首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The idea of pollination syndromes has been largely discussed but no formal quantitative evaluation has yet been conducted across angiosperms. We present the first systematic review of pollination syndromes that quantitatively tests whether the most effective pollinators for a species can be inferred from suites of floral traits for 417 plant species. Our results support the syndrome concept, indicating that convergent floral evolution is driven by adaptation to the most effective pollinator group. The predictability of pollination syndromes is greater in pollinator‐dependent species and in plants from tropical regions. Many plant species also have secondary pollinators that generally correspond to the ancestral pollinators documented in evolutionary studies. We discuss the utility and limitations of pollination syndromes and the role of secondary pollinators to understand floral ecology and evolution.  相似文献   

2.
This paper addresses some of the conceptual issues involved in the analysis of the age and origin of mediterranean‐climate plant taxa, paying particular attention to three topics: (1) the importance of an explicit time frame in the definition of biogeographical origins, (2) the distinction between the age of traits and the age of taxa, and (3) the idea of mediterranean‐type ecosystems as environmental islands. (1) In California, recent analyses demonstrate that the diversity of species derived from different biogeographical origins is significantly correlated with temperature and precipitation gradients. These patterns support the hypothesis that niche conservatism is an important factor structuring modern diversity gradients. However, depending on how far back in time one looks, a species may be assigned to different origins; future discussions of biogeographical origins need to address the appropriate time frame for analysis. (2) Past research has demonstrated distinctive trait syndromes among woody plants of the Mediterranean, Chile, California and Mexico, and proposed that the syndromes are associated with lineages of different age in these floras. Reanalysis of individual traits demonstrates greater variability among regions than previously reported. The classification of plants into ‘old’ and ‘new’ genera is re‐evaluated, and it is suggested that greater attention be paid to the age of traits, rather than to the age of taxa, especially at an arbitrary rank such as genus. (3) The idea of mediterranean‐climate regions as ‘climatic islands’ is examined. Space–time diagrams of climate enable one to view the emergence of distinctive climatic regions in a continental context. The terms ‘synclimatic’ and ‘anticlimatic’ are proposed, referring to migration routes that parallel climate contours in space and time versus those that cross contours (including the case of geographic stasis in the face of climate change), respectively. Mediterranean‐climate regions have served as important case studies in plant ecology and evolution, and merit continued close examination in the light of continued advances in phylogenetics and palaeoecology.  相似文献   

3.
Consistent individual variation in animal behaviour is nearly ubiquitous and has important ecological and evolutionary implications. Additionally, suites of behavioural traits are often correlated, forming behavioural syndromes in both humans and other species. Such syndromes are often described by testing for variation in traits across commonly described dimensions (e.g. aggression and neophobia), independent of whether this variation is ecologically relevant to the focal species. Here, we use a variety of ecologically relevant behavioural traits to test for a colony-level behavioural syndrome in rock ants (Temnothorax rugatulus). Specifically, we combine field and laboratory assays to measure foraging effort, how colonies respond to different types of resources, activity level, response to threat and aggression level. We find evidence for a colony level syndrome that suggests colonies consistently differ in coping style—some are more risk-prone, whereas others are more risk-averse. Additionally, by collecting data across the North American range of this species, we show that environmental variation may affect how different populations maintain consistent variation in colony behaviour.  相似文献   

4.
In seasonally dry tropical forests, tree species can be deciduous, remaining without leaves throughout the dry season, or evergreen, retaining their leaves throughout the dry season. Deciduous and evergreen trees specialize in habitats that differ in water availability (hillside and riparian forest, respectively) and in their exposure to herbivore attack (seasonal and continuous, respectively). We asked whether syndromes of leaf traits in deciduous and evergreen trees were consistent with hypothesized abiotic and biotic selective pressures in their respective habitat. We measured seven leaf traits in 19 deciduous and 11 evergreen tree species in a dry tropical forest in Western Mexico, and measured rates of herbivory on 23 of these species. We investigated the covariance of leaf traits in syndromes related to phenology and associated physiology, and to anti‐herbivory defense. We found evidence for syndromes that separated phenological strategies among four traits: toughness, water content, specific leaf area, and carbon:nitrogen (C:N) ratios. We found a trade‐off between two other traits: trichomes and latex. Overall, evergreen species exhibited lower rates of herbivory than deciduous species. Lower rates of herbivory were explained by a syndrome of higher toughness, lower water content, and higher C:N ratios, which are traits representative of evergreen trees. Phenology and trait syndromes did not exhibit significant phylogenetic signal, consistent with the hypothesis of evolutionary convergence among phenologies and associated leaf‐trait syndromes. Our results suggest that deciduous and evergreen trees could respond to differential water availability and herbivory in their respective habitats by converging on distinct leaf‐trait syndromes. Abstract in Spanish is available at http://www.blackwell‐synergy.com/loi/btp .  相似文献   

5.
Goldstein RA 《Proteins》2011,79(5):1396-1407
When we seek to explain the characteristics of living systems in their evolutionary context, we are often interested in understanding how and why certain properties arose through evolution, and how these properties then affected the continuing evolutionary process. This endeavor has been assisted by the use of simple computational models that have properties characteristic of natural living systems but allow simulations over evolutionary timescales with full transparency. We examine a model of the evolution of a gene under selective pressure to code for a protein that exists in a prespecified folded state at a given growth temperature. We observe the emergence of proteins with modest stabilities far below those possible with the model, with a denaturation temperature tracking the simulation temperature, despite the absence of selective pressure for such marginal stability. This demonstrates that neither observations of marginally stable proteins, nor even instances where increased stability interferes with function, provide evidence that marginal stability is an adaptation. Instead the marginal stability is the result of a balance between predominantly destabilizing mutations and selection that shifts depending on effective population size. Even if marginal stability is not an adaptation, the natural tendency of proteins toward marginal stability, and the range of stabilities that occur during evolution, may have significant effect on the evolutionary process.  相似文献   

6.
The prevalence of sexual conflict in nature, along with the potentially stochastic nature of the resulting coevolutionary trajectories, makes it an important driver of phenotypic divergence and speciation that can operate even in the absence of environmental differences. The majority of empirical work investigating sexual conflict's role in population divergence/speciation has therefore been done in uniform environments and any role of ecology has largely been ignored. However, theory suggests that natural selection can constrain phenotypes influenced by sexual conflict. We use replicate populations of Drosophila melanogaster adapted to alternative environments to test how ecology influences the evolution of male effects on female longevity. The extent to which males reduce female longevity, as well as female resistance to such harm, both evolved in association with adaptation to the different environments. Our results demonstrate that ecology plays a central role in shaping patterns of population divergence in traits under sexual conflict.  相似文献   

7.
Although much progress has been achieved in understanding the genetic basis of adaptation, the drivers of genome evolution remain obscure. For instance, extensive variation among reptilian genomes continues largely unexplained, yet reptiles hold critical clues about vertebrate evolution. Turtles posses diverse chromosome numbers (2N = 28-66) derived from extensive genomic rearrangements, plus varied sex-determining mechanisms (genotypic and temperature-dependent). Here, we show that rates of evolution in turtle chromosome number are ~20-fold higher along phylogenetic branches where transitions between sex-determining mechanisms also occur, revealing a strong coevolution of these traits and making drift a less likely driver. Directional tests indicate that both traits evolved effectively in synchrony. These events occurred near global extremes in temperature shifts over the last 200 million years, although the role of climate change remains unknown at this point. Two alternative testable explanations for these patterns are proposed. First, selection for sex determination turnover may co-opt mechanisms (e.g., chromatin remodeling) favoring genomic rearrangements. Alternatively, chromosomal rearrangements underlying diploid number evolution may alter gene regulation enabling transitions in sex-determining mechanisms. Our data indicate that the evolution of sex determination is intimately linked to profound genomic changes underlying diploid number evolution, the ecological context of which remains intriguing.  相似文献   

8.
Darwin recognized the flower's importance for the study of adaptation and emphasized that the flower's functionality reflects the coordinated action of multiple traits. Here we use a multitrait manipulative approach to quantify the potential role of selection acting on floral trait combinations underlying the divergence and maintenance of three related North American species of Silene (Caryophyllaceae). We artificially generated 48 plant phenotypes corresponding to all combinations of key attractive traits differing among the three Silene species (color, height, inflorescence architecture, flower orientation, and corolla‐tube width). We quantified main and interaction effects of trait manipulation on hummingbird visitation preference using experimental arrays. The main effects of floral display height and floral orientation strongly influenced hummingbird visitation, with hummingbirds preferring flowers held high above the ground and vertically to the sky. Hummingbirds also prefer traits in a nonadditive manner as multiple two‐way and higher order interaction effects were important predictors of hummingbird visitation. Contemporary trait combinations found in hummingbird pollinated S. virginica are mostly preferred. Our study demonstrates the likelihood of pollination syndromes evolving due to selection on trait combinations and highlights the importance of trait interactions in understanding the evolution of complex adaptations.  相似文献   

9.
Variation in climate has been demonstrated to be a powerful driver of selection and local adaptation among plant populations. Variation in functional traits among populations can also be indicative of the drivers of local adaptation. However, it is not clear to what extent species exhibit consistent patterns of local adaptation as revealed by common, heritable trait–environment relationships among populations. To address this, we conducted a meta-analysis of common garden studies of grass populations to quantify the degree of heritability of several commonly measured functional traits, and whether demonstrated heritability was driven by climate. We found that leaf size, specific leaf area (SLA) and total biomass all displayed strong broad-sense of heritability. Both leaf area and SLA decreased significantly with increasing temperature seasonality among populations within species, while total biomass increased with increasing annual and dry season precipitation, and decreased with increasing precipitation seasonality. These results indicate similar, consistent drivers of local adaptation among species of grasses. Further information on trait–environment relationships within species could greatly improve our ability to predict broad scale patterns in functional diversity across multiple levels of ecological organization. Expanding the range of traits and regions incorporated in common garden research, in the present case by incorporating root traits and Southern Hemisphere taxa, will provide even greater benefits to the fields of restoration, conservation, and global change ecology.  相似文献   

10.
青藏高原及周边高山地区孕育了极为丰富的植物多样性资源, 研究该地区植物如何顺利完成繁殖过程有助于我们理解植物对典型高山环境的进化和适应机制。该文综述了青藏高原地区高山植物在资源分配、繁殖方式、花部特征演化等方面的研究进展, 包括全球气候变化对植物繁殖特征的影响, 以及一些新技术和新方法在本研究领域的应用。在高山地区限制性环境中, 随海拔升高, 繁殖分配通常表现出增大的趋势, 其中投入到雄性资源的比例上升, 但具体的资源分配模式还要取决于植株的交配系统、个体大小、生活史特征、遗传特性以及环境中的资源有效性等。面对资源和传粉的双重限制, 植物在不同繁殖方式之间存在权衡, 当传粉者稀少时, 克隆繁殖和自交有利于繁殖保障; 而有性繁殖和异交能够提高种子的质量和后代的遗传多样性, 从而在复杂多变的气候条件下有利于种群的维持。因此, 不同繁殖方式的结合以及泛化的传粉互作网络可能是应对高山限制性环境的最优选择。花部特征的演化主要受到当地传粉者的选择压力, 但是外来传粉者、植食者、盗蜜者以及非生物环境(如温度、雨水和紫外辐射等)对花部性状的影响越来越受到重视。近年来, 青藏高原因其脆弱性和对气候变化的高度敏感性而在全球气候变化研究中备受关注, 以全球变暖和氮沉降增加为显著特征的全球气候变化正在直接或间接地影响着该地区高山植物的繁殖特征。气候变化影响植物和传粉者的物候并引起物种的迁移, 最终将导致植物与传粉者的时空不匹配。植物通过改变花部特征(花展示、花冠结构、花报酬的数量和质量)来响应气候变化, 这可能会改变其传粉者的类型、数量和访花行为, 从而最终影响植物的繁殖成功。3D打印和高通量测序等新技术和新方法的应用有助于促进植物繁殖生态学研究的进一步发展。3D打印的花能够精确控制其形态构造, 可以用于研究精细的花部特征变化对于传粉者行为的影响, 在此基础上与人工饲养的传粉者结合使用, 有助于进一步研究传粉者介导的花部特征演化。随着高通量测序技术的发展, 植物繁殖生态学领域, 尤其是花部特征演化的许多重要问题的潜在机制得以深入研究。该文最后提出了目前研究中需要注意的问题以及值得深入研究的发展方向。  相似文献   

11.
Island biogeography is the study of the spatio-temporal distribution of species, communities, assemblages or ecosystems on islands and other isolated habitats. Island diversity is structured by five classes of process: dispersal, establishment, biotic interactions, extinction and evolution. Classical approaches in island biogeography focused on species richness as the deterministic outcome of these processes. This has proved fruitful, but species traits can potentially offer new biological insights into the processes by which island life assembles and why some species perform better at colonising and persisting on islands. Functional traits refer to morphological and phenological characteristics of an organism or species that can be linked to its ecological strategy and that scale up from individual plants to properties of communities and ecosystems. A baseline hypothesis is for traits and ecological strategies of island species to show similar patterns as a matched mainland environment. However, strong dispersal, environmental and biotic-interaction filters as well as stochasticity associated with insularity modify this baseline. Clades that do colonise often embark on distinct ecological and evolutionary pathways, some because of distinctive evolutionary forces on islands, and some because of the opportunities offered by freedom from competitors or herbivores or the absence of mutualists. Functional traits are expected to be shaped by these processes. Here, we review and discuss the potential for integrating functional traits into island biogeography. While we focus on plants, the general considerations and concepts may be extended to other groups of organisms. We evaluate how functional traits on islands relate to core principles of species dispersal, establishment, extinction, reproduction, biotic interactions, evolution and conservation. We formulate existing knowledge as 33 working hypotheses. Some of these are grounded on firm empirical evidence, others provide opportunities for future research. We organise our hypotheses under five overarching sections. Section A focuses on plant functional traits enabling species dispersal to islands. Section B discusses how traits help to predict species establishment, successional trajectories and natural extinctions on islands. Section C reviews how traits indicate species biotic interactions and reproduction strategies and which traits promote intra-island dispersal. Section D discusses how evolution on islands leads to predictable changes in trait values and which traits are most susceptible to change. Section E debates how functional ecology can be used to study multiple drivers of global change on islands and to formulate effective conservation measures. Islands have a justified reputation as research models. They illuminate the forces operating within mainland communities by showing what happens when those forces are released or changed. We believe that the lens of functional ecology can shed more light on these forces than research approaches that do not consider functional differences among species.  相似文献   

12.
There is considerable evidence for an adaptive role of inversions, but how their genetic content evolves and affects the subsequent evolution of chromosomal polymorphism remains controversial. Here, we track how life‐history traits, chromosomal arrangements and 22 microsatellites, within and outside inversions, change in three replicated populations of Drosophila subobscura for 30 generations of laboratory evolution since founding from the wild. The dynamics of fitness‐related traits indicated adaptation to the new environment concomitant with directional evolution of chromosomal polymorphism. Evidence of selective changes in frequency of inversions was obtained for seven of 23 chromosomal arrangements, corroborating a role for inversions in adaptation. The evolution of linkage disequilibrium between some microsatellites and chromosomes suggested that adaptive changes in arrangements involved changes in their genetic content. Several microsatellite alleles increased in frequency more than expected by drift in targeted inversions in all replicate populations. In particular, there were signs of selection in the O3+4 arrangement favouring a combination of alleles in two loci linked to the inversion and changing along with it, although the lack of linkage disequilibrium between these loci precludes epistatic selection. Seven other alleles increased in frequency within inversions more than expected by drift, but were not in linkage disequilibrium with them. Possibly these alleles were hitchhiking along with alleles under selection that were not specific to those inversions. Overall, the selection detected on the genetic content of inversions, despite limited coverage of the genome, suggests that genetic changes within inversions play an important role in adaptation.  相似文献   

13.
Microbes are abundant in nature and often highly adapted to local conditions. While great progress has been made in understanding the ecological factors driving their distribution in complex environments, the underpinning molecular‐evolutionary mechanisms are rarely dissected. Therefore, we scrutinized the coupling of environmental and molecular adaptation in Thaumarchaeota, an abundant archaeal phylum with a key role in ammonia oxidation. These microbes are adapted to a diverse spectrum of environmental conditions, with pH being a key factor shaping their contemporary distribution and evolutionary diversification. We integrated high‐throughput sequencing data spanning a broad representation of ammonia‐oxidizing terrestrial lineages with codon modelling analyses, testing the hypothesis that ammonia monooxygenase subunit A (AmoA) – a highly conserved membrane protein crucial for ammonia oxidation and classical marker in microbial ecology – underwent adaptation during specialization to extreme pH environments. While purifying selection has been an important factor limiting AmoA evolution, we identified episodic shifts in selective pressure at the base of two phylogenetically distant lineages that independently adapted to acidic conditions and subsequently gained lasting ecological success. This involved nonconvergent selective mechanisms (positive selection vs. selection acting on variants fixed during an episode of relaxed selection) leading to unique sets of amino acid substitutions that remained fixed across the radiation of both acidophilic lineages, highlighting persistent adaptive value in acidic environments. Our data demonstrates distinct trajectories of AmoA evolution despite convergent phenotypic adaptation, suggesting that microbial environmental specialization can be associated with diverse signals of molecular adaptation, even for marker genes employed routinely by microbial ecologists.  相似文献   

14.
The roles of adaptation, chance, and history on evolution of the toxic dinoflagellate Alexandrium minutum Halim, under selective conditions simulating global change, have been addressed. Two toxic strains (AL1V and AL2V), previously acclimated for two years at pH 8.0 and 20°C, were transferred to selective conditions: pH 7.5 to simulate acidification and 25°C. Cultures under selective conditions were propagated until growth rate and toxin cell quota achieved an invariant mean value at 720 days (ca. 250 and ca. 180 generations for strains AL1V and AL2V, respectively). Historical contingencies strongly constrained the evolution of growth rate and toxin cell quota, but the forces involved in the evolution were not the same for both traits. Growth rate was 1.5-1.6 times higher than the one measured in ancestral conditions. Genetic adaptation explained two-thirds of total adaptation while one-third was a consequence of physiological adaptation. On the other hand, the evolution of toxin cell quota showed a pattern attributable to neutral mutations because the final variances were significantly higher than those measured at the start of the experiment. It has been hypothesized that harmful algal blooms will increase under the future scenario of global change. Although this study might be considered an oversimplification of the reality, it can be hypothesized that toxic blooms will increase but no predictions can be advanced about toxicity.  相似文献   

15.
Although specialized interactions, including those involving plants and their pollinators, are often invoked to explain high species diversity, they are rarely explored at macroevolutionary scales. We investigate the dynamic evolution of hummingbird and bat pollination syndromes in the centropogonid clade (Lobelioideae: Campanulaceae), an Andean‐centered group of ∼550 angiosperm species. We demonstrate that flowers hypothesized to be adapted to different pollinators based on flower color fall into distinct regions of morphospace, and this is validated by morphology of species with known pollinators. This supports the existence of pollination syndromes in the centropogonids, an idea corroborated by ecological studies. We further demonstrate that hummingbird pollination is ancestral, and that bat pollination has evolved 13 times independently, with ∼11 reversals. This convergence is associated with correlated evolution of floral traits within selective regimes corresponding to pollination syndrome. Collectively, our results suggest that floral morphological diversity is extremely labile, likely resulting from selection imposed by pollinators. Finally, even though this clade's rapid diversification is partially attributed to their association with vertebrate pollinators, we detect no difference in diversification rates between hummingbird‐ and bat‐pollinated lineages. Our study demonstrates the utility of pollination syndromes as a proxy for ecological relationships in macroevolutionary studies of certain species‐rich clades.  相似文献   

16.
Convergent evolution is the independent evolution of similar traits in different species or lineages of the same species; this often is a result of adaptation to similar environments, a process referred to as convergent adaptation. We investigate here the molecular basis of convergent adaptation in maize to highland climates in Mesoamerica and South America, using genome-wide SNP data. Taking advantage of archaeological data on the arrival of maize to the highlands, we infer demographic models for both populations, identifying evidence of a strong bottleneck and rapid expansion in South America. We use these models to then identify loci showing an excess of differentiation as a means of identifying putative targets of natural selection and compare our results to expectations from recently developed theory on convergent adaptation. Consistent with predictions across a wide parameter space, we see limited evidence for convergent evolution at the nucleotide level in spite of strong similarities in overall phenotypes. Instead, we show that selection appears to have predominantly acted on standing genetic variation and that introgression from wild teosinte populations appears to have played a role in highland adaptation in Mexican maize.  相似文献   

17.
Socio-sexual selection is predicted to be an important driver of evolution, influencing speciation, extinction and adaptation. The fossil record provides a means of testing these predictions, but detecting its signature from morphological data alone is difficult. There are, nonetheless, some specific patterns of growth and variation which are expected of traits under socio-sexual selection. The distinctive parietal-squamosal frill of ceratopsian dinosaurs has previously been suggested as a socio-sexual display trait, but evidence for this has been limited. Here, we perform a whole-skull shape analysis of an unprecedentedly large sample of specimens of Protoceratops andrewsi using a high-density landmark-based geometric morphometric approach to test four predictions regarding a potential socio-sexual signalling role for the frill. Three predictions—low integration with the rest of the skull, significantly higher rate of change in size and shape during ontogeny, and higher morphological variance than other skull regions—are supported. One prediction, sexual dimorphism in shape, is not supported, suggesting that sexual differences in P. andrewsi are likely to be small. Together, these findings are consistent with mutual mate choice or selection for signalling quality in more general social interactions, and support the hypothesis that the frill functioned as a socio-sexual signal in ceratopsian dinosaurs.  相似文献   

18.
The effect of divergent natural selection on the evolution of behavioral traits has long been a focus of behavioral ecologists. Predation, due to its ubiquity in nature and strength as a selective agent, has been considered an important environmental driver of behavior. Predation is often confounded with other environmental factors that could also play a role in behavioral evolution. For example, environments that contain predators are often more ecologically complex and “risky” (i.e., exposed and dangerous). Previous work shows that individuals from risky environments are often more bold, active, and explorative than those from low‐risk environments. To date, most comparative studies of environmentally driven behavioral divergence are limited to comparisons among populations within species that occur in divergent selective environments but neglect comparisons between species following speciation. This limits our understanding of how behavior evolves post‐speciation. The Central American live‐bearing fish genus Brachyrhaphis provides an ideal system for examining the relationship between selective environments and behavior, within and between species. Here, we test for differences in boldness between sister species B. roseni and B. terrabensis that occur in streams with and without piscivorous predators, respectively. We found that species do differ in boldness, with species that occur with predators being bolder than those that do not. Within each species, we found that sexes differed in boldness, with males being bolder than females. We also tested for a relationship between size (a surrogate for metabolic rate) and boldness, but found no size effects. Therefore, sex, not size, affects boldness. These results are consistent with the hypothesis that complex and risky environments favor individuals with more bold behavioral traits, but they are not consistent with the hypothesis that size (and therefore metabolic rate) drives divergence in boldness. Finally, our results provide evidence that behavioral trait divergence continues even after speciation is complete.  相似文献   

19.
Rapid evolution in response to strong selection, much of which is human-induced, has been indisputably documented. In this perspective, we suggest that adaptation may influence the effect size of treatments in ecological field experiments and alter our predictions of future dynamics in ecological systems. Field experiments often impose very strong and consistent selection over multiple generations. Focal populations may adapt to these treatments and, in the process, increase or decrease the magnitude of the treatment effect through time. We argue that how effect size changes through time will depend on the evolutionary history of the experimental population, the type of experimental manipulation, and the traits involved in adaptive responses. While no field study has conclusively demonstrated evolution in response to treatments with concomitant changes in ecological effect size, we present several examples that provide strong circumstantial evidence that such effects occur. We conclude with a consideration of the differences between plastic and genetic responses to treatments and discuss future research directions linking adaptation to ecological effect size.  相似文献   

20.
Divergence in acoustic signals may have a crucial role in the speciation process of animals that rely on sound for intra-specific recognition and mate attraction. The acoustic adaptation hypothesis (AAH) postulates that signals should diverge according to the physical properties of the signalling environment. To be efficient, signals should maximize transmission and decrease degradation. To test which drivers of divergence exert the most influence in a speciose group of insects, we used a phylogenetic approach to the evolution of acoustic signals in the cicada genus Tettigettalna, investigating the relationship between acoustic traits (and their mode of evolution) and body size, climate and micro-/macro-habitat usage. Different traits showed different evolutionary paths. While acoustic divergence was generally independent of phylogenetic history, some temporal variables’ divergence was associated with genetic drift. We found support for ecological adaptation at the temporal but not the spectral level. Temporal patterns are correlated with micro- and macro-habitat usage and temperature stochasticity in ways that run against the AAH predictions, degrading signals more easily. These traits are likely to have evolved as an anti-predator strategy in conspicuous environments and low-density populations. Our results support a role of ecological selection, not excluding a likely role of sexual selection in the evolution of Tettigettalna calling songs, which should be further investigated in an integrative approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号