首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To reduce treatment of indolent prostate cancer (PCa), biomarkers are needed to improve identification of patients with a low-risk of having aggressive disease. Over-treatment of these patients occurs because of uncertainty in the aggressiveness of the entire tumor based on the biopsies, which do not accurately sample multifocal tumors. Circulating microRNAs (miRNAs) are stable serum markers and differential miRNA levels occur in men with PCa. The goal of this study was to identify circulating miRNAs that were associated with aggressive or indolent PCa. We measured circulating miRNAs in 150 patients prior to surgery and compared the miRNA levels to the pathology of the entire radical prostatectomy specimen. For this study we used an exceptionally well-characterized cohort of patients who had benign prostatic hyperplasia (BPH), low-grade or high-grade PCa. Low-grade was defined as patients with 100% Gleason grade 3 tumor as determined by step-wise sectioning. High-grade PCa patients had 30-90% Gleason grade 4+5 in the tumor. BPH patients had at least two biopsies negative for PCa. Twenty one miRNAs were selected for analysis. The miRNAs were quantified by RT-qPCR and analyzed by logistic regression. High levels of 14 miRNAs were exclusively present in the serum from patients with low-grade PCa or BPH, compared to men with high-grade PCa who had consistently low levels. The expression levels of the 14 miRNAs were combined into a “miR Score” which had a negative predictive value (NPV) of 0.939 to predict absence of high-grade PCa among PCa and BPH patients. Biochemical recurrence (BCR) was known for the PCa patients and a combined “miR Risk Score” accurately classified a subset of patients with low risk of BCR (NPV 0.941). In summary, measurement of serum miRNAs may have pre-surgical utility in combination with clinical risk calculators to identify patients with low risk of harboring aggressive PCa.  相似文献   

2.
3.
In order to foster the systematic identification of novel genes with important functional roles in pancreatic cancer, we have devised a multi-stage screening strategy to provide a rational basis for the selection of highly relevant novel candidate genes based on the results of functional high-content analyses. The workflow comprised three consecutive stages: 1) serial gene expression profiling analyses of primary human pancreatic tissues as well as a number of in vivo and in vitro models of tumor-relevant characteristics in order to identify genes with conspicuous expression patterns; 2) use of ‘reverse transfection array’ technology for large-scale parallelized functional analyses of potential candidate genes in cell-based assays; and 3) selection of individual candidate genes for further in-depth examination of their cellular roles. A total of 14 genes, among them 8 from “druggable” gene families, were classified as high priority candidates for individual functional characterization. As an example to demonstrate the validity of the approach, comprehensive functional data on candidate gene ADRBK1/GRK2, which has previously not been implicated in pancreatic cancer, is presented.  相似文献   

4.
Prostate cancer (PCa) is one amongst the most common cancersin western men. Incidence rate ofPCa is on the rise worldwide. The present study deals with theserum lipidome profiling of patients diagnosed with PCa to identify potential new biomarkers. We employed ESI-MS/MS and GC-MS for identification of significantly altered lipids in cancer patient’s serum compared to controls. Lipidomic data revealed 24 lipids are significantly altered in cancer patinet’s serum (n = 18) compared to normal (n = 18) with no history of PCa. By using hierarchical clustering and principal component analysis (PCA) we could clearly separate cancer patients from control group. Correlation and partition analysis along with Formal Concept Analysis (FCA) have identified that PC (39:6) and FA (22:3) could classify samples with higher certainty. Both the lipids, PC (39:6) and FA (22:3) could influence the cataloging of patients with 100% sensitivity (all 18 control samples are classified correctly) and 77.7% specificity (of 18 tumor samples 4 samples are misclassified) with p-value of 1.612×10−6 in Fischer’s exact test. Further, we performed GC-MS to denote fatty acids altered in PCa patients and found that alpha-linolenic acid (ALA) levels are altered in PCa. We also performed an in vitro proliferation assay to determine the effect of ALA in survival of classical human PCa cell lines LNCaP and PC3. We hereby report that the altered lipids PC (39:6) and FA (22:3) offer a new set of biomarkers in addition to the existing diagnostic tests that could significantly improve sensitivity and specificity in PCa diagnosis.  相似文献   

5.
Many differentially methylated genes have been identified in prostate cancer (PCa), primarily using candidate gene-based assays. Recently, several global DNA methylation profiles have been reported in PCa, however, each of these has weaknesses in terms of ability to observe global DNA methylation alterations in PCa. We hypothesize that there remains unidentified aberrant DNA methylation in PCa, which may be identified using higher resolution assay methods. We used the newly developed Illumina HumanMethylation450 BeadChip in PCa (n = 19) and adjacent normal tissues (n = 4) and combined these with gene expression data for identifying new DNA methylation that may have functional consequences in PCa development and progression. We also confirmed our methylation results in an independent data set. Two aberrant DNA methylation genes were validated among an additional 56 PCa samples and 55 adjacent normal tissues. A total 28,735 CpG sites showed significant differences in DNA methylation (FDR adjusted P<0.05), defined as a mean methylation difference of at least 20% between PCa and normal samples. Furthermore, a total of 122 genes had more than one differentially methylated CpG site in their promoter region and a gene expression pattern that was inverse to the direction of change in DNA methylation (e.g. decreased expression with increased methylation, and vice-versa). Aberrant DNA methylation of two genes, AOX1 and SPON2, were confirmed via bisulfate sequencing, with most of the respective CpG sites showing significant differences between tumor samples and normal tissues. The AOX1 promoter region showed hypermethylation in 92.6% of 54 tested PCa samples in contrast to only three out of 53 tested normal tissues. This study used a new BeadChip combined with gene expression data in PCa to identify novel differentially methylated CpG sites located within genes. The newly identified differentially methylated genes may be used as biomarkers for PCa diagnosis.  相似文献   

6.
SPINT2 is a tumor suppressor gene that inhibits proteases implicated in cancer progression, like HGFA, hepsin and matriptase. Loss of SPINT2 expression in tumors has been associated with gene promoter hypermethylation; however, little is known about the mechanisms of SPINT2 deregulation in prostate cancer (PCa). We aimed to analyze SPINT2 expression levels and understand the possible regulation by SPINT2 promoter hypermethylation in PCa. In a cohort of 57 cases including non-neoplastic and PCa tissues, SPINT2 expression and promoter methylation was analyzed by immunohistochemistry and methylation-specific PCR, respectively. Methylation status of the SPINT2 promoter was also evaluated by bisulfite sequencing and 5-aza-2’-deoxycytidine treatment. Oncomine and TCGA databases were used to perform in silico PCa analysis of SPINT2 mRNA and methylation levels. A reduction in SPINT2 expression levels from non-neoplastic to PCa tissues was observed; however, none of the cases exhibited SPINT2 promoter methylation. Both bisulfite sequencing and 5-aza demonstrated that SPINT2 promoter is not methylated in PCa cells. Bioinformatics approaches did not show downregulation of SPINT2 at the mRNA level and, in corroboration with our results, SPINT2 promoter region is reported to be unmethylated. Our study suggests an involvement of SPINT2 in PCa tumorigenesis, probably in association with a post-translational regulation of SPINT2.  相似文献   

7.
Prostate cancer (PCa) is one of the most common malignancies in men. Ribosomal protein L22‐like1 (RPL22L1), a component of the ribosomal 60 S subunit, is associated with cancer progression, but the role and potential mechanism of RPL22L1 in PCa remain unclear. The aim of this study was to investigate the role of RPL22L1 in PCa progression and the mechanisms involved. Bioinformatics and immunohistochemistry analysis showed that the expression of RPL22L1 was significantly higher in PCa tissues than in normal prostate tissues. The cell function analysis revealed that RPL22L1 significantly promoted the proliferation, migration and invasion of PCa cells. The data of xenograft tumour assay suggested that the low expression of RPL22L1 inhibited the growth and invasion of PCa cells in vivo. Mechanistically, the results of Western blot proved that RPL22L1 activated PI3K/Akt/mTOR pathway in PCa cells. Additionally, LY294002, an inhibitor of PI3K/Akt pathway, was used to block this pathway. The results showed that LY294002 remarkably abrogated the oncogenic effect of RPL22L1 on PCa cell proliferation and invasion. Taken together, our study demonstrated that RPL22L1 is a key gene in PCa progression and promotes PCa cell proliferation and invasion via PI3K/Akt/mTOR pathway, thus potentially providing a new target for PCa therapy.  相似文献   

8.
9.
Genistein has been shown to inhibit cancers both in vitro and in vivo, by altering the expression of several microRNAs (miRNAs). In this study, we focused on tumor suppressor miRNAs regulated by genistein and investigated their function in prostate cancer (PCa) and target pathways. Using miRNA microarray analysis and real-time RT-PCR we observed that miR-574-3p was significantly up-regulated in PCa cells treated with genistein compared with vehicle control. The expression of miR-574-3p was significantly lower in PCa cell lines and clinical PCa tissues compared with normal prostate cells (RWPE-1) and adjacent normal tissues. Low expression level of miR-574-3p was correlated with advanced tumor stage and higher Gleason score in PCa specimens. Re-expression of miR-574-3p in PCa cells significantly inhibited cell proliferation, migration and invasion in vitro and in vivo. miR-574-3p restoration induced apoptosis through reducing Bcl-xL and activating caspase-9 and caspase-3. Using GeneCodis software analysis, several pathways affected by miR-574-3p were identified, such as ‘Pathways in cancer’, ‘Jak-STAT signaling pathway’, and ‘Wnt signaling pathway’. Luciferase reporter assays demonstrated that miR-574-3p directly binds to the 3′ UTR of several target genes (such as RAC1, EGFR and EP300) that are components of ‘Pathways in cancer’. Quantitative real-time PCR and Western analysis showed that the mRNA and protein expression levels of the three target genes in PCa cells were markedly down-regulated with miR-574-3p. Loss-of-function studies demonstrated that the three target genes significantly affect cell proliferation, migration and invasion in PCa cell lines. Our results show that genistein up-regulates tumor suppressor miR-574-3p expression targeting several cell signaling pathways. These findings enhance understanding of how genistein regulates with miRNA in PCa.  相似文献   

10.
11.
Single-Cell Microbiology: Tools, Technologies, and Applications   总被引:9,自引:0,他引:9       下载免费PDF全文
The field of microbiology has traditionally been concerned with and focused on studies at the population level. Information on how cells respond to their environment, interact with each other, or undergo complex processes such as cellular differentiation or gene expression has been obtained mostly by inference from population-level data. Individual microorganisms, even those in supposedly “clonal” populations, may differ widely from each other in terms of their genetic composition, physiology, biochemistry, or behavior. This genetic and phenotypic heterogeneity has important practical consequences for a number of human interests, including antibiotic or biocide resistance, the productivity and stability of industrial fermentations, the efficacy of food preservatives, and the potential of pathogens to cause disease. New appreciation of the importance of cellular heterogeneity, coupled with recent advances in technology, has driven the development of new tools and techniques for the study of individual microbial cells. Because observations made at the single-cell level are not subject to the “averaging” effects characteristic of bulk-phase, population-level methods, they offer the unique capacity to observe discrete microbiological phenomena unavailable using traditional approaches. As a result, scientists have been able to characterize microorganisms, their activities, and their interactions at unprecedented levels of detail.  相似文献   

12.
The diverse, specialized genes present in today’s lifeforms evolved from a common core of ancient, elementary genes. However, these genes did not evolve individually: gene expression is controlled by a complex network of interactions, and alterations in one gene may drive reciprocal changes in its proteins’ binding partners. Like many complex networks, these gene regulatory networks (GRNs) are composed of communities, or clusters of genes with relatively high connectivity. A deep understanding of the relationship between the evolutionary history of single genes and the topological properties of the underlying GRN is integral to evolutionary genetics. Here, we show that the topological properties of an acute myeloid leukemia GRN and a general human GRN are strongly coupled with its genes’ evolutionary properties. Slowly evolving (“cold”), old genes tend to interact with each other, as do rapidly evolving (“hot”), young genes. This naturally causes genes to segregate into community structures with relatively homogeneous evolutionary histories. We argue that gene duplication placed old, cold genes and communities at the center of the networks, and young, hot genes and communities at the periphery. We demonstrate this with single-node centrality measures and two new measures of efficiency, the set efficiency and the interset efficiency. We conclude that these methods for studying the relationships between a GRN’s community structures and its genes’ evolutionary properties provide new perspectives for understanding evolutionary genetics.  相似文献   

13.
14.
15.
Advancements in sequencing have led to the proliferation of multi-omic profiles of human cells under different conditions and perturbations. In addition, many databases have amassed information about pathways and gene “signatures”—patterns of gene expression associated with specific cellular and phenotypic contexts. An important current challenge in systems biology is to leverage such knowledge about gene coordination to maximize the predictive power and generalization of models applied to high-throughput datasets. However, few such integrative approaches exist that also provide interpretable results quantifying the importance of individual genes and pathways to model accuracy. We introduce AKLIMATE, a first kernel-based stacked learner that seamlessly incorporates multi-omics feature data with prior information in the form of pathways for either regression or classification tasks. AKLIMATE uses a novel multiple-kernel learning framework where individual kernels capture the prediction propensities recorded in random forests, each built from a specific pathway gene set that integrates all omics data for its member genes. AKLIMATE has comparable or improved performance relative to state-of-the-art methods on diverse phenotype learning tasks, including predicting microsatellite instability in endometrial and colorectal cancer, survival in breast cancer, and cell line response to gene knockdowns. We show how AKLIMATE is able to connect feature data across data platforms through their common pathways to identify examples of several known and novel contributors of cancer and synthetic lethality.  相似文献   

16.
The concept of “housekeeping gene” has been used for four decades but remains loosely defined. Housekeeping genes are commonly described as “essential for cellular existence regardless of their specific function in the tissue or organism”, and “stably expressed irrespective of tissue type, developmental stage, cell cycle state, or external signal”. However, experimental support for the tenet that gene essentiality is linked to stable expression across cell types, conditions, and organisms has been limited. Here we use genome-scale functional genomic screens together with bulk and single-cell sequencing technologies to test this link and optimize a quantitative and experimentally validated definition of housekeeping gene. Using the optimized definition, we identify, characterize, and provide as resources, housekeeping gene lists extracted from several human datasets, and 10 other animal species that include primates, chicken, and C. elegans. We find that stably expressed genes are not necessarily essential, and that the individual genes that are essential and stably expressed can considerably differ across organisms; yet the pathways enriched among these genes are conserved. Further, the level of conservation of housekeeping genes across the analyzed organisms captures their taxonomic groups, showing evolutionary relevance for our definition. Therefore, we present a quantitative and experimentally supported definition of housekeeping genes that can contribute to better understanding of their unique biological and evolutionary characteristics.  相似文献   

17.
The core promoter plays a central role in setting metazoan gene expression levels, but how exactly it “computes” expression remains poorly understood. To dissect its function, we carried out a comprehensive structure–function analysis in Drosophila. First, we performed a genome‐wide bioinformatic analysis, providing an improved picture of the sequence motifs architecture. We then measured synthetic promoters’ activities of ~3,000 mutational variants with and without an external stimulus (hormonal activation), at large scale and with high accuracy using robotics and a dual luciferase reporter assay. We observed a strong impact on activity of the different types of mutations, including knockout of individual sequence motifs and motif combinations, variations of motif strength, nucleosome positioning, and flanking sequences. A linear combination of the individual motif features largely accounts for the combinatorial effects on core promoter activity. These findings shed new light on the quantitative assessment of gene expression in metazoans.  相似文献   

18.
Background: M2 macrophages are well accepted to promote cancer progression in the prostate cancer (PCa). Paracrine is the principally studied mode of communication between M2 macrophages and tumor cells. In addition to this, we present here a novel model to demonstrate these cellular communications.Methods: PCa cells were co-cultured with THP-1/ human peripheral blood mononuclear cells derived M2 macrophages in direct contact manner. Cancer cell proliferation and invasion were examined to explain how direct contact communicates. Cell-based findings were validated in two xenograft models and patients samples.Results: M2 macrophage direct contact induced a higher proliferation and invasion in PCa cells when compared with noncontact coculture manner. In direct contact manner, NOTCH1 pathway was greatly activated in PCa cells, induced by elevated γ-secretase activity and higher coactivator MAML2 expression. Additionally, blocking γ-secretase activity and depletion of MAML2 completely abolished M2 macrophage direct contact-mediated PCa cell proliferation and invasion. In vivo, inhibiting NOTCH1 signalling impaired M2 macrophage-mediated PCa tumor growth and lung metastasis. Notably, M2 macrophage infiltration as well as high NOTCH1 signaling in cancer cells indicated more aggressive features and worse survival in PCa patients.Conclusion: Our results demonstrated the cell-cell direct contact pattern is an important way in PCa microenvironment cell communication. In this manner, elevated γ-secretase activity and MAML2 expression induced higher NOTCH1 signalling in PCa cells, which increased tumor cells proliferation and invasion. This potentially provided a therapeutic target for PCa.  相似文献   

19.

Background

Cancer cells typically exhibit large-scale aberrant methylation of gene promoters. Some of the genes with promoter methylation alterations play “driver” roles in tumorigenesis, whereas others are only “passengers”.

Results

Based on the assumption that promoter methylation alteration of a driver gene may lead to expression alternation of a set of genes associated with cancer pathways, we developed a computational framework for integrating promoter methylation and gene expression data to identify driver methylation aberrations of cancer. Applying this approach to breast cancer data, we identified many novel cancer driver genes and found that some of the identified driver genes were subtype-specific for basal-like, luminal-A and HER2+ subtypes of breast cancer.

Conclusion

The proposed framework proved effective in identifying cancer driver genes from genome-wide gene methylation and expression data of cancer. These results may provide new molecular targets for potential targeted and selective epigenetic therapy.  相似文献   

20.
During sentence production, linguistic information (semantics, syntax, phonology) of words is retrieved and assembled into a meaningful utterance. There is still debate on how we assemble single words into more complex syntactic structures such as noun phrases or sentences. In the present study, event-related potentials (ERPs) were used to investigate the time course of syntactic planning. Thirty-three volunteers described visually animated scenes using naming formats varying in syntactic complexity: from simple words (‘W’, e.g., “triangle”, “red”, “square”, “green”, “to fly towards”), to noun phrases (‘NP’, e.g., “the red triangle”, “the green square”, “to fly towards”), to a sentence (‘S’, e.g., “The red triangle flies towards the green square.”). Behaviourally, we observed an increase in errors and corrections with increasing syntactic complexity, indicating a successful experimental manipulation. In the ERPs following scene onset, syntactic complexity variations were found in a P300-like component (‘S’/‘NP’>‘W’) and a fronto-central negativity (linear increase with syntactic complexity). In addition, the scene could display two actions - unpredictable for the participant, as the disambiguation occurred only later in the animation. Time-locked to the moment of visual disambiguation of the action and thus the verb, we observed another P300 component (‘S’>‘NP’/‘W’). The data show for the first time evidence of sensitivity to syntactic planning within the P300 time window, time-locked to visual events critical of syntactic planning. We discuss the findings in the light of current syntactic planning views.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号