentrations, electrocardiogram, sleepiness (Karolinska Sleepiness Scale), fatigue, and energy ratings (Visual Analog Scale). Core body temperature was measured continuously throughout the experiments. Bright light had a time-dependent effect on heart rate and core body temperature; i.e., bright light exposure at night, but not in daytime, increased heart rate and enhanced core body temperature. It had no significant effect at all on cortisol. The effect of bright light on the psychological variables was time independent, since nighttime and daytime bright light reduced sleepiness and fatigue significantly and similarly.  相似文献   

3.
Light strongly influences the circadian timing system in humans via non-image-forming photoreceptors in the retinal ganglion cells. Their spectral sensitivity is highest in the short-wavelength range of the visible light spectrum as demonstrated by melatonin suppression, circadian phase shifting, acute physiological responses, and subjective alertness. We tested the impact of short wavelength light (460 nm) on sleep EEG power spectra and sleep architecture. We hypothesized that its acute action on sleep is similar in magnitude to reported effects for polychromatic light at higher intensities and stronger than longer wavelength light (550 nm). The sleep EEGs of eight young men were analyzed after 2-h evening exposure to blue (460 nm) and green (550 nm) light of equal photon densities (2.8 x 10(13) photons x cm(-2) x s(-1)) and to dark (0 lux) under constant posture conditions. The time course of EEG slow-wave activity (SWA; 0.75-4.5 Hz) across sleep cycles after blue light at 460 nm was changed such that SWA was slightly reduced in the first and significantly increased during the third sleep cycle in parietal and occipital brain regions. Moreover, blue light significantly shortened rapid eye movement (REM) sleep duration during these two sleep cycles. Thus the light effects on the dynamics of SWA and REM sleep durations were blue shifted relative to the three-cone visual photopic system probably mediated by the circadian, non-image-forming visual system. Our results can be interpreted in terms of an induction of a circadian phase delay and/or repercussions of a stronger alerting effect after blue light, persisting into the sleep episode.  相似文献   

4.
5.
Epidemiologic data have demonstrated associations of sleep-onset insomnia with a variety of diseases, including depression, dementia, diabetes and cardiovascular diseases. Sleep initiation is controlled by the suprachiasmatic nucleus of the hypothalamus and endogenous melatonin, both of which are influenced by environmental light. Exposure to evening light is hypothesized to cause circadian phase delay and melatonin suppression before bedtime, resulting in circadian misalignment and sleep-onset insomnia; however, whether exposure to evening light disturbs sleep initiation in home settings remains unclear. In this longitudinal analysis of 192 elderly individuals (mean age: 69.9 years), we measured evening light exposure and sleep-onset latency for 4 days using a wrist actigraph incorporating a light meter and an accelerometer. Mixed-effect linear regression analysis for repeated measurements was used to evaluate the effect of evening light exposure on subsequent sleep-onset latency. The median intensity of evening light exposure and the median sleep-onset latency were 27.3?lux (interquartile range, 17.9–43.4) and 17?min (interquartile range, 7–33), respectively. Univariate models showed significant associations between sleep-onset latency and age, gender, daytime physical activity, in-bed time, day length and average intensity of evening and nighttime light exposures. In a multivariate model, log-transformed average intensity of evening light exposure was significantly associated with log-transformed sleep-onset latency independent of the former potential confounding factors (regression coefficient, 0.133; 95% CI, 0.020–0.247; p?=?0.021). Day length and nighttime light exposure were also significantly associated with log-transformed sleep-onset latency (p?=?0.001 and p?<?0.001, respectively). In conclusion, exposure to evening light in home setting prolongs subsequent sleep-onset latency in the elderly.  相似文献   

6.
Six normal adults were studied 1) to compare respiratory-related posterior cricoarytenoid (PCA) muscle activity during wakefulness and sleep and 2) to determine the effect of upper airway occlusions during non-rapid-eye-movement (NREM) sleep on PCA activity. A new electromyographic technique was developed to implant hooked-wire electrodes into the PCA by using a nasopharyngoscope. A previously described technique was used to induce upper airway occlusions during NREM sleep (Kuna and Smickley, J. Appl. Physiol. 64: 347-353, 1988). The PCA exhibited phasic inspiratory activity during quiet breathing in wakefulness and sleep in all subjects. Discounting changes in tonic activity, peak amplitude of PCA inspiratory activity during stage 3-4 NREM sleep decreased to 77% of its value in wakefulness. Tonic activity throughout the respiratory cycle was present in all subjects during wakefulness but was absent during state 3-4 NREM sleep. In this sleep stage, PCA phasic activity abruptly terminated near the end of inspiration. During nasal airway occlusions in NREM sleep, PCA phasic activity did not increase significantly during the first or second occluded effort. The results, in combination with recent findings for vocal cord adductors in awake and sleeping adults, suggest that vocal cord position during quiet breathing in wakefulness is actively controlled by simultaneously acting antagonistic intrinsic laryngeal muscles. In contrast, the return of the vocal cords toward the midline during expiration in stage 3-4 NREM sleep appears to be a passive phenomenon.  相似文献   

7.
Students who work during the school year face the potential of sleep deprivation and its effects, since they have to juggle between school and work responsibilities along with social life. This may leave them with less time left for sleep than their nonworking counterparts. Chronotype is a factor that may exert an influence on the sleep of student workers. Also, light and social zeitgebers may have an impact on the sleep-related problems of this population. This study aimed to document sleep, light exposure patterns, social rhythms, and work-related fatigue of student workers aged 19-21 yrs and explore possible associations with chronotype. A total of 88 student workers (mean ± SD: 20.18 ± .44 yrs of age; 36 males/52 females) wore an actigraph (Actiwatch-L; Mini-Mitter/Respironics,Bend, OR) and filled out the Social Rhythm Metric for two consecutive weeks during the school year. Also, they completed the Morningness-Eveningness Questionnaire (MEQ), Epworth Sleepiness Scale (ESS), Pittsburgh Sleep Quality Index (PSQI), and Occupational Fatigue Exhaustion/Recovery Scale (OFER). Repeated and one-way analyses of variance (ANOVAs), Pearson's chi-square tests, and correlation coefficients were used for statistical comparisons. Subjects slept an average of 06:28 h/night. Actigraphic sleep parameters, such as sleep duration, sleep efficiency, wake after sleep onset, and sleep latency, did not differ between chronotypes. Results also show that evening types (n = 17) presented lower subjective sleep quality than intermediate types (n = 58) and morning types (n = 13). Moreover, evening types reported higher levels of chronic work-related fatigue, exhibited less regular social rhythms, and were exposed to lower levels of light during their waking hours (between 2 and 11 h after wake time) as compared to intermediate types and morning types. In addition, exposure to light intensities between 100 and 500 lux was lower in evening types than in intermediate types and morning types. However, bright light exposure (≥ 1000 lux) did not differ between chronotypes. In conclusion, results suggest that student workers may constitute a high-risk population for sleep deprivation. Evening types seemed to cope less well with sleep deprivation, reporting poorer sleep quality and higher levels of work-related fatigue than intermediate types and morning types. The higher chronic work-related fatigue of evening types may be linked to their attenuated level of light exposure and weaker social zeitgebers. These results add credence to the hypothesis that eveningness entails a higher risk of health-impairing behaviors.  相似文献   

8.
Zhu  Jing  Zeng  Zhaofu  Xiong  Mengqing  Mo  Huaheng  Jin  Meng  Hu  Ke 《Sleep and biological rhythms》2022,20(3):421-429
Sleep and Biological Rhythms - The relationship between plasma orexin A (OXA) levels and cognitive function in patients with obstructive sleep apnea (OSA) remains unclear. This study aimed to...  相似文献   

9.
10.
Circadian misalignment between internal and environmental rhythms dysregulates glucose homeostasis because of disruption of the biological clock, and increases risk of diabetes. Although exposure to evening light and decreased melatonin secretion are both associated with the circadian misalignment, it remains unclear whether they are associated with diabetes. In this cross-sectional study on 513 elderly individuals (mean age, 72.7 years), we measured ambulatory light intensity during the 4?h prior to bedtime at 1-min intervals during two consecutive days and overnight urinary 6-sulfatoxymelatonin excretion (UME) along with glucose metabolism. The median average intensity of evening light exposure and UME were 25.4?lux (interquartile range 17.5–37.6) and 6.6?μg (interquartile range 3.9–9.7), respectively. Both log-transformed average intensity of evening light exposure and log-transformed UME were significantly associated with diabetes in a multivariate logistic regression model adjusted for covariates, including gender, body mass index, duration in bed, and night-time light exposure [adjusted odds ratio (OR), 1.72; 95% confidence interval (CI), 1.12–2.64; p?=?0.01; and adjusted OR, 0.66; 95% CI, 0.44–0.97; p?=?0.04; respectively]. An increase in evening light exposure from 17.5 to 37.6?lux (25–75th percentiles) was associated with a 51.2% (95% CI, 8.2–111.4%) increase in prevalent diabetes, and an increase in UME from 3.9 to 9.7?μg (25–75th percentiles) was associated with a 32.0% (95% CI, 1.9–52.8%) decrease in prevalent diabetes. In conclusion, this study in elderly individuals demonstrated that evening light exposure in home settings and UME were significantly and independently associated with diabetes.  相似文献   

11.
12.
13.
The use of electronic devices with light-emitting screens has increased exponentially in the last decade. As a result, humans are almost continuously exposed to unintentional artificial light. We explored the independent and combined effects of two aspects of screen illumination, light wavelength, and intensity, on sleep, its biological regulation, and related functional outcomes. The 2 × 2 repeated-measure design included two independent variables: screen light intensity (low ([LI] versus high [HI]) and wavelength (short [SWL] versus long [LWL]). Nineteen participants (11F, 8M; mean age 24.3 [±2.8] years) underwent four light conditions, LI/SWL, HI/SWL, LI/LWL, and HI/LWL, in counterbalanced order. Each light exposure lasted for two hours (21:00–23:00), following which participants underwent an overnight polysomnography. On each experimental night, oral temperature and urine samples (for melatonin analysis) were collected at multiple time points. Each morning, participants filled out questionnaires and conducted a computerized attention task. Irrespective of light intensity, SWL illumination significantly disrupted sleep continuity and architecture and led to greater self-reported daytime sleepiness. SWL light also altered biological rhythms, subduing the normal nocturnal decline in body temperature and dampening nocturnal melatonin secretion. Light intensity seemed to independently affect sleep as well, but to a lesser degree. Both light intensity and wavelength negatively affected morning attention. In sum, light wavelength seems to have a greater influence than light intensity on sleep and a wide-range of biological and behavioral functions. Given the widespread use of electronic devices today, our findings suggest that screen light exposure at evening may have detrimental effects on human health and performance.  相似文献   

14.
15.
1. The present review analyzes sensory processing during sleep and wakefulness from a single neuronal viewpoint. Our premises are that processing changes throughout the sleep–wakefulness cycle may be at least partially evidenced in single neurons by (a) changes in the phase locking of the response to the hippocampal theta rhythm, (b) changes in the discharge rate and firing pattern of the response to sound, and (c) changes in the effects of the neurotransmitters involved in the afferent and efferent pathways.2. The first part of our report is based on the hypothesis that the encoding of sensory information needs a timer in order to be processed and stored, and that the hippocampal theta rhythm could contribute to the temporal organization. We have demonstrated that the guinea pig's auditory and visual neuronal discharge exhibits a temporal relationship (phase locking) to the hippocampal theta waves during wakefulness and sleep phases.3. The concept that the neural network organization during sleep versus wakefulness is different and can be modulated by sensory signals and vice versa, and that the sensory input may be influenced by the CNS state, i.e., asleep or awake, is introduced. During sleep the evoked firing of auditory units increases, decreases, or remains similar to that observed during quiet wakefulness. However, there has been no auditory unit yet that stops firing as the guinea pig enters sleep. Approximately half of the cortical neurons studied did not change firing rate when passing into sleep while others increased or decreased. Thus, the system is continuously aware of the environment. We postulate that those neurons that changed their evoked firing during sleep are also related to still unknown sleep processes.4. Excitatory amino acid neurotransmitters participate in the synaptic transmission of the afferent and efferent pathways in the auditory system. In the inferior colliculus, however, the effects of glutamate's mediating the response to sound and the efferent excitation evoked by cortical stimulation failed to show differences in sleep and wakefulness.5. Considering that neonates and also infants spend most of the time asleep, the continuous arrival of sensory information to the brain during both sleep phases may serve to sculpt the brain by activity-dependent mechanisms of neural development, as has been postulated for wakefulness.  相似文献   

16.
Sleep disruption has been associated with increased risks for several major chronic diseases that develop over decades. Differences in sleep/wake timing between work and free days can result in the development of social jetlag (SJL), a chronic misalignment between a person’s preferred sleep/wake schedule and sleep/wake timing imposed by his/her work schedule. Only a few studies have examined the persistence of SJL or sleep disruption over time. This prospective investigation examined SJL and sleep characteristics over a 2-year period to evaluate whether SJL or poor sleep were chronic conditions during the study period. SJL and sleep measures (total sleep time [TST], sleep onset latency [SOL], wake after sleep onset [WASO]), and sleep efficiency [SE]), were derived from armband monitoring among 390 healthy men and women 21–35 years old. Participants wore the armband for periods of 4–10 days at 6-month intervals during the follow-up period (N = 1431 repeated observations).

The consistency of SJL or sleep disruption over time was analyzed using generalized linear mixed models (GLMMs) for repeated measures. Repeated measures latent class analysis (RMLCA) was then used to identify subgroups among the study participants with different sleep trajectories over time. Individuals in each latent group were compared using GLMMs to identify personal characteristics that differed among the latent groups.

Minor changes in mean SJL, chronotype, or TST were observed over time, whereas no statistically significant changes in SOL, WASO, or SE were observed during the study period. The RMLCA identified two groups of SJL that remained consistent throughout the study (low SJL, mean ± SE: 0.4 ± 0.04 h, 42% of the study population; and high SJL, 1.4 ± 0.03 h, 58%). Those in the SJL group with higher values tended to be employed and have an evening chronotype.

Similarly, two distinct subgroups were observed for SOL, WASO, and SE; one group with a pattern suggesting disrupted sleep over time, and another with a consistently normal sleep pattern. Analyses of TST identified three latent groups with relatively short (5.6 ± 1.0 h, 21%), intermediate (6.5 ± 1.0 h, 44%), and long (7.3 ± 1.0 h, 36%) sleep durations, all with temporally stable, linear trajectories. The results from this study suggest that sleep disturbances among young adults can persist over a 2 year period. Latent groups with poor sleep tended to be male, African American, lower income, and have an evening chronotype relative to those with more normal sleep characteristics. Characterizing the persistence of sleep disruption over time and its contributing factors could be important for understanding the role of poor sleep as a chronic disease risk factor.  相似文献   


17.
Light, especially its blue component, is the main synchronizer of circadian rhythms. We investigated effects of suppressed blue band of the spectrum on melatonin production and sleep efficiency in 18 young volunteers. During control days, participants lived in their home environment, and next five days in a room lit only by daylight with windows equipped with a filter blocking the blue band of the light spectrum. Light intensity, circadian stimulus and light irradiance were monitored. No significant changes in the daily pattern and total urinary 6-sulphatoxymelatonin excretion were found between control and experimental conditions. Parameters of sleep efficiency measured by wrist actigraphy were not worsened, but neutral chronotypes exhibited shortened sleep duration under light-modified conditions. We conclude that young healthy people can compensate for negative effects of transitory-worsened lighting conditions on their daily rhythms, but chronotypes and other personal characteristics may modify biological responses and should be considered.  相似文献   

18.
In a previous study we found that daytime exposure to bright as compared to dim light exerted a beneficial effect on the digestion of the evening meal. This finding prompted us to examine whether the digestion of the evening meal is also affected by evening light intensity. Subjects lived in light of 200 lux during the daytime (08:00-17:00 h) and took their evening meal at 17:00 h under 20 lux (evening dim-light condition: 17:00-02:00 h) or 2000 lux (evening bright-light condition: 17:00-02:00 h) until retiring at 02:00 h. Assessment of carbohydrate digestion of the evening meal was accomplished by a breath hydrogen test that is indicative of the malabsorption of dietary carbohydrate. Hydrogen excretion in the breath in the evening under the dim-light condition was significantly less than under the bright-light condition (p < 0.05). This finding is the opposite to that obtained in previous experiments in which subjects were exposed to the different intensities of light during the daytime, and indicates that the exposure to dim light in the evening exerts a better effect on carbohydrate digestion in the evening meal than does the exposure to bright light.  相似文献   

19.
Sleep disturbances, chronotype and social jetlag (SJL) have been associated with increased risks for major chronic diseases that take decades to develop, such as obesity, metabolic syndrome and cardiovascular disease. Potential relationships between poor sleep, chronotype and SJL as they relate to metabolic risk factors for chronic disease have not been extensively investigated. This prospective study examined chronotype, SJL and poor sleep in relation to both obesity and elevated blood pressure among healthy young adults.

SJL and objective sleep measures (total sleep time, sleep onset latency, wake after sleep onset and sleep efficiency) were derived from personal rest/activity monitoring (armband actigraphy) among 390 healthy adults 21–35 years old. Participants wore the device for 6–10 days at 6-month intervals over a 2-year period (n = 1431 repeated observations). Chronotypes were categorized into morning, intermediate and evening groups using repeated measures latent class analysis. Means of SJL and sleep measures among latent chronotype groups were compared using partial F-tests in generalized linear mixed models. Generalized linear mixed models also were used to generate odds ratios (ORs) with 95% confidence intervals (CIs) examining the relationship between repeated measures of chronotype, SJL, sleep and concurrent anthropometric outcome measures (body mass index, percentage of body fat, waist-to-hip ratio, waist-to-height ratio), systolic blood pressure and diastolic blood pressure.

Sleep latency ≥12 min was associated with increased odds of a high waist-to-height ratio (OR = 1.37; CI: 1.03–1.84). Neither chronotype nor SJL was independently associated with anthropometric outcomes or with blood pressure. Relationships between poor sleep and anthropometric outcomes or blood pressure varied by chronotype. Morning types with total sleep time <6 h, sleep efficiency <85% or wake after sleep onset ≥60 min were more likely to have an increased percentage of body fat, waist-to-hip ratio and waist-to-height ratio relative to those with an intermediate chronotype. Similarly, sleep latency ≥12 min was associated with increased odds of elevated systolic blood pressure (OR = 1.90; CI: 1.15–3.16, pinteraction = 0.02) among morning versus intermediate chronotypes. No relationships between poor sleep and obesity or elevated blood pressure were observed among evening chronotypes.

The results from this study among healthy young adults suggest that poor sleep among morning types may be more strongly associated with obesity and elevated blood pressure relative to those with an intermediate (neutral) chronotype. Sleep-related metabolic alterations among different chronotypes warrant further investigation.  相似文献   


20.
There is a pronounced decline in sleep with age. Diminished output from the circadian oscillator, the suprachiasmatic nucleus, might play a role, because there is a decrease in the amplitude of the day-night sleep rhythm in the elderly. However, sleep is also regulated by homeostatic mechanisms that build sleep drive during wakefulness, and a decline in these mechanisms could also decrease sleep. Because this question has never been addressed in old animals, the present study examined the effects of 12 h wakefulness on compensatory sleep response in young (3.5 mo) and old (21.5 mo) Sprague-Dawley and F344 rats. Old rats in both strains had a diminished compensatory increase in slow-wave sleep (SWS) after 12 h of wakefulness (0700-1900, light-on period) compared with the young rats. In contrast, compensatory REM sleep rebound was unaffected by age. To assess whether the reduced SWS rebound in old rats might result from loss of neurons implicated in sleep generation, we counted the number of c-Fos immunoreactive (c-Fos-ir) cells in the ventral lateral preoptic (VLPO) area and found no differences between young and old rats. These findings indicate that old rats, similar to elderly humans, demonstrate less sleep after prolonged wakefulness. The findings also indicate that although old rats have a decline in sleep, this cannot be attributed to loss of VLPO neurons implicated in sleep.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号