首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
SPARC (secreted protein, acidic and rich in cysteine), also called osteonectin or BM-40, is a collagen-binding glycoprotein secreted by a variety of cells and is associated with functional responses involving tissue remodeling, cell movement and proliferation. Because SPARC and monocytes/macrophages are prevalent at sites of inflammation and remodeling in which there is connective tissue turnover, we examined the effect of SPARC on monocyte matrix metalloproteinase (MMP) production. Treatment of human peripheral blood monocytes with SPARC stimulated the production of gelatinase B (MMP-9) and interstitial collagenase (MMP-1). Experiments with synthetic peptides indicated that peptide 3.2, belonging to the alpha helical domain III of SPARC, is the major peptide mediating the MMP production by monocytes. SPARC and peptide 3.2 were also shown to induce prostaglandin synthase (PGHS)-2 as determined by Western and Northern blot analyses. The increase in PGHS-2 stimulated by SPARC or peptide 3.2 correlated with substantially elevated levels of prostaglandin E2 (PGE2) and other arachidonic acid metabolites as measured by radioimmunoassay and high performance liquid chromatography (HPLC), respectively. Moreover, the synthesis of MMP was dependent on the generation of PGE2 by PGHS-2, since indomethacin inhibited the production of these enzymes and their synthesis was restored by addition of exogenous PGE2 or dibutyryl cAMP (Bt2cAMP). These results demonstrate that SPARC might play a significant role in the modulation of connective tissue turnover due to its stimulation of PGHS-2 and the subsequent release of PGE2, a pathway that leads to the production of MMP by monocytes. J. Cell. Physiol. 173:327–334, 1997. Published 1997 Wiley-Liss, Inc.
  • 1 This article was prepared by a group of United States government employees and non-United States government employees, and as such is subject to 17 U.S.C. Sec. 105.
  •   相似文献   

    2.
    The degradative effects of interleukin-1 (IL-1) on the extracellular matrix of connective tissue are mediated primarily by metalloproteinases and prostaglandins. Clinical observations suggest that these effects can be prevented, to some extent, by the use of non-steroidal anti-inflammatory drugs. We have examined the role of prostaglandin E2 (PGE2) in IL-1-induced gene expression by human skin fibroblasts in culture. Incubation of confluent fibroblast cultures with varying concentrations (0.01–1.0 μg/ml) of PGE2 led to a dose-dependent elevation of collagenase mRNA steady-state levels, the promoter activity, and the secretion of the protein, whereas relatively little effect was observed on stromelysin and TIMP gene expression. Exogenous PGE2 had no additive or synergistic effect with IL-1 on collagenase gene expression. Furthermore, commonly used non-steroidal anti-inflammatory drugs (indomethacin, acetyl salicylic acid and ibuprofen), at doses which block prostaglandin synthesis in cultured fibroblasts, failed to counteract IL-1-induced collagenase and stromelysin gene expression, nor did they affect TIMP expression. Although the effects of PGE2 did not potentiate those of IL-1 on collagenase gene expression in vitro, one could speculate that massive production of PGE2 by connective tissue cells in vivo in response to inflammatory mediators such as IL-1 or tumor necrosis factor-α, could lead to sustained expression of collagenase in connective tissue cells after clearance of the growth factors.  相似文献   

    3.
    Activation of human monocytes results in the production of interstitial collagenase through a prostaglandin E2 (PGE2)-cAMP-dependent pathway. Inasmuch as interleukin 4 (IL-4) has been shown to inhibit PGE2 synthesis by monocytes, we examined the effect of IL-4 on the production of human monocyte interstitial collagenase. Additionally, we also assessed the effect of IL-4 on the production of 92-kDa type IV collagenase/gelatinase and tissue inhibitor of metalloproteinase-1 (TIMP-1) by monocytes. The inhibition of PGE2 synthesis by IL-4 resulted in decreased interstitial collagenase protein and activity that could be restored by exogenous PGE2 or dibutyryl cyclic AMP (Bt2cAMP). IL-4 also suppressed ConA-stimulated 92-kDa type IV collagenase/gelatinase protein and zymogram enzyme activity that could be reversed by exogenous PGE2 or Bt2cAMP. Moreover, indomethacin suppressed the ConA-induced production of 92-kDa type IV collagenase/gelatinase. These data demonstrate that, like monocyte interstitial collagenase, the conA-inducible monocyte 92-kDa type IV collagenase/gelatinase is regulated through a PGE2-mediated cAMP-dependent pathway. In contrast to ConA stimulation, unstimulated monocytes released low levels of 92-kDa type IV collagenase/gelatinase that were not affected by IL-4, PGE2, or Bt2cAMP, indicating that basal production of this enzyme is PGE2-cAMP independent. IL-4 inhibition of both collagenases was not a result of increased TIMP expression since Western analysis of 28.5-kDa TIMP-1 revealed that IL-4 did not alter the increased TIMP-1 protein in response to ConA. These data indicate that IL-4 may function in natural host regulation of connective tissue damage by monocytes.  相似文献   

    4.
    《ImmunoMethods》1993,2(3):203-210
    The regulation of receptors for prostaglandin E2 (PGE2) in monocyte/macrophage-like cells, P388D1, by interleukin-1α (IL-1α) and insulin has been investigated. Many of the effects of IL-1, such as fever and other inflammatory activities, are linked to the stimulation of PGE2 synthesis. On the other hand, PGE2 exhibits suppressive effects on many steps in the immune response, including IL-1 production. The binding of PGE2 to monocytes is reported to be essential for the inhibition of IL-1 production and activity. This inhibition occurs through the stimulation of cyclic AMP synthesis by the activation of PGE2 receptor-linked adenylate cyclase. Although IL-1α stimulates PGE2 synthesis in monocytes/macrophages during immunoactivation, it inhibits the binding of PGE2 to these cells and may thereby exert a countervailing effect on the immunosuppressive action of this prostanoid. By contrast, insulin at physiological concentrations enhances the PGE2 binding to these cells. This suggests that insulin at physiological concentrations may enhance the immunosuppressive action of PGE2. Since the stimulation of cAMP synthesis in cells is regulated by PGE2 binding, it is possible that these hormonal factors may control the immune response by modulating the PGE2 receptor activity of monocytes/macrophages. This article focuses on the interactions of insulin and IL-1 with PGE2 receptors of monocytes/macrophages.  相似文献   

    5.
    Previous studies from our laboratory have demonstrated that exposure of human monocytes to a stimulant, such as Con A, results in the production of the enzyme collagenase through PGE2-dependent pathway. Inasmuch as rIFN-gamma has been shown to modulate monocyte/macrophage PG synthesis, we examined the effect of rIFN-gamma on the activation sequence leading to collagenase production. The addition of rIFN-gamma (10 to 1000 U/ml) to Con A-stimulated monocytes resulted in a dose-dependent inhibition of PGE2 and collagenase synthesis. The suppression of collagenase production by rIFN-gamma was related to its ability to reduce PGE2 levels as demonstrated by the restoration of collagenase activity by the addition of PGE2. HPLC analysis of the arachidonic acid (AA) metabolites released by monocytes showed that rIFN-gamma caused a reduction in the release of AA and products of the cyclooxygenase and lipoxygenase pathways. These data indicated that rIFN-gamma decreased eicosanoid production by inhibiting the release of AA from phospholipids. This conclusion was supported by the reduction in membrane bound phospholipase activity in rIFN-gamma-treated monocytes. Moreover, the inhibition by rIFN-gamma of PGE2 and collagenase was reversed by the addition of phospholipase A2. Our findings demonstrate that rIFN-gamma inhibits phospholipase activity in activated monocytes and as a result blocks PGE2-dependent collagenase synthesis.  相似文献   

    6.
    Previous studies have demonstrated that exposure of guinea pig macrophages to a primary signal, such as lipopolysaccharide (LPS), stimulates the synthesis of prostaglandin E2 (PGE2) which, in turn, elevates cAMP levels resulting in the production of the enzyme, collagenase. The potential of regulating the biochemical events in this activation sequence was examined with the anti-inflammatory agents dexamethasone and colchicine, which suppress the destructive sequelae in chronic inflammatory lesions associated with the degradation of connective tissue. The addition of dexamethasone with LPS to macrophage cultures resulted in a dose-dependent inhibition of PGE2 and collagenase production, which was reversed by the exogenous addition of phospholipase A2. Collagenase production was also restored in dexamethasone-treated cultures by the addition of products normally produced as a result of phospholipase action, such as arachidonic acid, PGE2 or dibutyryl-cAMP. Since the effect of dexamethasone was thus linked to phospholipase A2 inhibition, mepacrine, a phospholipase inhibitor, was also tested. Mepacrine, like dexamethasone, caused a dose-dependent inhibition of PGE2 and collagenase. In addition to corticosteroid inhibition, colchicine was also found to block collagenase production. However, this anti-inflammatory agent had no effect on PGE2 synthesis. Colchicine was effective only when added at the onset of culture and not 24 h later, implicating a role for microtubules in the transmission of the activation signal rather than enzyme secretion. The failure of lumicolchicine to inhibit collagenase activity provided additional evidence that microtubules are involved in the activation of macrophages. These findings demonstrate that dexamethasone and colchicine act at specific steps in the activation sequence of guinea pig macrophages to regulate collagenase production.  相似文献   

    7.
    Cyclooxygenase (COX) is the rate-limiting enzyme for the biosynthesis of prostaglandins in monocytes/macrophages. The COX-1 is constitutively expressed in most tissues and may be involved in cellular homeostasis, whereas the COX-2 is an inducible enzyme that may play an important role in inflammation and mitogenesis. When U937 monocytic cells were incubated with retinoic acid (RA) for 48 h, cell differentiation took place with concomitant increases in prostaglandin E2 (PGE2) production and COX activity. In this study, the mechanism of RA (all-trans- or 9-cis-RA)-induced enhancement of PGE2 biosynthesis in U937 cells was examined. Treatment of cells with all-trans- or 9-cis-RA up to 48 h caused an increase in PGE2 production in a time- and dose-dependent manner. Both RA isomers caused the enhancement of PGE2 production and the up-regulation of COX-1 expression at the protein and mRNA levels. The increase in COX-1 mRNA was found to precede the increase in COX-1 protein expression. Interestingly, the COX-2 protein and COX-2 mRNA were not detected in U937 cells, and their levels remained undetectable during the entire course of RA treatment. We conclude that treatment of U937 cells by RA for 48 h caused the initiation of cell differentiation, which was found to be concomitant with a significant increase in PGE2 production mediated via the up-regulation of COX-1 mRNA and protein expression.  相似文献   

    8.
    β1-Integrins mediate cell attachment to different extracellular matrix proteins, intracellular proteins, and intercellular adhesions. Recently, it has been reported that prostaglandin E2 (PGE2) has anti-inflammatory properties such as inhibition of the expression of adhesion molecules or production of chemokines. However, the effect of PGE2 on the expression of β1-integrin remains unknown. In this study, we investigated the effects of PGE2 on the expression of β1-integrin in the human monocytic cell line THP-1 and in CD14+ monocytes/macrophages in human peripheral blood. For this, we examined the role of four subtypes of PGE2 receptors and E-prostanoid (EP) receptors on PGE2-mediated inhibition. We found that PGE2 significantly inhibited the expression of β1-integrin, mainly through EP4 receptors in THP-1 cells and CD14+ monocytes/macrophages in human peripheral blood. We suggest that PGE2 has anti-inflammatory effects, leading to the inhibited expression of β1-integrin in human monocytes/macrophages, and that the EP4 receptor may play an important role in PGE2-mediated inhibition.  相似文献   

    9.
    The phytohormone abscisic acid (ABA), in addition to regulating several important physiological functions in plants, is also produced and released by human granulocytes and monocytes where it stimulates cell activities involved in the innate immune response.Here we describe the properties of an ABA synthetic analog that competes with the hormone for binding to human granulocyte membranes and to purified recombinant LANCL2 (the human ABA receptor) and inhibits several ABA-triggered inflammatory functions of granulocytes and monocytes in vitro: chemotaxis, phagocytosis, reactive oxygen species production and release of prostaglandin E2 (PGE2) by human granulocytes, release of PGE2 and of monocyte chemoattractant protein-1 by human monocytes. This observation provides a proof of principle that ABA antagonists may represent a new class of anti-inflammatory agents.  相似文献   

    10.
    The matrix metalloproteinases are a family of enzymes involved in the turnover of the connective tissues. The regulation of these enzymes is complex, involving the control of synthesis, the activation of proenzyme forms and the presence of specific inhibitors. Retinoids have been reported to inhibit the production of metalloproteinases by human and rabbit synovial fibroblasts and by human skin fibroblasts. The production of the highly specific tissue inhibitor of metalloproteinases (TIMP) by connective tissue cells may be crucial in the regulation of connective tissue breakdown and this present study was undertaken to determine if retinoic acid (RA) could modulate TIMP and collagenase production by synovial fibroblasts. The results show that RA at concentrations from 10(-7) to 10(-5) M significantly stimulated the secretion of TIMP by two of three human synovial cell lines. The effect of mononuclear cell factor (MCF) on TIMP and collagenase levels was also investigated. The apparent reduction of collagenase levels in the presence of RA, could result from a failure to accurately measure this enzyme in the presence of increased levels of TIMP.  相似文献   

    11.
    Knee osteoarthritis (OA) results, at least in part, from overloading and inflammation leading to cartilage degradation. Prostaglandin E2 (PGE2) is one of the main catabolic factors involved in OA. Its synthesis is the result of cyclooxygenase (COX) and prostaglandin E synthase (PGES) activities whereas NAD+-dependent 15 hydroxy prostaglandin dehydrogenase (15-PGDH) is the key enzyme implicated in the catabolism of PGE2. For both COX and PGES, three isoforms have been described: in cartilage, COX-1 and cytosolic PGES are constitutively expressed whereas COX-2 and microsomal PGES type 1 (mPGES-1) are inducible in an inflammatory context. COX-3 (a variant of COX-1) and mPGES-2 have been recently cloned but little is known about their expression and regulation in cartilage, as is also the case for 15-PGDH. We investigated the regulation of the genes encoding COX and PGES isoforms during mechanical stress applied to cartilage explants. Mouse cartilage explants were subjected to compression (0.5 Hz, 1 MPa) for 2 to 24 hours. After determination of the amount of PGE2 released in the media (enzyme immunoassay), mRNA and proteins were extracted directly from the cartilage explants and analyzed by real-time RT-PCR and western blotting respectively. Mechanical compression of cartilage explants significantly increased PGE2 production in a time-dependent manner. This was not due to the synthesis of IL-1, since pretreatment with interleukin 1 receptor antagonist (IL1-Ra) did not alter the PGE2 synthesis. Interestingly, COX-2 and mPGES-1 mRNA expression significantly increased after 2 hours, in parallel with protein expression, whereas COX-3 and mPGES-2 mRNA expression was not modified. Moreover, we observed a delayed overexpression of 15-PGDH just before the decline of PGE2 synthesis after 18 hours, suggesting that PGE2 synthesis could be altered by the induction of 15-PGDH expression. We conclude that, along with COX-2, dynamic compression induces mPGES-1 mRNA and protein expression in cartilage explants. Thus, the mechanosensitive mPGES-1 enzyme represents a potential therapeutic target in osteoarthritis.  相似文献   

    12.
    We have established primary colonic epithelial cell culture from adult rabbits and examined effects of anti-inflammatory drugs on prostaglandin (PG) E2 production. Colonic epithelium of adult rabbits was scraped and minced into small pieces. They were incubated for isolation in Hanks' balanced salt solution with 0.35 % collagenase and Earle's solution with 1 mM EDTA. Isolated cells were cultured in Coon's modified Ham's F-12 medium with 10 % fetal bovine serum and antibiotics on collagen coated cell wells. The medium was refed twice a week. The production of PGs was assessed by high pressure liquid chromatography (HPLC). PGE2 and PGF were measured by radioimmunoassay. Within 24 hours after inoculation, the cell clumps attached to the surface of the wells and cells began to spread out and grow. Monolayer cultures became confluent in 4 days. Phase contrast microscopy showed that these cells consisted of a homogeneous population of epithelial cells with large oval nuclei, polyhedral shape, and organized sheet-like growth pattern. HPLC profile showed synthesis of 6-keto-PGF, thromboxane B2, PGF, PGE2, and PGD2 by cultured cells. Quantitatively, 117±7 ng/mg-protein/hour PGE2 by 7.4±0.7 ng/mg-protein/hour PGF were produced. While hydrocortisone (10−4-10−2 M) did not show a significant effect on PGE2 production, indomethacin (10−8-10−6 M), and 5-aminosalicylic acid (2×10−4-5×10−3 M) inhibited PGE2 production. We have established relatively convenient procedure for primary culture of colonic epithelial cells from adult rabbits. Different actions of anti-inflammatory drugs on PGE2 synthesis suggest that these cultured cells might be a good tool for the various cellular functional studies of normal colonic epithelial cells.  相似文献   

    13.
    Synovial fluid basic calcium phosphate (BCP) crystals are associated with severe destructive arthropathies characterised by synovial proliferation and non-inflammatory degradation of intra-articular collagenous structures. BCP crystals stimulate fibroblast and chondrocyte mitogenesis, metalloprotease secretion and prostaglandin production. As a tissue protective effect of prostaglandins has been suggested, we recently studied the effect of PGE1 on BCP crystal-induced mitogenesis and collagenase mRNA accumulation in human fibroblasts (HF). We demonstrated a dose-dependent inhibition of BCP crystal-induced mitogenesis and collagenase mRNA accumulation. The mechanism of PGE1 inhibition of BCP crystal-induced mitogenesis and collagenase mRNA accumulation was therefore explored. PGE1 (100 ng/ml) increased HF intracellular cAMP 40-fold over control. BCP alone caused no such change but inhibited the PGE1-induced increase in intracellular cAMP by at least 60%. The PGE1-induced increase in intracellular cAMP was also blocked by the adenyl cyclase inhibitor, 2′,5′-dideoxyadenosine (ddA) (10 μM) and ddA reversed the PGE1-mediated inhibition of BCP crystal-induced mitogenesis. Dibutyrul cAMP also inhibited BCP crystal-induced mitogenesis in a concentration-dependent manner. Agents which increase intracellular cAMP levels such as the adenyl cyclase activator forskolin and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) mimicked the effect of PGE1 on HF collagenase mRNA levels. PGE1 inhibits the biologic effects of BCP crystals through the cAMP signal transduction pathway and such inhibition may have significant therapeutic implications.  相似文献   

    14.
    Incubation of human T cells for 18 hr with prostaglandin E2 (PGE2 3 × 10?6M) causes a slight but significant increase in the percentage of Tγ cells and a reduction in Tμ cells. When PGE was added to “non-Tγ” cells, the increase in the percentage of Tγ cells was more marked (from 1.5% Tγ without PGE to 11% Tγ with PGE2, P < 0.001). Supernates from cultures of human monocytes also caused an increase in Tγ cells (10% Tγ without supernate to 18% with supernate, P < 0.01), and this increase was blocked if the monocytes were cultured with indomethacin, a prostaglandin synthetase inhibitor (9% Tγ cells). Thus, monocytes may regulate Fcγ receptors on T cells via PGE2 production.  相似文献   

    15.
    Prostaglandin E2 (PGE2) is induced in vivo by bacterial products including TLR agonists. To determine whether PGE2 is induced directly or via IL-1β, human monocytes and macrophages were cultured with LPS or with Pam3CSK4 in presence of caspase-1 inhibitor, ZVAD, or IL-1R antagonist, Kineret. TLR agonists induced PGE2 in macrophages exclusively via IL-1β-independent mechanisms. In contrast, ZVAD and Kineret reduced PGE2 production in LPS-treated (but not in Pam3CSK4-treated) monocytes, by 30–60%. Recombinant human IL-1β augmented COX-2 and mPGES-1 mRNA and PGE2 production in LPS-pretreated monocytes but not in un-primed or Pam3CSK4-primed monocytes. This difference was explained by the finding that LPS but not Pam3CSK4 induced phosphorylation of IRF3 in monocytes suggesting activation of the TRIF signaling pathway. Knocking down TRIF, TRAM, or IRF3 genes by siRNA inhibited IL-1β-induced COX-2 and mPGES-1 mRNA. Blocking of TLR4 endocytosis during LPS priming prevented the increase in PGE2 production by exogenous IL-1β. Our data showed that TLR2 agonists induce PGE2 in monocytes independently from IL-1β. In the case of TLR4, IL-1β augments PGE2 production in LPS-primed monocytes (but not in macrophages) through a mechanism that requires TLR4 internalization and activation of the TRIF/IRF3 pathway. These findings suggest a key role for blood monocytes in the rapid onset of fever in animals and humans exposed to bacterial products and some novel adjuvants.  相似文献   

    16.
    Human synovial fibroblast prostaglandin synthetase activity is inhibited by many different non-steroidal anti-inflammatory agents. Aspirin, indomethacin and phenylbutazone significantly inhibit both PGE1, PGE2 and PGF and PGF synthesis; whereas penicillamine and aurothioglucose are more potent inhibitors of the F prostaglandins. Histidine and antimalarials do not inhibit, to a significant degree, human synovial prostaglandin synthetase activity. Hydrocortisone has no direct effect on prostaglandin synthetase activity. No changes in synthetase activity are observed when synovial cells are incubated with hydrocortisone, and the prostaglandin synthetase system subsequently isolated and assayed. The proposed inhibitory effects of hydrocortisone on prostaglandin production by synovium may be the result of an alteration of enzyme substrate or cofactor concentration rather than a direct effect on prostaglandin synthetase.  相似文献   

    17.
    18.
    Insulin-like growth factor-1, IGF-1, is believed to be an important anabolic modulator of cartilage metabolism whose action is mediated by high affinity cell surface receptors and bioactivity and bioavailability regulated, in part, by IGF-1 binding proteins (IGFBPs). Prostaglandin E2 (PGE2) stimulates collagen and proteoglycan synthesis in cartilage via an autocrine feedback loop involving IGF-1. We determined whether the eicosanoid could regulate IGFBP-4, a major form expressed by chondrocytes and, as such, act as a modifier of IGF-1 action at another level. Using human articular chondrocytes in high-density primary culture, Western and Western ligand blotting to measure secreted IGFBP-4 protein, and Northern analysis to monitor IGFBP-4 mRNA levels, we demonstrated that PGE2 provoked a 2.7 ± 0.3- and 3.8 ± 0.5- (n = 3) fold increase in IGFBP-4 mRNA and protein, respectively. This effect was reversed by the Ca++ channel blocker, verapamil, and the Ca++/calmodulin inhibitor, W-7. The Ca++ ionophore, ionomycin, mimicked the effects of PGE2. The phorbol ester, PMA, which activated phospholipid-dependent protein kinase C (PKC) in chondrocytes, had no effect on IGFBP-4 production. Cyclic AMP mimetics and PKA activators, IBMX, and Sp-cAMP, inhibited the expression of the binding protein as did the PGE2 secretagogue, interleukin-1β (IL-β). The inhibitory effect of the latter cytokine was mediated by a erbstatin/genistein (tyrosine) sensitive kinase. Dexamethasone, an inhibitor of cyclooxygenase (COX-2) expression and PGE2 synthesis, down-regulated control, constitute levels of IGFBP-4 mRNA and protein, eliminating the previously demonstrated possibility of cross-talk between glucocorticoid receptor (GR) and PGE2-receptor signalling pathways. The results suggest that extracellular signals control IGFBP-4 production by a number of different transducing networks with changes in Ca++ and calmodulin activity exerting a strong positive influence, possibly maintaining the constitutivity of IGFBP-4 synthesis under basal conditions. PGE2 activation of the IGF-1/IGFBP axis may play a pivotal role in the metabolism of cartilage and possibly connective tissues in general. Eicosanoid biosynthesis may be a rate-limiting step in cartilage repair processes. J. Cell. Biochem. 65:408–419. © 1997 Wiley-Liss, Inc.  相似文献   

    19.
    The data presented show different effects of prostaglandins on proliferation and cytotoxic effector functions of murine bone-marrow derived mononuclear cells. Colony stimulating factor (CSF)-dependent proliferation of colony forming unit-cells (CFU c) was inhibited by PGE1, PGE2 and PGB2. Lymphokine induced cytotoxicity and antibody mediated cytotoxicity (ADCC) of monocytes and macrophages were also affected by PG. We conclude that PGE2 may regulate macrophage mediated tumorcell-lysis mainly at the induction phase.If there processes function in vivo, one would therefore expect high affinity binding sites for PGE2 on macrophages. The existence of a receptor for PGE2 one murine bone marrow derived macrophages is described.  相似文献   

    20.
    AimsSilibinin is the major active component of silymarin, a polyphenolic plant flavonoid that has anti-inflammatory effects. The modulatory effect of silibinin on monocyte function against Paracoccidioides brasiliensis (Pb18) has not yet been demonstrated. The present study investigated whether the effect of silibinin on nuclear factor-kappa B (NF-κB) pathways may affect the production of tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10), transforming growth factor beta (TGF-β1), prostaglandin E2 (PGE2), nitric oxide (NO) and fungicidal activity of human monocytes challenged in vitro with Pb18.Main methodsPeripheral blood monocytes from healthy individuals were treated with silibinin and challenged with Pb18 for 18 h. TNF-α, IL-10, TGF-β1 and PGE2 expression were determined by immunoenzymatic assay (ELISA) and NO release was determined by the accumulation of nitrite in culture supernatants. Fungicidal activity of monocytes was analyzed after treatment with interferon-gamma plus silibinin and challenge with Pb18. NF-κB activation in cultured monocytes was evaluated by flow cytometry and ELISA.Key findingsSilibinin partially inhibited p65NF-κB activation as the number of cells expressing this factor was reduced and the concentration of nuclear p65NF-κB was low, compared to untreated controls. The addition of silibinin also resulted in suppression of TNF-α, IL-10, TGF-β1, PGE2 and NO production but did not affect the fungicidal activity of monocytes against Pb18.SignificanceSilibinin exerts anti-inflammatory and anti-fibrotic effects on CD14± human monocytes challenged by Pb18 by partial inhibition of p65NF-κB activation.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号