首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
【目的】通过研究长期不同供磷水平下根际、土体土壤中编码碱性磷酸酶基因(alkaline phosphatase gene,phoD)细菌群落特征、网络复杂性、群落的稳定性及其与磷酸酶活性之间的关系,揭示供磷水平和根际效应在调控土壤有机磷矿化中的微生物学机制。【方法】选取华北平原长期施磷的小麦-玉米轮作体系石灰性土壤为基质土壤,开展根箱试验。选取的试验处理包括3个供磷水平,分别是0、50.0、200.0 kg P/hm^(2)(分别表示为P0、P50、P200)。玉米种子播种30 d后,采集玉米的根际土和土体土。采用高通量测序技术分析根际和土体土壤中编码碱性磷酸酶基因(phoD)细菌群落,探究施肥及根际效应对含phoD基因细菌的群落特征、网络特征的影响及其与磷酸酶活性的关系。【结果】随着施磷量的增加,速效磷(available P,AP)和碱性磷酸酶(alkaline phosphatase,ALP)活性在根际、土体土壤中均显著提高,且两者呈显著正相关。phoD基因丰度在P0、P200处理的根际土壤中显著高于土体土壤。含phoD基因细菌群落的α多样性在P50处理下的根际土壤显著高于土体土壤。冗余分析(redundancy analysis,RDA)表明,土壤中AP、有机磷(organic P,Po)和全磷(total P,Pt)是影响微生物群落的主要因素。与不施磷处理(P0)相比,施磷处理(P50、P200)下根际土壤中网络节点数和连接数降低,而土体土壤中网络节点数和连接数增加;同时,施磷处理含phoD基因细菌群落的鲁棒性(robustness)在根际土壤中显著提高,而在土体土壤中显著降低。Mantel检验表明,含phoD基因微生物群落中的优势物种在根际土壤与AP、酸性磷酸酶(acid phosphatase,ACP)、内聚力(cohesion)和网络的鲁棒性显著相关,在土体土壤中无显著性。【结论】供磷水平及根际效应协同影响phoD基因丰度、含phoD基因细菌群落的α多样性、群落结构、优势物种、网络的复杂性及群落的稳定性,进而影响磷酸酶活性,调控了土壤中有机磷的矿化。  相似文献   

2.
磷是植物生长的限制因子之一,土壤中占主导地位的有机磷只有在磷酸酶矿化水解作用后才能被作物吸收利用。因此,研究土壤磷酸酶活性特征可为活化土壤中作物较难利用的磷素提供一些途径或方法。本文以紫花苜蓿和栗钙土为研究对象,在盆栽试验条件下分析了不同梯度磷肥施用(P)和水分(W)下的土壤磷酸酶活性特征。结果表明,土壤碱性磷酸单酯酶活性(99.2~170.0 mg para-nitrophenol·kg~(-1) soil·h~(-1))高于酸性磷酸单酯酶活性(24.7~56.9 mg para-nitrophenol·kg~(-1) soil·h~(-1));水肥交互作用对土壤酸性磷酸单酯酶活性和磷酸二酯酶活性均产生显著影响;其中,在常规水分处理条件下,高施磷肥抑制土壤无机焦磷酸酶活性;重度干旱降低了紫花苜蓿土壤酸性磷酸单酯酶、磷酸二酯酶和无机焦磷酸酶活性,但在干旱条件下施磷肥量的增加可提高土壤酸性、碱性磷酸单酯酶活性。因此,通过控制土壤水分和磷肥施用量可达到抑制或激活土壤磷酸酶活性的目的。  相似文献   

3.
频繁的刈割和氮输入增加是导致草地生态系统退化的重要原因.土壤微生物学特性作为评估土壤质量的重要生物学指标,对草地刈割和氮输入增加的响应规律仍不十分明确.本研究依托内蒙古呼伦贝尔草原刈割复合氮添加野外实验平台,分析了土壤理化性质、土壤微生物生物量、土壤呼吸和土壤酶对刈割、氮添加的响应及其生长季动态变化.结果表明: 刈割显著降低了土壤微生物生物量碳、氮、磷和土壤呼吸(基础呼吸和底物诱导呼吸),与刈割后导致的水分限制及碳限制有关.刈割显著降低了氮磷获取酶(N-乙酰-β-D-葡萄糖苷酶和酸性磷酸单酯酶)的活性,符合“资源分配假说”.氮添加显著降低土壤pH值,但土壤微生物生物量对氮添加和pH降低均无显著响应,表明氮输入增加引起的土壤酸化不是影响微生物生物量的主要因素.氮添加对土壤呼吸和酶活性也无显著影响,与以往在典型草原的大多数研究结果不一致.刈割和氮添加复合处理显著降低了土壤微生物生物量磷,但提高了土壤中有效磷含量,降低了酸性磷酸酶活性.微生物生物量碳、氮、磷和土壤呼吸等的相关参数均在7月最高,这与夏季高温多雨有关.土壤酶活性在春夏季较高,生长季末期较低.这表明在该草甸草原,刈割将导致土壤碳氮磷养分失衡,从而加剧草原退化;而氮添加在短期内并未对土壤微生物生物量和活性产生显著影响.  相似文献   

4.
随着全球氮沉降速率的快速增加,已对陆地生态系统微生物群落活性和代谢产生了深刻的影响。因此迫切需要了解全球气候变化敏感区土壤中微生物量和酶活性对氮添加的响应。为此,以中亚干旱区巴音布鲁克高寒湿地为研究对象,在保护良好的高寒湿地选择沼泽(S)、沼泽草甸(SM)和草甸(M)3种湿地类型布设野外原位氮添加试验(施氮浓度分别为0、8、16 kg N hm-2 a-1),探究短期氮添加对土壤微生物生物量碳(MBC)、微生物生物量氮(MBN)、微生物生物量碳/氮(MBC/MBN)、微生物商(QMB)、土壤蛋白酶、脲酶、碱性磷酸酶、H2O2酶和蔗糖酶活性的影响。结果表明:(1)高寒湿地不同湿地类型土壤微生物量和酶活性存在显著差异,其中SM土壤MBC、MBN、MBC\\N、QMB较S和M区高,对酶活性而言,SM和M区土壤蛋白酶和碱性磷酸酶活性较高,M区H2O2酶和脲酶活性较高。(2)氮添加显著增加了3种湿地类型中土壤MBC和MBN,其中MBC增加了7.00%-119.00%,MBN增加了8.03%-38.26%。氮添加仅显著增加了S和SM区土壤MBC/N和QMB (增加了24.68%-113.10%),但抑制了M区土壤MBC/N和QMB (抑制了8.93%-10.36%)。(3)氮添加显著增加了3种湿地类型土壤中脲酶、蛋白酶和H2O2酶活性,分别增加了7.25%-59.63%、4.71%-58.55%和34.70%-157.27%。但是氮添加对土壤碱性磷酸酶活性无显著影响。对蔗糖酶而言,N1处理增加了S区土壤蔗糖酶活性(增加了58.58%),而N2处理显著降低了22.72%。氮添加对SM和M区蔗糖酶活性无显著影响。(4)结构方程模型的结果显示,氮添加直接增加了土壤微生物量和酶活性。而随着湿地类型的变化(S-SM-M)直接和间接(通过pH)增加了酶活性;湿地类型的变化还通过影响pH、有机碳和有效养分间接增加了土壤微生物量。总之,氮添加和湿地类型可直接或间接的影响着土壤微生物量和酶活性。其中,土壤pH和有机碳是微生物量和酶活性变化的主要影响因素。本研究可为中亚干旱区高寒湿地应对未来气候变化的措施的制定提供技术参考。  相似文献   

5.
解磷微生物是森林土壤磷循环的关键驱动因素,对亚热带低磷土壤尤为重要。由于微生物对环境变化较为敏感,氮沉降下土壤微生物如何变化以及如何影响土壤磷有效性尚不清楚。为此,依托福建三明森林生态系统与全球变化国家野外科学观测研究站建立的米槠天然林长期氮沉降观测平台,借助16S rRNA和ITS高通量测序以及PICRUSt功能预测方法,探索氮添加对土壤解磷微生物群落和功能潜力的影响。结果表明:氮添加显著增加了土壤有效氮含量,但显著降低了Resin-P、NaHCO3-P和TPo,表明氮沉降改变了土壤养分平衡,加剧了磷限制。此外,氮添加降低了根瘤菌和伯克霍尔德菌等解磷细菌的丰度,却增加了青霉菌和曲霉菌等解磷真菌的丰度。PICRUSt功能预测进一步发现,存在15种能够编码磷酸酶的基因,并且与对照相比,施氮后酸性磷酸酶、碱性磷酸酶和植酸酶等酶基因丰度显著增加。综上,本研究发现施氮加剧了亚热带米槠天然林土壤的磷限制,同时增加了解磷真菌的丰度和磷酸酶的基因丰度来促进有机磷矿化,这可能是氮沉降下驱动米槠天然林土壤磷转化的主要微生物机制。  相似文献   

6.
间伐是人工林培育的重要措施之一,其在促进林分地上生长的同时,也对土壤产生重要影响,尤其是对土壤微生物与土壤酶活性等产生影响。为了明确间伐对日本落叶松人工林土壤酶活性的影响规律,本文以辽宁东部山区不同土壤肥力日本落叶松(Larix kaempferi)人工林为研究对象,通过设置不同强度的间伐试验(对照:未间伐,中度间伐:25%,强度间伐:50%),分析间伐2年后土壤酶活性的动态变化。结果表明:(1)不同肥力日本落叶松人工林的酚氧化酶活性在秋季最高,外切葡萄糖苷酶(PNC)、β-葡萄糖苷酶(PNG)、N-乙酰-β-氨基葡萄糖苷酶(NAG)和酸性磷酸酶活性在春季最高;(2)中度间伐显著提高肥力较差日本落叶松人工林表层酚氧化酶和NAG活性,中度和强度间伐显著降低该林分的亚表层PNG、NAG和酸性磷酸酶活性;(3)日本落叶松人工林土壤5种酶与全碳、全氮和无机氮均呈显著正相关,与p H值呈显著负相关。中度间伐显著降低了肥力较差日本落叶松人工林土壤酶与无机氮的相关性,而强度间伐却显著降低了土壤酶与全碳、有效磷的相关性;强度间伐只显著提高了肥力较好日本落叶松人工林土壤酶与全磷的相关性。综上,从提高土壤酶活性的角度,土壤肥力较差的日本落叶松人工林适合中度间伐,而土壤肥力较好的日本落叶松人工林更适合强度间伐。  相似文献   

7.
土壤呼吸是森林生态系统碳循环的关键环节,主要由土壤微生物呼吸和根系呼吸组成,二者对于氮添加及林下植被去除的响应可能不同。本研究以科尔沁沙地樟子松(Pinus sylvestris var. mongolica)人工林为对象,探讨了氮添加(N+)和林下植被去除(U-)对一个生长季土壤呼吸及其组分的影响。结果表明:在沙地樟子松人工林中,土壤微生物呼吸是土壤呼吸的主要贡献者,其贡献率达85.53%;根系呼吸的贡献率相对较小,仅有14.47%;生长季内,土壤呼吸速率平均值为1.59(CK)、1.73(N+)、1.66(U-)、1.89(N+U-)μmol C·m-2·s-1,氮添加促进了生长季初期、末期的土壤呼吸,林下植被去除提高了生长季旺盛期土壤呼吸,而氮添加+林下植被去除同时作用下,整个生长季内土壤呼吸速率显著增强,且高于氮添加与林下植被去除的单独作用,说明氮添加+林下植被去除对于促进土壤呼吸存在叠加效应;土壤微生物呼吸速率为1.36(CK)、1.45(N+)、1.44(U-)、1.52(N+U-)μmol C·m-2·s-1,各种处理对土壤微生物呼吸均无显著影响;氮添加与林下植被去除均降低了土壤微生物呼吸的温度敏感性;各处理下根系呼吸R10变化幅度大于微生物呼吸,说明根系呼吸对各处理的响应要比土壤微生物呼吸更加敏感;受土壤含水量的影响,土壤呼吸与土壤温度表现不一样的变化规律,表明土壤含水量为该地区樟子松人工林土壤呼吸的重要调控因素。本研究为理解沙地樟子松人工林碳循环过程及其模型构建提供基础数据和科学依据。  相似文献   

8.
通过析因试验设计,研究了科尔沁沙地樟子松人工林生态系统内土壤无机氮(NO3--N+NH4+-N)含量,潜在净氮矿化(PNM)、硝化速率(PNN),微生物生物量碳(MBC)、氮(MBN)及MBC/MBN,土壤脲酶、酸性磷酸单酯酶活性和土壤有效磷(Olsen-P)含量对林下植被管理(对照和去除)和氮添加(对照和添加8g·m-2)的短期响应.结果表明:林下植被去除显著降低了土壤NH4+-N含量、PNM、MBC和MBC/MBN比值,提高了土壤Olsen-P含量,而对土壤NO3--N含量、PNN和土壤酶活性的影响不显著.氮添加提高了土壤NO3--N含量、PNM和PNN,但对其他指标的影响不明显,可能与试验处理时间较短有关.土壤NH4+-N含量对林下植被去除与氮添加的交互作用的响应显著;而NO3--N含量虽对林下植被去除与氮添加处理的交互作用响应不显著,但在氮添加同时进行林下植被去除的样地中的土壤NO3--N含量比只进行氮添加处理的样地提高了27%,有可能导致土壤中NO3-的淋失.林下植被是影响樟子松人工林土壤化学和微生物学性质的重要因素,因此在森林管理和恢复过程中,不能忽视林下植被的作用.  相似文献   

9.
草甸棕壤水稻田磷酸酶活性及对施肥措施的响应   总被引:8,自引:0,他引:8  
1 引  言土壤有机磷是一种重要的土壤磷素资源 .我国大部分土壤中有机磷占土壤全磷的 2 0 %~ 50 % ,但在森林和草原植被下的土壤可占到 50 %~ 80 % [9].土壤磷酸酶活性直接影响到有机磷库的利用 ,即磷酸酶活性是衡量土壤肥力 ,尤其是土壤有效磷水平的一个重要参考指标[15 ].土壤磷酸酶(Phosphatases)是催化含磷有机酯和酐水解的一类酶的总称 ,其活性高低直接影响着土壤中有机磷的分解转化及其生物有效性 .其中 ,磷酸单酯酶 (酸性、中性、碱性磷酸酶 )活性一直是土壤磷酸酶研究的重点[18].由于土壤中有机磷化合物的复杂性 ,除了磷酸单…  相似文献   

10.
设施连作土壤普遍存在由于氮素过量积累导致的土壤障碍问题。本研究以不添加生物炭作为对照,以添加5%的生物炭(质量比)为处理,采用盆栽方式分析了生物炭对土壤微生物群落结构、氮循环功能基因丰度以及黄瓜幼苗根系生长和氮素代谢相关基因表达的影响,以期探明外源添加生物炭对设施连作土壤氮素转化的调控作用。结果表明:与对照相比,设施连作土壤添加生物炭处理后显著提高了黄瓜幼苗的株高、根系干重、总根长、根表面积和根体积;改善了根区环境,诱导黄瓜通过上调植物氮代谢相关基因的表达促进了黄瓜根系对氮素的吸收。施入生物炭显著提高了土壤微生物生物量氮、硝态氮和亚硝态氮含量,显著提高了土壤中变形菌门和蓝细菌门以及鞘脂单胞菌(土壤固氮菌)等氮代谢相关菌群丰度;增加了土壤硝化、氮同化还原功能基因丰度;增强了参与氮代谢的羟胺脱氢酶、硝基单加氧酶和碳酸酐酶活性。综上,根施生物炭改善了设施连作土壤理化性质和微生物生态系统,通过促进硝化作用和氮同化作用来调节土壤的氮循环过程,提高了植株对土壤氮素的吸收能力,最终促进了黄瓜植株生长。  相似文献   

11.
【目的】通过研究林地转型耕地对土壤编码碱性磷酸酶基因的细菌群落丰度、多样性和结构的影响,为丘陵区耕地长期施肥下农田土壤微生物多样性丧失的影响机制以及未来的退耕还林过程中土壤微生物多样性的提升和土地可持续利用研究提供一些基础数据和技术支撑。【方法】采用实时荧光定量PCR (real-time quantitative PCR,qPCR)和高通量测序技术解析土壤编码碱性磷酸酶基因的细菌群落的丰度、多样性和结构变化,并耦合土壤化学性质分析,明确土壤编码碱性磷酸酶基因的细菌群落丰度和多样性与土壤化学性质的关系以及关键的驱动因子。【结果】林地垦殖为农田后,长期施肥导致土壤酸化,pH从5.58降至4.72,而土壤速效磷则从2.49 mg/kg增至49.3 mg/kg。相应地,耕地土壤编码碱性磷酸酶基因的细菌群落的丰度和Shannon指数均显著低于林地。基于编码碱性磷酸酶的phoD基因(alkaline phosphatase-encoding gene)序列的物种分类表明,丘陵区土壤编码碱性磷酸酶基因的细菌群落的优势门为变形菌门(Proteobacteria)、蓝藻门(Cyanobacteria)、浮霉菌门(Planctomycetes)、放线菌门(Actinobacteria)、厚壁菌门(Firmicutes)和疣微菌门(Verrucomicrobia),其中林地土壤的蓝藻门的相对丰度显著高于耕地。耕地土壤的慢生根瘤菌属(Bradyrhizobium)和芽孢杆菌属(Bacillus)的相对丰度显著高于林地,而中慢生根瘤菌属(Mesorhizobium)、假单胞菌属(Pseudomonas)、Chlorogloea属、Gemmata属、Phormidesmis属和Pseudolabrys属的相对丰度显著低于林地。土壤编码碱性磷酸酶基因的细菌群落结构因林地转型耕地而发生显著改变。phoD基因丰度和Shannon指数与pH显著正相关,而与总磷、速效磷、硝态氮和铵态氮均显著负相关,其中土壤速效磷是这些影响因素中影响最强烈的,长期施用无机磷肥导致含碱性磷酸酶的土壤细菌群落对有机磷分解的能力退化。【结论】林地转型耕地加之长期施肥改变了土壤pH和速效磷,并在其他理化因子的协同驱动下,导致土壤编码碱性磷酸酶基因的细菌群落丰度、多样性和结构的显著变化。  相似文献   

12.
叶莹莹  刘淑娟  张伟  舒世燕  杨珊  王克林 《生态学报》2015,35(21):6974-6982
采用经典统计分析与通径分析,研究了桂西北喀斯特峰丛洼地4种植被演替阶段(草丛、灌木林、次生林、原生林)表层(0—15 cm)土壤微生物生物量和土壤酶活性的变化特征,探讨了其与土壤理化性质之间的关系。结果表明:土壤微生物生物量和土壤酶活性随植被正向演替的变化规律并不完全一致。土壤微生物生物量碳、微生物生物量氮和碱性磷酸酶活性整体表现为随植被正向演替而增加。而土壤蔗糖酶活性表现为:次生林草丛≈灌木林原生林,脲酶活性表现为:草丛≈次生林≈灌木林原生林。通径分析结果表明,土壤微生物生物量的直接影响因素和主要影响因素为土壤有机碳;蔗糖酶活性的直接影响因素为土壤有机碳和土壤微生物生物量碳,而从总效应来看,各因素对蔗糖酶活性的影响均较小;脲酶和碱性磷酸酶活性的直接影响因素和主要影响因素均为全氮,但全氮对脲酶活性表现为强烈的负效应,而对碱性磷酸酶活性表现为强烈的正效应。此外,土壤微生物生物量碳、氮及蔗糖酶、脲酶和碱性磷酸酶活性的剩余通径系数均较大,说明存在其它未被考虑因素对其具有影响。  相似文献   

13.
氮添加是提高退化草地生产力的主要养分管理措施,而过量的氮输入会导致土壤酸化、增加硝酸盐淋溶损失和温室气体排放。旨在明确草原割草利用下土壤氮、磷转化功能基因丰度对氮磷添加的响应规律,为定向调控打草场土壤氮、磷转化过程,提高养分利用效率,减少温室气体N2O排放提供科学依据。2018—2020年在呼伦贝尔草甸草原打草场设置了5个施氮水平(0、1.55、4.65、13.95、27.9 g N m-2 a-1)和3个磷水平(0、5.24、10.48 g P m-2 a-1),裂区试验设计,在植物不同生长时期测定土壤氨氧化(amoA-AOA和amoA-AOB)、反硝化(narG、nirK、nirS和nosZ)和磷转化(phoD)基因丰度。结果表明,土壤氮转化基因丰度受到氮、磷添加的调控,而氮、磷添加对土壤磷转化功能基因丰度无显著影响(P>0.05)。氮添加可提高amoA-AOB基因丰度,增加氨氧化细菌调控土壤总硝化速率的相对重要性,因此能增加硝酸盐淋溶损失潜势。高氮处理下添加磷可降低...  相似文献   

14.
红壤茶树根层土壤基础呼吸作用和酶活性   总被引:14,自引:4,他引:14  
对不同树龄茶树根层土壤的呼吸作用(包括代谢熵qCO2)和土壤酶(脲酶、转化酶和酸性磷酸单酯酶)活性进行了研究、不同树龄茶树根层土壤日基础呼吸作用强度(36.23—58.52mg·kg^-1·d^-1)和日代谢墒(0.30一0.68)都以40和90年茶树较为接近,分别显著大于和小于10年树龄茶树根层土壤;服酶活性(41.48—47、72mg·kg^-1·d^-1)则三者间差异不大,虽然随树龄增长而下降;转化酶活性(189.29—363.40mg·kg^-1·d^-1)也随树龄增长而下降,并且10年茶树根层土壤显著大于40和90年树龄茶树;而酸性磷酸单酯酶活性(444.22—828.32mg·kg^-1·d^-1)相反,随树龄增长而增强.结果表明,土壤基础呼吸作用、代谢熵和3种土壤酶活性都与茶树树龄、土壤pH、土壤有机碳、土壤全氮、土壤可活性酚总量、及土壤微生物生物量密切相关.  相似文献   

15.
以玉米为材料,利用三室隔网培养方法,研究了缺P土壤上施用植酸和卵磷脂时接种几种菌根真菌(Glomus mosseae, Glmous versiformea, Gigaspora margarita)对根际土壤酸性磷酸酶和碱性磷酸酶活性的影响.玉米生长70d后,收获测定距根表不同距离土壤中的磷酸酶活性.结果表明,接种菌根真菌增加了根际土壤酸性和碱性磷酸酶活性,Gigaspora margarita菌根菌的作用大于其它2个菌根菌.不同P源对磷酸酶活性有明显影响.  相似文献   

16.
为探明集约经营对毛竹林土壤碳库、氮库以及酶活性的影响,在浙江省临安市选取相邻的粗放经营毛竹林和集约经营毛竹林(经营年限为15年),测定表层(0~20 cm)与亚表层(20~40 cm)土壤不同形态碳氮和蔗糖酶、脲酶、过氧化氢酶和酸性磷酸酶的活性.结果表明: 长期集约经营显著降低毛竹林土壤有机碳含量和储量,表层和亚表层土壤有机碳储量分别下降13.2%和18.0%;集约经营15年后,毛竹林表层和亚表层土壤水溶性碳、热水溶性碳、微生物生物量碳和易氧化碳含量均显著降低;与粗放经营毛竹林相比,集约经营毛竹林表层和亚表层土壤氮储量分别增加50.8%和36.6%;集约经营显著增加毛竹林土壤硝态氮和铵态氮含量,显著降低土壤水溶性氮和微生物生物量氮含量;集约经营15年后,毛竹林表层土壤蔗糖酶、脲酶、过氧化氢酶和酸性磷酸酶活性均显著下降,亚表层土壤酸性磷酸酶活性显著下降,而其他酶活性均无显著变化.长期集约经营导致毛竹林土壤碳储量、活性碳库和微生物活性显著下降,在以后的经营过程中要注意化肥与有机肥配合使用,以保证毛竹林的可持续经营.  相似文献   

17.
不同磷源对红三叶草根际和菌根际磷酸酶活性的影响   总被引:17,自引:2,他引:15  
以红三叶草为研究对象,利用三室培养系统,在接种菌根真菌(Glomus mosseae)的条件下研究了不同磷源对根际和菌根际磷酸酶活性的影响,植株生长8周后收获并测定根室、菌丝室的土壤磷酸酶活性、植株干重及含磷量.结果表明,根室酸性磷酸酶活性比碱性磷酸酶活性更裔,接种条件下二者都稍有增加,特别是在供给有机磷(植酸钠)的条件下明显增加了菌丝室土壤磷酸酶活性.接种菌根真菌显著增加了植株干重、磷含量和总磷吸收.施用磷酸二氢钾(KH2PO4)时菌丝吸磷量占吸磷总量的43.1%,而施用植酸钠(Na-phytate)时菌丝吸磷量占吸磷总量的60.8%。  相似文献   

18.
泡囊丛枝(VA)菌根对玉米际磷酸酶活性的影响   总被引:9,自引:3,他引:6  
以玉米为材料,利用三室隔网培养方法,研究了缺P土壤上施用植酸和卵磷脂时接种几种菌根真菌(Glomus mosseae,Glmous versiformea,Gigaspora margarita)对根际土壤酸性磷酸酶和碱性磷酸酶活性的影响,玉米生长70d后,收获测定距根表不同距离土壤中的磷酸酶活性,结果表明,接种菌根真菌增加了根际土壤酸性和碱性磷酸酶活性,Gigaspora margarita菌根菌的作用大于其它2个菌极菌,不同P源对磷酸酶活性有明显影响。  相似文献   

19.
以科尔沁沙地东南缘沙质草地和不同年龄樟子松(Pinus sylvestris var. mongolica)人工林(15、24和30年生)为对象,研究草地造林对土壤pH,土壤C、N、P含量,无机N(铵态氮、硝态氮)含量,C、N矿化速率,微生物生物量C含量以及土壤酶(脲酶、转化酶和过氧化氢酶)活性的影响.结果表明:草地造林初期,林地土壤C、N、P含量逐渐降低,随着林龄增加而逐渐恢复;与草地相比,24年生樟子松人工林土壤C、N、P含量最低,分别下降29%、34%和33%,而30年生樟子松人工林土壤C和N含量与草地差异不显著.草地造林能够影响土壤无机N存在形式,使土壤铵态氮含量逐渐增加,硝态氮含量下降.草地造林对土壤潜在N矿化速率和硝化速率影响不显著,但能够改变土壤C矿化速率,不同林龄樟子松人工林土壤C矿化速率依次为:24年生>30年生>草地>15年生.草地造林初期,土壤微生物生物量C含量和土壤转化酶活性明显降低,随着林龄的增加又逐渐增加;草地造林对土壤脲酶活性影响不显著,而使土壤过氧化氢酶活性逐渐增加.科尔沁沙地草地造林能够显著改变土壤化学和生物学性状,且随着林龄的变化而有所差异.  相似文献   

20.
周晓兵  张元明  陶冶  张丙昌 《生态学报》2011,31(12):3340-3349
本文以新疆古尔班通古特沙漠为研究区,原位设定0 (N0)、0.5 (N0.5)、1.0 (N1)、3.0 (N3)、6.0 (N6)和24.0 (N24) g N m?2 a-1 6个模拟施氮浓度,研究氮沉降对土壤酶活性和微生物量N的影响。结果表明:不同浓度的氮增加未改变土壤酶活性和微生物量N原有的垂直分布格局,0 ~ 5 cm土层土壤多酚氧化酶和过氧化物酶活性分别比5 ~ 10 cm土层低11.5 ~ 29.1%和1.4 ~ 14.2%,而该土层的蔗糖酶、脲酶、碱性磷酸酶活性和微生物量N则分别比5 ~ 10 cm土层高4.3 ~ 98.1%、45.3 ~ 119.0%、76.1 ~ 138.1%和77.5 ~ 162.3%。氮增加后,0 ~ 5 cm土层的土壤酶活性和微生物量N比5 ~ 10 cm土层受影响更大。低氮和中氮(N0.5~N3)增加对0 ~ 5 cm土层氧化酶活性影响较小,各处理间差异不显著;高氮(N6,N24)对该层氧化酶活性有明显抑制作用。与对照相比,N24处理下土壤多酚氧化物活性和过氧化物酶活性分别降低了22.4%和12.1%;5 ~ 10 cm土层氧化酶活性对氮增加响应不敏感,各施氮量之间差异不显著;两层土壤的蔗糖酶和碱性磷酸酶活性随氮的增加具有先增加再减少的趋势,而两层土壤的脲酶活性和土壤微生物量N随着施氮量增加分别降低和增加;随着土壤酶活性变化,土壤有效氮和微生物量N增加,有效磷先增加后减少。这些响应表明,氮增加可以改变该荒漠土壤系统的土壤酶活性和微生物量并影响土壤相关营养元素循环。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号