首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The host‐associated microbiome is an important player in the ecology and evolution of species. Despite growing interest in the medical, veterinary, and conservation communities, there remain numerous questions about the primary factors underlying microbiota, particularly in wildlife. We bridged this knowledge gap by leveraging microbial, genetic, and observational data collected in a wild, pedigreed population of gray wolves (Canis lupus) inhabiting Yellowstone National Park. We characterized body site‐specific microbes across six haired and mucosal body sites (and two fecal samples) using 16S rRNA amplicon sequencing. At the phylum level, we found that the microbiome of gray wolves primarily consists of Actinobacteria, Bacteroidetes, Firmicutes, Fusobacteria, and Proteobacteria, consistent with previous studies within Mammalia and Canidae. At the genus level, we documented body site‐specific microbiota with functions relevant to microenvironment and local physiological processes. We additionally employed observational and RAD sequencing data to examine genetic, demographic, and environmental correlates of skin and gut microbiota. We surveyed individuals across several levels of pedigree relationships, generations, and social groups, and found that social environment (i.e., pack) and genetic relatedness were two primary factors associated with microbial community composition to differing degrees between body sites. We additionally reported body condition and coat color as secondary factors underlying gut and skin microbiomes, respectively. We concluded that gray wolf microbiota resemble similar host species, differ between body sites, and are shaped by numerous endogenous and exogenous factors. These results provide baseline information for this long‐term study population and yield important insights into the evolutionary history, ecology, and conservation of wild wolves and their associated microbes.  相似文献   

2.
This study aimed to identify the effects of host species on the gut microbial flora in three species (Hemitragus jemlahicus, Pseudois nayaur, and Ovis orientalis) from the subfamily Caprinae, by excluding the impact of environment factors. We investigated the differences in intestinal flora of three species belonging to Caprinae, which were raised in identical conditions. Fecal samples were collected from tahr, mouflon, and bharal, and the V3–V4 region of the 16S ribosomal RNA gene was analyzed by high‐throughput sequencing. The analysis of 16S rRNA gene sequences reveals that fecal samples were mainly composed of four phyla: Firmicutes, Bacteroidetes, Spirochaetes, and Proteobacteria. The most abundant phyla included Firmicutes and Bacteroidetes accounting for >90% of the bacteria, and a higher Firmicutes/Bacteroidetes ratio was observed in tahrs. Moreover, significant differences existed at multiple levels of classifications in the relative abundance of intestinal flora, differing greatly between species. Phylogenetic analyses based on 16S rRNA gene indicated that mouflon is closely related to bharal, and it is inconsistent with previous reports in the species evolutionary relationships. In this study, we demonstrated that the gut microbiota in tahr had a stronger ability to absorb and store energy from the diet compared with mouflon and bharal, and the characteristics of host–microbiome interactions were not significant.  相似文献   

3.
Gut microbiota is associated with host health and its environmental adaption, influenced by seasonal variation. Pomacea canaliculata is one of the world''s 100 worst invasive alien species. Here, we used high‐throughput sequencing of the 16S rRNA gene to analyze the seasonal variation of gut microbiota of P. canaliculata. The results suggested that the predominant gut microbial phyla of P. canaliculata included Firmicutes and Proteobacteria, which helped digest plant food and accumulate energy. The gut microbiota of P. canaliculata in summer group showed the highest diversity, whereas the winter group possessed the lowest, probably due to the shortage of food resources of P. canaliculata in winter. Principal coordinate analysis analysis based on unweighted unifrac and weighted unifrac indicated that the composition of gut microbiota of P. canaliculata significantly varied across seasons. Bacteroidetes tended to be enriched in summer by linear discriminant analysis effect size analysis. Actinobacteria and Cyanobacteria were extremely abundant in autumn, while Fusobacteria and Cetobacterium enriched in winter. In conclusion, the structure of the gut microbiota of P. canaliculata was significantly different among seasons, which was beneficial to the environment adaptation and the digestion and metabolism of food during different periods.  相似文献   

4.
Composition and diversity in gut microbiota are impacted by a wide variety of factors. The similarity of gut microbiota in related or sympatric species has been gaining recent traction. Here, 16S rRNA gene sequencing technology was employed to study the gut microbiota of three sympatric frog species, namely Odorrana tormota, O. graminea, and Amolops wuyiensis. In these three frog species, the most abundant phylum was Proteobacteria, followed by Bacteroidetes, Verrucomicrobia, and Firmicutes. The most abundant family was Burkholderiaceae in three species. The most dominant genera were Burkholderia, Caballeronia, and Paraburkholderia with the highest relative abundance in O. tormota, O. graminea, and A. wuyiensis, respectively. No differences were observed in alpha diversity indexes among the three frog species. However, bacterial similarity of gut microbiota was significantly different between O. tormota and A. wuyiensis and between O. graminea and A. wuyiensis. Metabolism‐related gene function was predominantly enriched in the gut microbiota of the three evaluated frog species. From these findings, that the relative abundance of the gut microbiota and predicted gene functions differed in three species, we conclude that there were significant differences in the gut microbiota of the three species. Similar alpha diversity and interspecific bacterial similarity in the gut might be related to bacterial transmission among the three Anura frogs evaluated in this study.  相似文献   

5.
ObjectivesOsteoporosis is a common bone disease in the elderly mainly regulated by osteoblasts (OBs) and osteoclasts (OCs). The gut microbiota has been recognized as an important factor in many physiological and pathological processes in the host. Thus, we hypothesize that the gut microbiota is necessary for postmenopausal osteoporosis and that germ‐free (GF) mice are protected from osteoporosis.Material and MethodsOsteoporosis models were established by performing ovariectomy (OVX) in mice. Bone mass was measured by micro‐CT, and gut microbiota were assessed by 16s rDNA sequencing. Reactive oxygen species (ROS) were detected by dihydroethidium (DHE) staining in vivo and 2’,7''‐dichlorodihydrofluorescein diacetate (DCFH‐DA) staining in vitro.ResultsFirmicutes and Bacteroidetes in the intestine are pivotal in OC differentiation, and the Firmicutes/Bacteroidetes ratio (F/B ratio) is a specific indicator of osteoporosis. Furthermore, we found that Firmicutes and Bacteroidetes affect the de novo synthesis of glutathione (GSH) by regulating its key enzyme glutamate–cysteine ligase catalytic subunit (Gclc) and inhibiting mitochondrial biogenesis and ROS accumulation via the cAMP response element‐binding (CREB) pathway. In addition, supplementing OVX mice with the probiotic Lactobacillus salivarius LI01 from the Firmicutes phylum prevented osteoporosis.ConclusionsOur results reveal that GSH plays a vital role in OVX‐induced bone loss, and probiotics that affect GSH metabolism are potential therapeutic targets for overcoming osteoporosis.  相似文献   

6.
The eastern spruce budworm (Choristoneura fumiferana) is one of the most destructive forest insect pests in Canada. Little is known about its intestinal microbiota, which could play a role in digestion, immune protection, communication and/or development. The present study was designed to provide a first characterization of the effects of rearing conditions on the taxonomic diversity and structure of the C. fumiferana midgut microbiota, using a culture-independent approach. Three diets and insect sources were examined: larvae from a laboratory colony reared on a synthetic diet and field-collected larvae reared on balsam fir or black spruce foliage. Bacterial DNA from the larval midguts was extracted to amplify and sequence the V6-V8 region of the 16S rRNA gene, using the Roche 454 GS-FLX technology. Our results showed a dominance of Proteobacteria, mainly Pseudomonas spp., in the spruce budworm midgut, irrespective of treatment group. Taxonomic diversity of the midgut microbiota was greater for larvae reared on synthetic diet than for those collected and reared on host plants, a difference that is likely accounted for by several factors. A greater proportion of bacteria from the phylum Bacteroidetes in insects fed artificial diet constituted the main difference between this group and those reared on foliage; within the phylum Proteobacteria, the presence of the genus Bradyrhizobium was also unique to insects reared on artificial diet. Strikingly, a Bray-Curtis analysis showed important differences in microbial diversity among the treatment groups, pointing to the importance of diet and environment in defining the spruce budworm midgut microbiota.  相似文献   

7.
Changes in composition of the intestinal microbiota are linked to the development of obesity and can lead to endothelial cell (EC) dysfunction. It is unknown whether EC can directly influence the microbiota. Insulin‐like growth factor‐1 (IGF‐1) and its receptor (IGF‐1R) are critical for coupling nutritional status and cellular growth; IGF‐1R is expressed in multiple cell types including EC. The role of ECIGF‐1R in the response to nutritional obesity is unexplored. To examine this, we use gene‐modified mice with EC‐specific overexpression of human IGF‐1R (hIGFREO) and their wild‐type littermates. After high‐fat feeding, hIGFREO weigh less, have reduced adiposity and have improved glucose tolerance. hIGFREO show an altered gene expression and altered microbial diversity in the gut, including a relative increase in the beneficial genus Akkermansia. The depletion of gut microbiota with broad‐spectrum antibiotics induces a loss of the favourable metabolic differences seen in hIGFREO mice. We show that IGF‐1R facilitates crosstalk between the EC and the gut wall; this crosstalk protects against diet‐induced obesity, as a result of an altered gut microbiota.  相似文献   

8.
Increasingly, land managers have attempted to use extreme prescribed fire as a method to address woody plant encroachment in savanna ecosystems. The effect that these fires have on herbaceous vegetation is poorly understood. We experimentally examined immediate (<24 hr) bud response of two dominant graminoids, a C3 caespitose grass, Nassella leucotricha, and a C4 stoloniferous grass, Hilaria belangeri, following fires of varying energy (J/m2) in a semiarid savanna in the Edwards Plateau ecoregion of Texas. Treatments included high‐ and low‐energy fires determined by contrasting fuel loading and a no burn (control) treatment. Belowground axillary buds were counted and their activities classified to determine immediate effects of fire energy on bud activity, dormancy, and mortality. High‐energy burns resulted in immediate mortality of N. leucotricha and H. belangeri buds (p < .05). Active buds decreased following high‐energy and low‐energy burns for both species (p < .05). In contrast, bud activity, dormancy, and mortality remained constant in the control. In the high‐energy treatment, 100% (n = 24) of N. leucotricha individuals resprouted while only 25% (n = 24) of H. belangeri individuals resprouted (p < .0001) 3 weeks following treatment application. Bud depths differed between species and may account for this divergence, with average bud depths for N. leucotricha 1.3 cm deeper than H. belangeri (p < .0001). Synthesis and applications: Our results suggest that fire energy directly affects bud activity and mortality through soil heating for these two species. It is imperative to understand how fire energy impacts the bud banks of grasses to better predict grass response to increased use of extreme prescribed fire in land management.  相似文献   

9.
采用16S rRNA高通量测序,系统研究了光唇鱼(Acrossocheilus fasciatus)仔鱼、稚鱼和幼鱼肠道菌群组成及与同时期养殖水体细菌群落的相关性。研究结果表明,光唇鱼仔鱼、稚鱼和幼鱼的肠道菌群中Chao1指数和Shannon指数均没有显著变化(P>0.05);而随着光唇鱼幼体的发育,养殖水体中Chao1指数和Shannon指数呈现显著下降趋势(P<0.05)。光唇鱼仔鱼和稚鱼肠道菌群中的优势菌门由变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)和厚壁菌门(Firmicutes)组成,而同时期养殖水体中优势菌门为变形菌门;光唇鱼幼鱼肠道菌群中的优势菌门为梭杆菌门(Fusobacteria)和变形菌门,同时期养殖水体中优势菌门由变形菌门、拟杆菌门和梭杆菌门组成。线性回归分析结果显示,随光唇鱼幼体发育,在光唇鱼肠道菌群中变形菌门、厚壁菌门和梭杆菌门相对丰度的时序变化趋势与其在养殖水体中相同。在属水平上,光唇鱼仔鱼、稚鱼肠道菌群中优势菌属均为醋酸杆菌属(Acetobacter),而幼鱼肠道菌群中优势菌属为鲸杆菌属(Cetobacte...  相似文献   

10.
Host characteristics, such as sex and age, are closely associated with the structure and function of gut microbiota; however, less is known about the effects of age and sex on the gut microbiota of nonhuman primates, and therefore, our knowledge of interindividual variability in host gut microbiota is limited. In this study, 153 fecal samples from rhesus macaques (Macaca mulatta) were analyzed using high‐throughput 16S rRNA sequencing in order to explore associations between age and sex of the host and their gut microbiota. The results indicated that female macaques had higher alpha diversity and a more unique gut microbiota than did males. The proportion of Proteobacteria, Tenericutes, Cyanobacteria, unclassified bacteria, and Verrucomicrobia was higher in females than that in males. We also found that adults of both sexes had a higher alpha diversity, a higher proportion of norank Ruminococcaceae, Oscillospira, norank Lachnospiraceae, norank Clostridiales, and Succinivibrio, and a lower proportion of Enterococcus than immatures. Functional analyses revealed that the richness of metabolic pathways was higher in females than males and in adults compared with immatures. These results could be attributed to differences in the nutritional requirements and hormone levels of macaques of different sex and age classes. We conclude that variation in the gut microbiota of different sex and age classes of rhesus macaques may be linked to age‐ and sex‐specific differences in nutrient requirements and hormone levels. These results highlight the importance of host age and sex on the structure and function of the gut microbiota and the need to consider physiological traits when conducting studies on the gut microbiota.  相似文献   

11.
Coral surface mucus layer (SML) microbiota are critical components of the coral holobiont and play important roles in nutrient cycling and defense against pathogens. We sequenced 16S rRNA amplicons to examine the structure of the SML microbiome within and between colonies of the threatened Caribbean reef-building coral Acropora palmata in the Florida Keys. Samples were taken from three spatially distinct colony regions—uppermost (high irradiance), underside (low irradiance), and the colony base—representing microhabitats that vary in irradiance and water flow. Phylogenetic diversity (PD) values of coral SML bacteria communities were greater than surrounding seawater and lower than adjacent sediment. Bacterial diversity and community composition was consistent among the three microhabitats. Cyanobacteria, Bacteroidetes, Alphaproteobacteria, and Proteobacteria, respectively were the most abundant phyla represented in the samples. This is the first time spatial variability of the surface mucus layer of A. palmata has been studied. Homogeneity in the microbiome of A. palmata contrasts with SML heterogeneity found in other Caribbean corals. These findings suggest that, during non-stressful conditions, host regulation of SML microbiota may override diverse physiochemical influences induced by the topographical complexity of A. palmata. Documenting the spatial distribution of SML microbes is essential to understanding the functional roles these microorganisms play in coral health and adaptability to environmental perturbations.  相似文献   

12.
Extreme weather events are predicted to increase as a result of climate change, yet amphibian responses to extreme disturbance events remain understudied, especially in the Neotropics. Recently, an unprecedented windstorm within a protected Costa Rican rainforest opened large light gaps in sites where we have studied behavioral responses of diurnal strawberry poison frogs (Oophaga pumilio) to ultraviolet radiation for nearly two decades. Previous studies demonstrate that O. pumilio selects and defends perches where ultraviolet radiation (UV‐B) is relatively low, likely because of the lethal and sublethal effects of UV‐B. In this natural experiment, we quantified disturbance to O. pumilio habitat, surveyed for the presence of O. pumilio in both high‐disturbance and low‐disturbance areas of the forest, and assessed UV‐B levels and perch selection behavior in both disturbance levels. Fewer frogs were detected in high‐disturbance habitat than in low‐disturbance habitat. In general, frogs were found vocalizing at perches in both disturbance levels, and in both cases, in significantly lower UV‐B levels relative to ambient adjacent surroundings. However, frogs at perches in high‐disturbance areas were exposed to UV‐B levels nearly 10 times greater than males at perches in low‐disturbance areas. Thus, behavioral avoidance of UV‐B may not reduce the risks associated with elevated exposure under these novel conditions, and similarly, if future climate and human‐driven land‐use change lead to sustained analogous environments.  相似文献   

13.
The underlying causes of aging remain elusive, but may include decreased intestinal homeostasis followed by disruption of the intestinal barrier, which can be mimicked by nutrient‐rich diets. S3QELs are small‐molecule suppressors of site IIIQo electron leak; they suppress superoxide generation at complex III of the mitochondrial electron transport chain without inhibiting oxidative phosphorylation. Here we show that feeding different S3QELs to Drosophila on a high‐nutrient diet protects against greater intestinal permeability, greater enterocyte apoptotic cell number, and shorter median lifespan. Hif‐1α knockdown in enterocytes also protects, and blunts any further protection by S3QELs. Feeding S3QELs to mice on a high‐fat diet also protects against the diet‐induced increase in intestinal permeability. Our results demonstrate by inference of S3QEL use that superoxide produced by complex III in enterocytes contributes to diet‐induced intestinal barrier disruption in both flies and mice.  相似文献   

14.
Recent studies have provided an unprecedented view of the microbial communities colonizing captive mice; yet the host and environmental factors that shape the rodent gut microbiota in their natural habitat remain largely unexplored. Here, we present results from a 2-year 16 S ribosomal RNA gene sequencing-based survey of wild wood mice (Apodemus sylvaticus) in two nearby woodlands. Similar to other mammals, wild mice were colonized by 10 bacterial phyla and dominated by the Firmicutes, Bacteroidetes and Proteobacteria. Within the Firmicutes, the Lactobacillus genus was most abundant. Putative bacterial pathogens were widespread and often abundant members of the wild mouse gut microbiota. Among a suite of extrinsic (environmental) and intrinsic (host-related) factors examined, seasonal changes dominated in driving qualitative and quantitative differences in the gut microbiota. In both years examined, we observed a strong seasonal shift in gut microbial community structure, potentially due to the transition from an insect- to a seed-based diet. This involved decreased levels of Lactobacillus, and increased levels of Alistipes (Bacteroidetes phylum) and Helicobacter. We also detected more subtle but statistically significant associations between the gut microbiota and biogeography, sex, reproductive status and co-colonization with enteric nematodes. These results suggest that environmental factors have a major role in shaping temporal variations in microbial community structure within natural populations.  相似文献   

15.
One of the fascinating functions of mammalian intestinal microbiota is fermentation of plant cell wall components. Eight-week continuous culture enrichments of pig feces with cellulose and xylan/pectin were used to isolate bacteria from this community. A total of 575 bacterial isolates were classified phylogenetically using 16S rRNA gene sequencing. Six phyla were represented in the bacterial isolates: Firmicutes (242), Bacteroidetes (185), Proteobacteria (65), Fusobacteria (55), Actinobacteria (23), and Synergistetes (5). The majority of the bacterial isolates had ≥97 % similarity to cultured bacteria with sequences in the RDP, but 179 isolates represent new species and/or genera. Within the Firmicutes isolates, most were classified in the families of Lachnospiraceae, Enterococcaceae, Staphylococcaceae, and Clostridiaceae I. The majority of the Bacteroidetes were most closely related to Bacteroides thetaiotaomicron, Bacteroides ovatus, and B. xylanisolvens. Many of the Firmicutes and Bacteroidetes isolates were identified as species that possess enzymes that ferment plant cell wall components, and the rest likely support these bacteria. The microbial communities that arose in these enrichment cultures had broad bacterial diversity. With over 30 % of the isolates not represented in culture, there are new opportunities to study genomic and metabolic capacities of these members of the complex intestinal microbiota.  相似文献   

16.
Fungus-growing termites, their symbiotic fungi, and microbiota inhibiting their intestinal tract comprise a highly efficient cellulose-hydrolyzing system; however, little is known about the role of gut microbiota in this system. Twelve fosmid clones with β-glucosidase activity were previously obtained by functionally screening a metagenomic library of a fungus-growing termite, Macrotermes annandalei. Ten contigs containing putative β-glucosidase genes (bgl110) were assembled by sequencing data of these fosmid clones. All these contigs were binned to Bacteroidetes, and all these β-glucosidase genes were phylogenetically closed to those from Bacteroides or Dysgonomonas. Six out of 10 β-glucosidase genes had predicted signal peptides, indicating a transmembrane capability of these enzymes to mediate cellulose hydrolysis within the gut of the termites. To confirm the activities of these β-glucosidase genes, three genes (bgl5, bgl7, and bgl9) were successfully expressed and purified. The optimal temperature and pH of these enzymes largely resembled the environment of the host’s gut. The gut microbiota composition of the fungus-growing termite was also determined by 454 pyrosequencing, showing that Bacteroidetes was the most dominant phylum. The diversity and the enzyme properties of β-glucosidases revealed in this study suggested that Bacteroidetes as the major member in fungus-growing termites contributed to cello-oligomer degradation in cellulose-hydrolyzing process and represented a rich source for β-glucosidase genes.  相似文献   

17.
18.
High altitude is an important driving force in animal evolution. However, the effect of altitude on gut microbial communities in reptiles has not been examined in detail. Here, we investigated the intestinal microbiota of three populations of the lizard Phrynocephalus vlangalii living at different altitudes using 16S rRNA gene sequencing. Bacteroidetes, Firmicutes, and Proteobacteria were the most abundant phyla. Bacteroides, Odoribacter, and Parabacteroides were the most abundant genera. Significant differences in the intestinal microbiota composition were found among the three populations from different altitudes. The proportions of Verrucomicrobia and Akkermansia decreased, whereas Bacteroides increased significantly with altitude. Greater abundance of Bacteroides at higher altitude led to the fractional increase in the phylum Bacteroides relative to other phyla. Hypoxia may be the main factor that caused intestinal microbiota variation in P. vlangalii along the altitude gradient. Overall, our study suggested that the community composition and structure of intestinal microbiota of the lizard P. vlangalii varied along altitudes, and such differences likely play a certain role in highland adaptation. Our findings warrant a further study that would determine whether ambient and body temperatures play a key role in the modulation of intestinal microbiota in reptiles.  相似文献   

19.
High‐elevation organisms are expected to evolve physiological adaptations to cope with harsh environmental conditions. Yet, evidence for such adaptive differences, especially compared to closely related lowland taxa occurring along the same elevational gradient, is rare. Revisiting an anecdotal natural history observation by O. Bangs from 1899 and based on new measurements of museum specimens, we confirmed that the high‐elevation hermit wood wren (Henicorhina anachoreta) from the Sierra Nevada de Santa Marta, Colombia, has longer, more insulative feathers on the chest and back, than its lower‐elevation counterpart the grey‐breasted wood wren (H. leucophrys). However, we did not find evidence for the same specializations in subspecies of H. leucophrys that live at high elevations on other elevational gradients in the Colombian Andes, although similar adaptive solutions have arisen in separate mountain systems like the Himalayas. Adaptations in plumage may be associated with the recurrence of elevational species replacements throughout the tropics.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号