首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Global change is shifting the timing of biological events, leading to temporal mismatches between biological events and resource availability. These temporal mismatches can threaten species’ populations. Importantly, temporal mismatches not only exert strong pressures on the population dynamics of the focal species, but can also lead to substantial changes in pairwise species interactions such as host–pathogen systems. We adapted an established individual‐based model of host–pathogen dynamics. The model describes a viral agent in a social host, while accounting for the host''s explicit movement decisions. We aimed to investigate how temporal mismatches between seasonal resource availability and host life‐history events affect host–pathogen coexistence, that is, disease persistence. Seasonal resource fluctuations only increased coexistence probability when in synchrony with the hosts’ biological events. However, a temporal mismatch reduced host–pathogen coexistence, but only marginally. In tandem with an increasing temporal mismatch, our model showed a shift in the spatial distribution of infected hosts. It shifted from an even distribution under synchronous conditions toward the formation of disease hotspots, when host life history and resource availability mismatched completely. The spatial restriction of infected hosts to small hotspots in the landscape initially suggested a lower coexistence probability due to the critical loss of susceptible host individuals within those hotspots. However, the surrounding landscape facilitated demographic rescue through habitat‐dependent movement. Our work demonstrates that the negative effects of temporal mismatches between host resource availability and host life history on host–pathogen coexistence can be reduced through the formation of temporary disease hotspots and host movement decisions, with implications for disease management under disturbances and global change.  相似文献   

2.
The role of environmental and host‐associated factors in synchronization of host–parasite life‐cycles is an important question of evolutionary ecology. Yet, only handsome of studies examined this question at the intraspecific level. Here we explore how host‐associated traits, such as breeding phenology and host breeding habitat, can influence parasite phenology and co‐occurrence at different spatial scales. We studied the system comprised of a generalist ectoparasitic fly Carnus hemapterus and one of its avian hosts, the European roller Coracias garrulus. Inter‐annual variation in phenology was larger for parasites than hosts. Host predictability in terms of occurrence and phenological regularity was moderate, suggesting that this resource can be difficult to be tracked by the parasite. A large proportion of flies consistently emerged before the appearance of suitable host resources at both the nest and population level. Consequently, we revealed low and highly variable inter‐annual host–parasite synchronization rates. Nevertheless, we found that parasites from nests of early and progressively earlier breeding European rollers were more synchronized with their hosts than parasites from nests of late and progressively later breeding hosts, respectively. Temporal trends in host suitability and parasite emergence at the population scale suggest that other mechanisms, such as dispersal or exploitation of other host species, ensure parasites access to resources and counteract asynchrony with the host at the nest scale.  相似文献   

3.
Inferring parameters related to the aggregation pattern of parasites and to their dispersal propensity are important for predicting their ecological consequences and evolutionary potential. Nonetheless, it is notoriously difficult to infer these parameters from wildlife parasites given the difficulty in tracking these organisms. Molecular‐based inferences constitute a promising approach that has yet rarely been applied in the wild. Here, we combined several population genetic analyses including sibship reconstruction to document the genetic structure, patterns of sibship aggregation, and the dispersal dynamics of a non‐native parasite of fish, the freshwater copepod ectoparasite Tracheliastes polycolpus. We collected parasites according to a hierarchical sampling design, with the sampling of all parasites from all host individuals captured in eight sites spread along an upstream–downstream river gradient. Individual multilocus genotypes were obtained from 14 microsatellite markers, and used to assign parasites to full‐sib families and to investigate the genetic structure of Tpolycolpus among both hosts and sampling sites. The distribution of full‐sibs obtained among the sampling sites was used to estimate individual dispersal distances within families. Our results showed that Tpolycolpus sibs tend to be aggregated within sites but not within host individuals. We detected important upstream‐to‐downstream dispersal events of Tpolycolpus between sites (modal distance: 25.4 km; 95% CI [22.9, 27.7]), becoming scarcer as the geographic distance from their family core location increases. Such a dispersal pattern likely contributes to the strong isolation‐by‐distance observed at the river scale. We also detected some downstream‐to‐upstream dispersal events (modal distance: 2.6 km; 95% CI [2.2–23.3]) that likely result from movements of infected hosts. Within each site, the dispersal of free‐living infective larvae among hosts likely contributes to increasing genetic diversity on hosts, possibly fostering the evolutionary potential of T. polycolpus.  相似文献   

4.
Seasonal windows of opportunity are intervals within a year that provide improved prospects for growth, survival, or reproduction. However, few studies have sufficient temporal resolution to examine how multiple factors combine to constrain the seasonal timing and extent of developmental opportunities. Here, we document seasonal changes in milkweed (Asclepias fascicularis)–monarch (Danaus plexippus) interactions with high resolution throughout the last three breeding seasons prior to a precipitous single‐year decline in the western monarch population. Our results show early‐ and late‐season windows of opportunity for monarch recruitment that were constrained by different combinations of factors. Early‐season windows of opportunity were characterized by high egg densities and low survival on a select subset of host plants, consistent with the hypothesis that early‐spring migrant female monarchs select earlier‐emerging plants to balance a seasonal trade‐off between increasing host plant quantity and decreasing host plant quality. Late‐season windows of opportunity were coincident with the initiation of host plant senescence, and caterpillar success was negatively correlated with heatwave exposure, consistent with the hypothesis that late‐season windows were constrained by plant defense traits and thermal stress. Throughout this study, climatic and microclimatic variations played a foundational role in the timing and success of monarch developmental windows by affecting bottom‐up, top‐down, and abiotic limitations. More exposed microclimates were associated with higher developmental success during cooler conditions, and more shaded microclimates were associated with higher developmental success during warmer conditions, suggesting that habitat heterogeneity could buffer the effects of climatic variation. Together, these findings show an important dimension of seasonal change in milkweed–monarch interactions and illustrate how different biotic and abiotic factors can limit the developmental success of monarchs across the breeding season. These results also suggest the potential for seasonal sequences of favorable or unfavorable conditions across the breeding range to strongly affect monarch population dynamics.  相似文献   

5.
Vegetation phenology—the seasonal timing and duration of vegetative phases—is controlled by spatiotemporally variable contributions of climatic and environmental factors plus additional potential influence from human management. We used land surface phenology derived from the Advanced Very High Resolution Radiometer and climate data to examine variability in vegetation productivity and phenological dates from 1989 to 2014 in the U.S. Northwestern Plains, a region with notable spatial heterogeneity in climate, vegetation, and land use. We first analyzed interannual trends in six phenological measures as a baseline. We then demonstrated how including annual‐resolution predictors can provide more nuanced insights into measures of phenology between plant communities and across the ecoregion. Across the study area, higher annual precipitation increased both peak and season‐long productivity. In contrast, higher mean annual temperatures tended to increase peak productivity but for the majority of the study area decreased season‐long productivity. Annual precipitation and temperature had strong explanatory power for productivity‐related phenology measures but predicted date‐based measures poorly. We found that relationships between climate and phenology varied across the region and among plant communities and that factors such as recovery from disturbance and anthropogenic management also contributed in certain regions. In sum, phenological measures did not respond ubiquitously nor covary in their responses. Nonclimatic dynamics can decouple phenology from climate; therefore, analyses including only interannual trends should not assume climate alone drives patterns. For example, models of areas exhibiting greening or browning should account for climate, anthropogenic influence, and natural disturbances. Investigating multiple aspects of phenology to describe growing‐season dynamics provides a richer understanding of spatiotemporal patterns that can be used for predicting ecosystem responses to future climates and land‐use change. Such understanding allows for clearer interpretation of results for conservation, wildlife, and land management.  相似文献   

6.
The trade‐off between within‐host infection rate and transmission to new hosts is predicted to constrain pathogen evolution, and to maintain polymorphism in pathogen populations. Pathogen life‐history stages and their correlations that underpin infection development may change under coinfection with other parasites as they compete for the same limited host resources. Cross‐kingdom interactions are common among pathogens in both natural and cultivated systems, yet their impacts on disease ecology and evolution are rarely studied. The host plant Plantago lanceolata is naturally infected by both Phomopsis subordinaria, a seed killing fungus, as well as Plantago lanceolata latent virus (PlLV) in the Åland Islands, SW Finland. We performed an inoculation assay to test whether coinfection with PlLV affects performance of two P. subordinaria strains, and the correlation between within‐host infection rate and transmission potential. The strains differed in the measured life‐history traits and their correlations. Moreover, we found that under virus coinfection, within‐host infection rate of P. subordinaria was smaller but transmission potential was higher compared to strains under single infection. The negative correlation between within‐host infection rate and transmission potential detected under single infection became positive under coinfection with PlLV. To understand whether within‐host and between‐host dynamics are correlated in wild populations, we surveyed 260 natural populations of P. lanceolata for P. subordinaria infection occurrence. When infections were found, we estimated between‐hosts dynamics by determining pathogen population size as the proportion of infected individuals, and within‐host dynamics by counting the proportion of infected flower stalks in 10 infected plants. In wild populations, the proportion of infected flower stalks was positively associated with pathogen population size. Jointly, our results suggest that the trade‐off between within‐host infection load and transmission may be strain specific, and that the pathogen life‐history that underpin epidemics may change depending on the diversity of infection, generating variation in disease dynamics.  相似文献   

7.
Standard methods for studying the association between two ecologically important variables provide only a small slice of the information content of the association, but statistical approaches are available that provide comprehensive information. In particular, available approaches can reveal tail associations, that is, accentuated or reduced associations between the more extreme values of variables. We here study the nature and causes of tail associations between phenological or population‐density variables of co‐located species, and their ecological importance. We employ a simple method of measuring tail associations which we call the partial Spearman correlation. Using multidecadal, multi‐species spatiotemporal datasets on aphid first flights and marine phytoplankton population densities, we assess the potential for tail association to illuminate two major topics of study in community ecology: the stability or instability of aggregate community measures such as total community biomass and its relationship with the synchronous or compensatory dynamics of the community''s constituent species; and the potential for fluctuations and trends in species phenology to result in trophic mismatches. We find that positively associated fluctuations in the population densities of co‐located species commonly show asymmetric tail associations; that is, it is common for two species’ densities to be more correlated when large than when small, or vice versa. Ordinary measures of association such as correlation do not take this asymmetry into account. Likewise, positively associated fluctuations in the phenology of co‐located species also commonly show asymmetric tail associations. We provide evidence that tail associations between two or more species’ population‐density or phenology time series can be inherited from mutual tail associations of these quantities with an environmental driver. We argue that our understanding of community dynamics and stability, and of phenologies of interacting species, can be meaningfully improved in future work by taking into account tail associations.  相似文献   

8.
Theoretical modeling predicts that both direct and delayed density‐dependence are key factors to generate population cycles. Deciphering density‐dependent processes that lead to variable population growth characterizing different phases of the cycles remains challenging. This is particularly the case for the period of prolonged low densities, which is inherently data deficient. However, demographic analyses based on long‐term capture–mark–recapture datasets can help resolve this question. We relied on a 16‐year (2004–2019) live‐trapping program to analyze the summer demography and movements of a cyclic brown lemming population in the Canadian Arctic. More specifically, we examined if inversely density‐dependent processes could explain why population growth can remain low during the prolonged low phase. We found that the proportion of females in the population was inversely density‐dependent with a strong male‐biased sex ratio at low densities but not at high densities. However, survival of adult females was higher than adult males, but both had lower survival at low densities than at high ones. Distances moved by both adult males and females were density‐dependent, and proportion of females in reproductive condition was weakly density‐dependent as it tended to increase at low density. Individual body condition, measured as monthly change in body mass, was not density‐dependent. Overall, the strong male‐biased sex ratio at very low densities suggests a loss of reproductive potential due to the rarity of females and appears to be the most susceptible demographic factor that could contribute to the prolonged low phase in cyclic brown lemmings. What leads to this sex‐bias in the first place is still unclear, potentially owing to our trapping period limited to the summer, but we suggest that it could be due to high predation rate on breeding females in winter.  相似文献   

9.
Comparative studies of genetic diversity and population structure can shed light on the ecological and evolutionary factors governing host–parasite interactions. Even though invasive parasites are considered of major biological importance, little is known about their adaptative potential when infesting the new hosts. Here, the genetic diversification of Varroa destructor, a novel parasite of Apis mellifera originating from Asia, was investigated using population genetics to determine how the genetic structure of the parasite changed in distinct European populations of its new host. To do so, mites infesting two categories of hosts in four European regions were compared: (a) adapted hosts surviving through means of natural selection, thereby expected to impose strong selective pressure on the mites, and (b) treated host populations, surviving mite infestations because acaricides are applied, therefore characterized by a relaxed selection imposed by the host on the mites. Significant genetic divergence was found across regions, partially reflecting the invasion pattern of V. destructor throughout Europe and indicating local adaptation of the mite to the host populations. Additionally, varying degrees of genotypic changes were found between mites from adapted and treated colonies. Altogether, these results indicate that V. destructor managed to overcome the genetic bottlenecks following its introduction in Europe and that host‐mediated selection fostered changes in the genetic structure of this mite at diverse geographic scales. These findings highlight the potential of parasites to adapt to their local host populations and confirm that adaptations developed within coevolutionary dynamics are a major determinant of population genetic changes.  相似文献   

10.
The demography and dynamics of migratory bird populations depend on patterns of movement and habitat quality across the annual cycle. We leveraged archival GPS‐tagging data, climate data, remote‐sensed vegetation data, and bird‐banding data to better understand the dynamics of black‐headed grosbeak (Pheucticus melanocephalus) populations in two breeding regions, the coast and Central Valley of California (Coastal California) and the Sierra Nevada mountain range (Sierra Nevada), over 28 years (1992–2019). Drought conditions across the annual cycle and rainfall timing on the molting grounds influenced seasonal habitat characteristics, including vegetation greenness and phenology (maturity dates). We developed a novel integrated population model with population state informed by adult capture data, recruitment rates informed by age‐specific capture data and climate covariates, and survival rates informed by adult capture–mark–recapture data and climate covariates. Population size was relatively variable among years for Coastal California, where numbers of recruits and survivors were positively correlated, and years of population increase were largely driven by recruitment. In the Sierra Nevada, population size was more consistent and showed stronger evidence of population regulation (numbers of recruits and survivors negatively correlated). Neither region showed evidence of long‐term population trend. We found only weak support for most climate–demographic rate relationships. However, recruitment rates for the Coastal California region were higher when rainfall was relatively early on the molting grounds and when wintering grounds were relatively cool and wet. We suggest that our approach of integrating movement, climate, and demographic data within a novel modeling framework can provide a useful method for better understanding the dynamics of broadly distributed migratory species.  相似文献   

11.
Climatic effects on breeding phenology vary across organisms and therefore might promote a phenological mismatch in ecologically interacting species, including those engaged in coevolutionary interactions such as brood parasites and their hosts. Recent studies suggest that climatic induced changes in migration phenology may have mismatched cuckoos and their hosts in Europe. However, it is currently unknown whether cuckoo–host phenological mismatch results from different degrees of phenotypic plasticity or to different speeds of microevolutionary processes affecting hosts and parasites. Here we performed 1) cross‐sectional correlations between climate conditions and population level of phenological mismatch between the migratory brood parasite great spotted cuckoo Clamator glandarius and its main resident host in Europe, the magpie Pica pica; and 2) a longitudinal analysis to study within‐individual variation in breeding phenology for individual hosts experiencing different climate conditions over a period of nine years (2005–2013). Cross‐sectional analyses revealed independent and contrary effects of winter and spring temperature on magpie phenology: magpie hosts tend to breed earlier those years with lower February temperatures, however, high temperature in the first half of April spur individuals to lay eggs. Breeding phenology of cuckoos was tuned to that of their magpie host in time and duration. However, annual phenological mismatch between cuckoos and magpie hosts increased with NAO index and January temperature. Longitudinal analyses revealed high individual consistency in magpie host phenology, but a low influence of climate, suggesting that the climatic‐driven phenological mismatch between cuckoos and magpies at the population‐level cannot be explained by a host plastic response to climatic conditions.  相似文献   

12.
Facultative sexual organisms combine sexual and asexual reproduction within a single life cycle, often switching between reproductive modes depending on environmental conditions. These organisms frequently inhabit variable seasonal environments, where favorable periods alternate with unfavorable periods, generating temporally varying selection pressures that strongly influence life history decisions and hence population dynamics. Due to the rapidly accelerating changes in our global environment today, understanding the population dynamics and genetic changes in facultative sexual populations inhabiting seasonal environments is critical to assess and prepare for additional challenges that will affect such ecosystems. In this study, we aimed at obtaining insights into the seasonal population dynamics of the facultative sexual freshwater cnidarian Hydra oligactis through a combination of restriction site‐associated sequencing (RAD‐Seq) genotyping and the collection of phenotypic data on the reproductive strategy of field‐collected hydra strains in a standard laboratory environment. We reliably detected 42 MlGs from the 121 collected hydra strains. Most of MLGs (N = 35, 83.3%) were detected in only one season. Five MLGs (11.9%) were detected in two seasons, one (2.4%) in three seasons and one (2.4%) in all four seasons. We found no significant genetic change during the 2 years in the study population. Clone lines were detected between seasons and even years, suggesting that clonal lineages can persist for a long time in a natural population. We also found that distinct genotypes differ in sexual reproduction frequency, but these differences did not affect whether genotypes reappeared across samplings. Our study provides key insights into the biology of natural hydra populations, while also contributing to understanding the population biology of facultative sexual species inhabiting freshwater ecosystems.  相似文献   

13.
SARS‐CoV‐2 is responsible for a disruptive worldwide viral pandemic, and renders a severe respiratory disease known as COVID‐19. Spike protein of SARS‐CoV‐2 mediates viral entry into host cells by binding ACE2 through the receptor‐binding domain (RBD). RBD is an important target for development of virus inhibitors, neutralizing antibodies, and vaccines. RBD expressed in mammalian cells suffers from low expression yield and high cost. E. coli is a popular host for protein expression, which has the advantage of easy scalability with low cost. However, RBD expressed by E. coli (RBD‐1) lacks the glycosylation, and its antigenic epitopes may not be sufficiently exposed. In the present study, RBD‐1 was expressed by E. coli and purified by a Ni Sepharose Fast Flow column. RBD‐1 was structurally characterized and compared with RBD expressed by the HEK293 cells (RBD‐2). The secondary structure and tertiary structure of RBD‐1 were largely maintained without glycosylation. In particular, the major β‐sheet content of RBD‐1 was almost unaltered. RBD‐1 could strongly bind ACE2 with a dissociation constant (KD) of 2.98 × 10–8 M. Thus, RBD‐1 was expected to apply in the vaccine development, screening drugs and virus test kit.  相似文献   

14.
George Price showed how the effects of natural selection and environmental change could be mathematically partitioned. This partitioning may be especially useful for understanding host–parasite coevolution, where each species represents the environment for the other species. Here, we use coupled Price equations to study this kind of antagonistic coevolution. We made the common assumption that parasites must genetically match their host''s genotype to avoid detection by the host''s self/nonself recognition system, but we allowed for the possibility that non‐matching parasites have some fitness. Our results show how natural selection on one species results in environmental change for the other species. Numerical iterations of the model show that these environmental changes can periodically exceed the changes in mean fitness due to natural selection, as suggested by R.A. Fisher. Taken together, the results give an algebraic dissection of the eco‐evolutionary feedbacks created during host–parasite coevolution.  相似文献   

15.
The effect of spring temperature on spring phenology is well understood in a wide range of taxa. However, studies on how winter conditions may affect spring phenology are underrepresented. Previous work on Anthocharis cardamines (orange tip butterfly) has shown population‐specific reaction norms of spring development in relation to spring temperature and a speeding up of post‐winter development with longer winter durations. In this experiment, we examined the effects of a greater and ecologically relevant range of winter durations on post‐winter pupal development of A. cardamines of two populations from the United Kingdom and two from Sweden. By analyzing pupal weight loss and metabolic rate, we were able to separate the overall post‐winter pupal development into diapause duration and post‐diapause development. We found differences in the duration of cold needed to break diapause among populations, with the southern UK population requiring a shorter duration than the other populations. We also found that the overall post‐winter pupal development time, following removal from winter cold, was negatively related to cold duration, through a combined effect of cold duration on diapause duration and on post‐diapause development time. Longer cold durations also lead to higher population synchrony in hatching. For current winter durations in the field, the A. cardamines population of southern UK could have a reduced development rate and lower synchrony in emergence because of short winters. With future climate change, this might become an issue also for other populations. Differences in winter conditions in the field among these four populations are large enough to have driven local adaptation of characteristics controlling spring phenology in response to winter duration. The observed phenology of these populations depends on a combination of winter and spring temperatures; thus, both must be taken into account for accurate predictions of phenology.  相似文献   

16.
The processes leading to the emergence of new species are poorly understood in marine plankton, where weak physical barriers and homogeneous environmental conditions limit spatial and ecological segregation. Here, we combine molecular and ecological information from a long‐term time series and propose Pseudo‐nitzschia allochrona, a new cryptic planktonic diatom, as a possible case of speciation by temporal segregation. The new species differs in several genetic markers (18S, 28S and ITS rDNA fragments and rbcL) from its closest relatives, which are morphologically very similar or identical, and is reproductively isolated from its sibling species P. arenysensis. Data from a long‐term plankton time series show P. allochrona invariably occurring in summer–autumn in the Gulf of Naples, where its closely related species P. arenysensis, P. delicatissima, and P. dolorosa are instead found in winter–spring. Temperature and nutrients are the main factors associated with the occurrence of P. allochrona, which could have evolved in sympatry by switching its phenology and occupying a new ecological niche. This case of possible speciation by time shows the relevance of combining ecological time series with molecular information to shed light on the eco‐evolutionary dynamics of marine microorganisms.  相似文献   

17.
  1. Parasites are integral to ecosystem functioning yet often overlooked. Improved understanding of host–parasite associations is important, particularly for wide‐ranging species for which host range shifts and climate change could alter host–parasite interactions and their effects on ecosystem function.
  2. Among the most widely distributed mammals with diverse diets, gray wolves (Canis lupus) host parasites that are transmitted among canids and via prey species. Wolf–parasite associations may therefore influence the population dynamics and ecological functions of both wolves and their prey. Our goal was to identify large‐scale processes that shape host–parasite interactions across populations, with the wolf as a model organism.
  3. By compiling data from various studies, we examined the fecal prevalence of gastrointestinal parasites in six wolf populations from two continents in relation to wolf density, diet diversity, and other ecological conditions.
  4. As expected, we found that the fecal prevalence of parasites transmitted directly to wolves via contact with other canids or their excreta was positively associated with wolf density. Contrary to our expectations, the fecal prevalence of parasites transmitted via prey was negatively associated with prey diversity. We also found that parasite communities reflected landscape characteristics and specific prey items available to wolves.
  5. Several parasite taxa identified in this study, including hookworms and coccidian protozoans, can cause morbidity and mortality in canids, especially in pups, or in combination with other stressors. The density–prevalence relationship for parasites with simple life cycles may reflect a regulatory role of gastrointestinal parasites on wolf populations. Our result that fecal prevalence of parasites was lower in wolves with more diverse diets could provide insight into the mechanisms by which biodiversity may regulate disease. A diverse suite of predator–prey interactions could regulate the effects of parasitism on prey populations and mitigate the transmission of infectious agents, including zoonoses, spread via trophic interactions.
  相似文献   

18.
Many parasitoids have single‐locus complementary sex determination (sl‐CSD), which produces sterile or inviable males when homozygous at the sex determining locus. A previous study theoretically showed that small populations have elevated risks of extinction due to the positive feedback between inbreeding and small population size, referred to as the diploid male vortex. A few modeling studies have suggested that the diploid male vortex may not be as common because balancing selection at sex determining loci tends to maintain high allelic diversity in spatially structured populations. However, the generality of the conclusion is yet uncertain, as they were drawn either from models developed for particular systems or from a general‐purpose competition model. To attest the conclusion, we study several well‐studied host–parasitoid models that incorporate functional response specifying the number of attacked hosts given a host density and derive the conditions for a diploid male vortex in a single population. Then, we develop spatially structured individual‐based versions of the models to include female behavior, diploid male fertility, and temporal fluctuations. The results show that producing a handful of successful offspring per female parasitoid could enable parasitoid persistence when a typical number of CSD alleles are present. The effect of functional response depends on the levels of fluctuations in host abundance, and inviable or partially fertile diploid males and a small increase in dispersal can alleviate the risk of a diploid male vortex. Our work supports the generality of effective genetic rescue in spatially connected parasitoid populations with sl‐CSD. However, under more variable climate, the efficacy of the CSD mechanism may substantially decline.  相似文献   

19.
In recent decades, a rapid range expansion of the golden jackal (Canis aureus) towards Northern and Western Europe has been observed. The golden jackal is a medium‐sized canid, with a broad and flexible diet. Almost 200 different parasite species have been reported worldwide from C. aureus, including many parasites that are shared with dogs and cats and parasite species of public health concern. As parasites may follow the range shifts of their host, the range expansion of the golden jackal could be accompanied by changes in the parasite fauna in the new ecosystems. In the new distribution area, the golden jackal could affect ecosystem equilibrium, e.g., through changed competition situations or predation pressure. In a niche modeling approach, we project the future climatic habitat suitability of the golden jackal in Europe in the context of whether climatic changes promote range expansion. We use an ensemble forecast based on six presence‐absence algorithms to estimate the climatic suitability of C. aureus for different time periods up to the year 2100 considering different IPCC scenarios on future development. As predictor variables, we used six bioclimatic variables provided by worldclim. Our results clearly indicate that areas with climatic conditions analogous to those of the current core distribution area of the golden jackal in Europe will strongly expand towards the north and the west in future decades. Thus, the observed range expansion may be favored by climate change. The occurrence of stable populations can be expected in Central Europe. With regard to biodiversity and public health concerns, the population and range dynamics of the golden jackal should be surveyed. Correlative niche models provide a useful and frequently applied tool for this purpose. The results can help to make monitoring more efficient by identifying areas with suitable habitat and thus a higher probability of occurrence.  相似文献   

20.
Fecal microbial biomarkers represent a less invasive alternative for acquiring information on wildlife populations than many traditional sampling methodologies. Our goal was to evaluate linkages between fecal microbiome communities in Rocky Mountain elk (Cervus canadensis) and four host factors including sex, age, population, and physical condition (body‐fat). We paired a feature‐selection algorithm with an LDA‐classifier trained on elk differential bacterial abundance (16S‐rRNA amplicon survey) to predict host health factors from 104 elk microbiomes across four elk populations. We validated the accuracy of the various classifier predictions with leave‐one‐out cross‐validation using known measurements. We demonstrate that the elk fecal microbiome can predict the four host factors tested. Our results show that elk microbiomes respond to both the strong extrinsic factor of biogeography and simultaneously occurring, but more subtle, intrinsic forces of individual body‐fat, sex, and age‐class. Thus, we have developed and described herein a generalizable approach to disentangle microbiome responses attributed to multiple host factors of varying strength from the same bacterial sequence data set. Wildlife conservation and management presents many challenges, but we demonstrate that non‐invasive microbiome surveys from scat samples can provide alternative options for wildlife population monitoring. We believe that, with further validation, this method could be broadly applicable in other species and potentially predict other measurements. Our study can help guide the future development of microbiome‐based monitoring of wildlife populations and supports hypothetical expectations found in host‐microbiome theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号