首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antibodies directed against whole bovine nasal-cartilage proteoglycan and against the hyaluronic acid-binding region and chondroitin sulphate peptides from the same molecule were used in immunodiffusion and immunoelectromigration experiments. Proteoglycans from bovine nasal and tracheal cartilage showed immunological identity, with all three antisera. Proteoglycans from pig hip articular cartilage, dog hip articular cartilage, human tarsal articular cartilage and rat chondrosarcoma reacted with all the antisera and showed immunological identity with the corresponding structures isolated from bovine nasal-cartilage proteoglycans. In contrast, proteoglycans from rabbit articular cartilage, rabbit nasal cartilage and cultured chick limb buds did not react with the antibodies directed against the hyaluronic acid-binding region, though reacting with antibodies raised against whole proteoglycan monomer and against chondroitin sulphate peptides. All the proteoglycans gave two precipitation lines with the anti-(chondroitin sulphate peptide) antibodies. Similarly, the proteoglycans reacting with the anti-(hyaluronic acid-binding region) antibodies gave two precipitation lines. The results indicate the presence of at least two populations of aggregating proteoglycan monomers in cartilage. The relative affinity of the antibodies for cartilage proteoglycans and proteoglycan substructures from various species was determined by radioimmunoassay. The affinity of the anti-(hyaluronic acid-binding region) antibodies for the proteoglycans decreased in the order bovine, dog, human and pig cartilage. Rat sternal-cartilage and rabbit articular-cartilage proteoglycans reacted weakly, whereas chick limb-bud and chick sternal-cartilage proteoglycans did not react. In contrast, the affinity of antibodies to chondroitin sulphate peptides for proteoglycans increased in the order bovine cartilage, chick limb bud and chick sternal cartilage, dog cartilage, rat chondrosarcoma, human cartilage, pig cartilage, rat sternal cartilage and rabbit cartilage.  相似文献   

2.
Immunization of rabbits with outer membranes (OM) of Neisseria gonorrhoeae produced antibodies directed against outer-membrane proteins PI and PIII. The antibodies directed against PIII reacted equally well on Western blots with all strains tested, but antibodies directed against PI reacted only with the homologous strain. When purified PIB was used for immunization the immune response was quite different: the sera obtained reacted with both homologous and heterologous PIB types and also reacted with strains expressing PIA. Western blotting of peptides produced by sequential cleavage of PIB revealed that the antigenic determinants recognized by anti-OM sera were predominantly located in the central surface-exposed region of PIB, as is the epitope recognized by the protective anti-PIB monoclonal antibody SM24. In contrast antibodies produced by immunization with purified PI reacted with antigenic determinants in the N-terminal portion of PIB. Nevertheless these determinants are accessible to immune attack on the native protein since the anti-PI sera were opsonic and were strongly bactericidal for both PIA- and PIB-expressing strains.  相似文献   

3.

Background

Articular cartilage displays a poor repair capacity. The aim of cell-based therapies for cartilage defects is to repair damaged joint surfaces with a functional replacement tissue. Currently, chondrocytes removed from a healthy region of the cartilage are used but they are unable to retain their phenotype in expanded culture. The resulting repair tissue is fibrocartilaginous rather than hyaline, potentially compromising long-term repair. Mesenchymal stem cells, particularly bone marrow stromal cells (BMSC), are of interest for cartilage repair due to their inherent replicative potential. However, chondrocyte differentiated BMSCs display an endochondral phenotype, that is, can terminally differentiate and form a calcified matrix, leading to failure in long-term defect repair. Here, we investigate the isolation and characterisation of a human cartilage progenitor population that is resident within permanent adult articular cartilage.

Methods and Findings

Human articular cartilage samples were digested and clonal populations isolated using a differential adhesion assay to fibronectin. Clonal cell lines were expanded in growth media to high population doublings and karyotype analysis performed. We present data to show that this cell population demonstrates a restricted differential potential during chondrogenic induction in a 3D pellet culture system. Furthermore, evidence of high telomerase activity and maintenance of telomere length, characteristic of a mesenchymal stem cell population, were observed in this clonal cell population. Lastly, as proof of principle, we carried out a pilot repair study in a goat in vivo model demonstrating the ability of goat cartilage progenitors to form a cartilage-like repair tissue in a chondral defect.

Conclusions

In conclusion, we propose that we have identified and characterised a novel cartilage progenitor population resident in human articular cartilage which will greatly benefit future cell-based cartilage repair therapies due to its ability to maintain chondrogenicity upon extensive expansion unlike full-depth chondrocytes that lose this ability at only seven population doublings.  相似文献   

4.
Identification of progenitor/stem cell populations that differentiate specifically towards superficial zone articular chondrocytes is an unmet challenge for cartilage tissue engineering. Using fluorescence activated cell sorting (FACS) analysis we found a characteristic pattern of "side population" (SP) stem cells identified by the Hoechst 33342 dye. We established micromass cultures from this population of cells and tested their chondrogeneic potential. Control (untreated) cultures were minimally stained for Alcian blue - a marker of chondrogenesis. However, with BMP-7 treatment, Alcian blue staining was increased. Superficial zone protein - a specific marker for articular cartilage superficial zone chondrocytes - increased with BMP-7 and/or TGF-beta1 treatment in SP micromass cultures. Our results demonstrate the presence of stem/progenitor cells in the SP fraction isolated from the surface zone of bovine cartilage and have the ability to specifically differentiate towards the superficial zone articular chondrocyte.  相似文献   

5.
Many monoclonal antibodies that react with the lacto-N-fucopentaose III (LNF III) antigenic determinant, Gal beta 1-4(Fuc alpha 1-3)GlcNAc beta 1-3Gal beta 1-4Glc, have been described recently. The terminal trisaccharide of this determinant, fucosyllactosamine, is present on glycolipids and glycoproteins and on the surface of granulocytes, monocytes, and other cells. To study the structural and genetic diversity of these antibodies, syngeneic anti-idiotypic monoclonal antibodies were produced in BALB/c mice against PMN 6, a monoclonal antibody directed against this sequence. Anti-idiotypic antibodies 6B1 and 6C4 reacted with 50% of a panel of 20 anti-LNF III monoclonal antibodies, whereas 6A3 reacted strongly only with PMN 6. This indicates that the determinants recognized by 6C4 and 6B1 represent major cross-reactive idiotopes of this family of antibodies. The binding of idiotypic antibodies to a glycolipid bearing this antigenic determinant was completely inhibited by the three anti-idiotypic antibodies, 6A3, 6B1, and 6C4. The idiotopes could be demonstrated on the heavy chain of the monoclonal antibodies by an antibody transfer technique when mild reducing conditions were employed, but a high concentration of reducing agent destroyed the idiotypic determinants. This suggests that the anti-idiotypic antibodies recognize conformational structures expressed on the heavy chain molecules. The binding of 18 monoclonal antibodies to two glycolipid antigens and to a fucosyllactosamine-bovine serum albumin conjugate was compared. Antibodies that possessed the 6C4 cross-reactive idiotope bound to fucosyllactosamine-bovine serum albumin more weakly than idiotype-negative antibodies (p = 0.001). This suggests that the 6C4-positive antibodies might represent germline structures.  相似文献   

6.
Multiple mAb to human C-reactive protein (CRP) were prepared which reacted preferentially with either native CRP, modified CRP (expressing "neo-CRP" determinants) or both forms of the molecule. These mAb were divided into four groups according to their binding characteristics to various CRP preparations and CRP peptides by using a combination of ELISA, dot blot, and Western blot assays; they were further characterized based upon their reactivity with CRP in the presence of calcium and inhibition by phosphorylcholine. The first group consisted of mAb that reacted only with native CRP, and served to define four distinct native CRP epitopes. The second group consisted of mAb that reacted with native CRP and also with CRP modified by direct immobilization on polystyrene plates, urea-chelation or SDS treatment in the absence of calcium, thus identifying a fifth native CRP epitope; these mAb displayed significantly greater reactivity with native than with modified CRP. The third group included mAb that reacted only with modified CRP and with the larger amino-terminal fragment (residues 1-146) of pronase-cleaved CRP. The fourth group included mAb that reacted only with modified CRP and with the smaller carboxyl-terminal fragment (residues 147-206) of pronase-cleaved CRP; most of these antibodies also reacted with the carboxyl-terminal octapeptide (residues 199-206) of CRP. These experiments have identified mAb that react preferentially with distinct conformational and sequence-determined epitopes of native and modified forms of the CRP molecule, respectively; provide partial identification of the epitopes with which they interact; point to the presence of at least five epitopes on native CRP and at least three epitopes on modified CRP; and provide antibodies suitable for identification and quantitation of native and modified forms of CRP. The mAb directed against neo-CRP epitopes may help identify the presence of this pentraxin and antigenically-related proteins at previously unappreciated sites.  相似文献   

7.
Cartilage defects are a known risk factor for osteoarthritis. Estimation of structural changes in these defects could help us to identify high risk defects and thus to identify patients that are susceptible for the onset and progression of osteoarthritis. Here, we present an algorithm combined with computational modeling to simulate the disorganization of collagen fibril network in injured cartilage. Several potential triggers for collagen disorganization were tested in the algorithm following the assumption that disorganization is dependent on the mechanical stimulus of the tissue. We found that tensile tissue stimulus alone was unable to preserve collagen architecture in intact cartilage as collagen network reoriented throughout the cartilage thickness. However, when collagen reorientation was based on both tensile tissue stimulus and tensile collagen fibril strains or stresses, the collagen network architecture was preserved in intact cartilage. Using the same approach, substantial collagen reorientation was predicted locally near the cartilage defect and particularly at the cartilage–bone interface. The developed algorithm was able to predict similar structural findings reported in the literature that are associated with experimentally observed remodeling in articular cartilage. The proposed algorithm, if further validated, could help to predict structural changes in articular cartilage following post-traumatic injury potentially advancing to impaired cartilage function.  相似文献   

8.
Non-collagenous proteins from the articular cartilage of normal subjects and patients with degenerative joint disease were extracted sequentially. Proteoglycans and the other glycoproteins were more extractable from the osteoarthritic cartilage at lower ionic strength than those from the normal cartilage. A 50-kD protein which seems specific to osteoarthritic cartilage was identified. Three different populations of proteoglycans were purified from normal and only two from osteoarthritic cartilage. Moreover, greater amounts of albumin and fibronectin were found in the pathological cartilage. No differences were observed between link proteins from normal and osteoarthritic cartilage, nor in their molecular weight or the amounts extracted.  相似文献   

9.
IntroductionStructural alterations in intra-articular and subchondral compartments are hallmarks of osteoarthritis, a degenerative disease that causes pain and disability in the aging population. Protein kinase C delta (PKC-δ) plays versatile functions in cell growth and differentiation, but its role in the articular cartilage and subchondral bone is not known.MethodsHistological analysis including alcian blue, safranin O staining and fluorochrome labeling were used to reveal structural alterations at the articular cartilage surface and bone–cartilage interface in PKC-δ knockout (KO) mice. The morphology and organization of chondrocytes were studied using confocal microscopy. Glycosaminoglycan content was studied by micromass culture of chondrocytes of PKC-δ KO mice.ResultsWe uncovered atypical structural demarcation between articular cartilage and subchondral bone of PKC-δ KO mice. Histology analyses revealed a thickening of the articular cartilage and calcified bone–cartilage interface, and decreased safranin O staining accompanied by an increase in the number of hypertrophic chondrocytes in the articular cartilage of PKC-δ KO mice. Interestingly, loss of demarcation between articular cartilage and bone was concomitant with irregular chondrocyte morphology and arrangement. Consistently, in vivo calcein labeling assay showed an increased intensity of calcein labeling in the interface of the growth plate and metaphysis in PKC-δ KO mice. Furthermore, in vitro culture of chondrocyte micromass showed a decreased alcian blue staining of chondrocyte micromass in the PKC-δ KO mice, indicative of a reduced level of glycosaminoglycan production.ConclusionsOur data imply a role for PKC-δ in the osteochondral plasticity of the interface between articular cartilage and the osteochondral junction.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0720-4) contains supplementary material, which is available to authorized users.  相似文献   

10.
Tissue engineering (TE) has been proven usefulness in cartilage defect repair. For effective cartilage repair, the structural orientation of the cartilage scaffold should mimic that of native articular cartilage, as this orientation is closely linked to cartilage mechanical functions. Using thermal-induced phase separation (TIPS) technology, we have fabricated an oriented cartilage extracellular matrix (ECM)-derived scaffold with a Young''s modulus value 3 times higher than that of a random scaffold. In this study, we test the effectiveness of bone mesenchymal stem cell (BMSC)-scaffold constructs (cell-oriented and random) in repairing full-thickness articular cartilage defects in rabbits. While histological and immunohistochemical analyses revealed efficient cartilage regeneration and cartilaginous matrix secretion at 6 and 12 weeks after transplantation in both groups, the biochemical properties (levels of DNA, GAG, and collagen) and biomechanical values in the oriented scaffold group were higher than that in random group at early time points after implantation. While these differences were not evident at 24 weeks, the biochemical and biomechanical properties of the regenerated cartilage in the oriented scaffold-BMSC construct group were similar to that of native cartilage. These results demonstrate that an oriented scaffold, in combination with differentiated BMSCs can successfully repair full-thickness articular cartilage defects in rabbits, and produce cartilage enhanced biomechanical properties.  相似文献   

11.
The synthesis and distribution of hyaluronate and proteoglycan were studied in bovine articular cartilage in short-term explant culture with [3H]acetate and H2(35)SO4 as precursors. The incorporation of [3H]acetate into hyaluronate and sulphated glycosaminoglycans was linear with time, except that hyaluronate synthesis showed a marked lag at the beginning of the incubation. [3H]Hyaluronate represented 4-7% of the total [3H]glycosaminoglycans synthesized over a 6 h period. However, the distributions of [3H]hyaluronate and 3H-labelled sulphated glycosaminoglycans were different: about 50% of the newly synthesized [3H]hyaluronate appeared in the medium, compared with less than 5% of the 3H-labelled sulphated proteoglycans. A pulse-chase experiment revealed that the release of newly synthesized [3H]hyaluronate from cartilage was rapid. No difference was observed in the distribution of [3H]hyaluronate between medium and tissue by cartilage from either the superficial layer or the deep layer of articular cartilage. When articular cartilage was incubated with 0.4 mM-cycloheximide, proteoglycan synthesis was markedly inhibited, whereas the synthesis of hyaluronate was only partially inhibited and resulted in more of the newly synthesized hyaluronate being released into the medium. Analysis of the hydrodynamic size of [3H]hyaluronate isolated from cartilage on Sephacryl-1000 revealed one population that was eluted as a broad peak (Kav. less than 0.7), compared with two populations (Kav. greater than 0.5 and less than 0.5) appearing in the medium of cultures. These data suggest that hyaluronate is synthesized in excess of proteoglycan synthesis and that the hyaluronate that is not complexed with proteoglycans is rapidly lost from the tissue.  相似文献   

12.
Cartilage fibrils contain collagen II as the major constituent, but the presence of additional components, minor collagens, and noncollagenous glycoproteins is thought to be crucial for modulating several fibril properties. We have examined the distribution of two fibril constituents—decorin and collagen IX—in samples of fibril fragments obtained after bovine cartilage homogenization. Decorin was preferentially associated with a population of thicker fibril fragments from adult articular cartilage, but was not present on the thinnest fibrils. The binding was specific for the gap regions of the fibrils, and depended on the decorin core protein. Collagen IX, by contrast, predominated in the population with the thinnest fibrils, and was scarce on wider fibrils. Double-labeling experiments demonstrated the coexistence of decorin and collagen IX in some fibrils of intermediate diameter, although most fibril fragments from adult cartilage were strongly positive for one component and lacked the other. Fibril fragments from fetal epiphyseal cartilage showed a different pattern, with decorin and collagen IX frequently colocalized on fragments of intermediate and large diameters. Hence, the presence of collagen IX was not exclusive for fibrils of small diameter. These results establish that articular cartilage fibrils are biochemically heterogeneous. Different populations of fibrils share collagen II, but have distinct compositions with respect to macromolecules defining their surface properties.  相似文献   

13.
Pham A  Hull ML 《Journal of biomechanics》2007,40(14):3223-3229
When used in in vitro studies, soft tissues such as the meniscus and articular cartilage are susceptible to dehydration and its effects, such as changes in size and shape as well as changes in structural and material properties. To quantify the effect of dehydration on the meniscus and articular cartilage, the first two objectives of this study were to (1) determine the percent change in meniscal dimensions over time due to dehydration, and (2) determine the percent change in articular cartilage thickness due to dehydration. To satisfy these two objectives, the third objective was to develop a new laser-based three-dimensional coordinate digitizing system (3-DCDS II) that can scan either the meniscus or articular cartilage surface within a time such that there is less than a 5% change in measurements due to dehydration. The new instrument was used to measure changes in meniscal and articular cartilage dimensions of six cadaveric specimens, which were exposed to air for 120 and 130 min, respectively. While there was no change in meniscal width, meniscal height decreased linearly by 4.5% per hour. Articular cartilage thickness decreased nonlinearly at a rate of 6% per hour after 10 min, and at a rate of 16% per hour after 130 min. The system bias and precision of the new instrument at 0 degrees slope of the surface being scanned were 0.0 and 2.6 microm, respectively, while at 45 degrees slope the bias and precision were 31.1 and 22.6 microm, respectively. The resolution ranged between 200 and 500 microm. Scanning an area of 60 x 80 mm (approximately the depth and width of a human tibial plateau) took 8 min and a complete scan of all five sides of a meniscus took 24 min. Thus, the 3-DCDS II can scan an entire meniscus with less than 2% change in dimensions due to dehydration and articular cartilage with less than 0.4% change. This study provides new information on the amount of time that meniscal tissue and articular cartilage can be exposed to air before marked changes in size and shape, and possibly biomechanical, structural and material properties, occur. The new 3-DCDS II designed for this study provides fast and accurate dimensional measurements of both soft and hard tissues.  相似文献   

14.
The functional integrity of the articulating cartilage surface is a critical determinant of joint health. Although a variety of techniques exist to characterize the structural changes in the tissue with osteoarthritis (OA), some with extremely high resolution, most lack the ability to detect and monitor the functional changes that accompany the structural deterioration of this essential bearing surface. Atomic force microscopy (AFM) enables the acquisition of both structural and mechanical properties of the articular cartilage surface, with up to nanoscale resolution, making it particularly useful for evaluating the functional behavior of the macromolecular network forming the cartilage surface, which disintegrates in OA.In the present study, AFM was applied to the articular cartilage surfaces from six pairs of canine knee joints with post-traumatic OA. Microstructure (RMS roughness) and micromechanics (dynamic indentation modulus, E?) of medial femoral condyle cartilages were compared between contralateral controls and cruciate-transected knee joints, which develop early signs of OA by three months after surgery.Results reveal a significant increase in RMS roughness and a significant four-fold decrease in E? in cartilages from cruciate-transected joints versus contralateral controls. Compared to previous reports of changes in bulk mechanics, AFM was considerably more sensitive at detecting early cartilage changes due to cruciate-deficiency. The use of AFM in this study provides important new information on early changes in the natural history of OA because of its ability to sensitively detect and measure local structural and functional changes of the articular cartilage surface, the presumptive site of osteoarthritic initiation.  相似文献   

15.
We investigated the effects of short- (8- and 24-h) and long-term (3 weeks) exposure to systemic normobaric hypoxia (13%) on the gene expression level of structural proteins and growth factors in knee joint cartilage of rabbits. Collagen type Ia2, II, and Va1, TGF-beta1, and b-FGF were upregulated after short-term hypoxia in both menisci, but not in articular cartilage. In contrast, long-term hypoxia downregulated gene expression level of collagens, aggrecan, and growth factors in articular cartilage and meniscal fibrocartilage. Interestingly, gene expression levels of non-collagenous proteins biglycan, decorin, and versican were not affected by short-term or by long-term hypoxia in knee joint cartilage. The present study suggests that changes in oxygen level differentially affect gene expression levels of growth factors, collagens, and non-collagenous proteins in normal knee joint cartilage in rabbits.  相似文献   

16.
In 28 dogs the distal articular cartilage of the femur was removed and the regenerating articular surface on the 70th postoperative day was studied histochemically for hexokinase, glucose-6-phosphatase, phosphohexose-isomerase, fructose-1, 6-diphosphatase, aldolase, glyceraldehyde-3-phosphate dehydrogenase, lactate dehydrogenase, lactate dehydrogenase isoenzymes, phosphoglucomutase, phosphorylase, glycogen synthetase, UDP--glucose dehydrogenase, and UDP-glucuronic acid-4-epimerase. The articular surface consisted of fibrous tissue and of cartilage islets. The latter contained cells differentiating into cartilage and young chondrocytes. The glycolytic enzymes reacted positively in the regenerative articular surface. Enzyme activities were higher in the cells (particularly the chondroblasts and young chondrocytes) of the cartilage islets than in the connective tissue. In the cells differentiations into cartilage, beside the LDH isoenzymes characteristic of glycolysis, a significant LDH1 and LDH2 activity was observed. At the same site the presence of fructose-1, 6-diphosphatase-activity could be assumed, but there was no glucose-6-phosphatase activity. Glycogen synthesis proceeded in the cells of the cartilage islets and UDP-glucuronic acid-4-epimerase activity was observed in the differentiated cells. UDP-glucose dehydrogenase activity was positive in every section of the articular surface.  相似文献   

17.
Conformation-specific antibodies against distinct regions of Factor X were employed to locate antigenic determinants which are altered during zymogen activation or by metal binding. Anti-Factor X antibodies, raised in rabbits against Factor X, were purified by affinity chromatography using Factor X covalently bound to Sepharose. Quantitative equilibrium and kinetic measurements of precipitation of Factor X and Factor Xa by antibodies indicated differences in the antigenic structure of the zymogen and the enzyme form of factor X. The factor X antibodies were further fractionated by sequential immunoabsorption using fragments of Factor X and Factor Xa. With conformation-specific antibodies directed against the heavy chain and the light chain of Factor X, zymogen activation was shown to involve a structural transition in the heavy chain but not the light chain. Antibodies directed against the activation peptide domain 1-51 of the heavy chain, the trypsin-like region of the heavy chain 52-290, and the substrate-binding site suggest a generalized conformational transition in the heavy chain. Antibodies were isolated which are specific for the Factor X:Ca(II) complex and bind to Factor X only in the presence of metal ions. Subfractions were directed against either the heavy chain or the light chain, indicating that both the heavy chain and the light chain of Factor X undergo a metal-induced conformational transition. Half-maximal antibody-factor X interaction was observed at 0.13 mM CaCl2 for the light chain and 0.7 mM CaCl2 for the heavy chain. These results indicate that zymogen activation is limited to structural changes in the heavy chain, but metal binding is associated with changes in the structure of both the heavy and light chains. Metal-dependent binding of Factor X to the platelet Factor Xa receptor after activation may involve surfaces of the heavy as well as the light chains.  相似文献   

18.
A bovine alloreactive cell population was subjected to complement-dependent lysis with monoclonal antibody (mAb) IL-A11. The original population and the population depleted of cells bearing the determinant recognized by mAb IL-A11 were cloned. Parent cultures and 21 clones were examined for cytolytic function and for expression of determinants recognized by mAb IL-A11 and two additional mAb, IL-A12 and IL-A17. Clones could be classified according to maximal achievable levels of cytolysis by using Theileria parva-infected bovine lymphoblastoid target cells. In this way, three groups were identified--one capable of high level cytolysis, one of intermediate levels, and one group comprising apparently noncytolytic clones. The clones in the first group reacted with mAb IL-A17; those in the second and third groups, with mAb IL-A11 and IL-A12. It was shown that cytotoxicity effected by IL-A17+ clones could be inhibited by this mAb and also by a mAb directed to MHC class I determinants on target cells. Conversely, cytotoxicity effected by IL-A11+/IL-A12+ clones could be inhibited by mAb IL-A11 and by a mAb directed to MHC class II determinants on target cells. The levels of expression of class I and class II determinants on target cells correlated with the levels of killing by clones of the IL-A17+ phenotype and clones of the IL-A11+/IL-A12+ phenotype, respectively. The results indicate that cytotoxic bovine T lymphocyte clones specific for class I MHC antigens and both cytotoxic and noncytotoxic clones specific for class II MHC antigens can be obtained. Further, their specificity for class I or class II antigens can be determined by phenotyping with mAb.  相似文献   

19.
The collagen framework of hyaline cartilages, including articular cartilage, consists largely of type II collagen that matures from a cross-linked heteropolymeric fibril template of types II, IX, and XI collagens. In the articular cartilages of adult joints, type III collagen makes an appearance in varying amounts superimposed on the original collagen fibril network. In a study to understand better the structural role of type III collagen in cartilage, we find that type III collagen molecules with unprocessed N-propeptides are present in the extracellular matrix of adult human and bovine articular cartilages as covalently cross-linked polymers extensively cross-linked to type II collagen. Cross-link analyses revealed that telopeptides from both N and C termini of type III collagen were linked in the tissue to helical cross-linking sites in type II collagen. Reciprocally, telopeptides from type II collagen were recovered cross-linked to helical sites in type III collagen. Cross-linked peptides were also identified in which a trifunctional pyridinoline linked both an α1(II) and an α1(III) telopeptide to the α1(III) helix. This can only have arisen from a cross-link between three different collagen molecules, types II and III in register staggered by 4D from another type III molecule. Type III collagen is known to be prominent at sites of healing and repair in skin and other tissues. The present findings emphasize the role of type III collagen, which is synthesized in mature articular cartilage, as a covalent modifier that may add cohesion to a weakened, existing collagen type II fibril network as part of a chondrocyte healing response to matrix damage.  相似文献   

20.
Eutherian mammals and saurischian dinosaurs both evolved lineages of huge terrestrial herbivores. Although significantly more saurischian dinosaurs were giants than eutherians, the long bones of both taxa scale similarly and suggest that locomotion was dynamically similar. However, articular cartilage is thin in eutherian mammals but thick in saurischian dinosaurs, differences that could have contributed to, or limited, how frequently gigantism evolved. Therefore, we tested the hypothesis that sub-articular bone, which supports the articular cartilage, changes shape in different ways between terrestrial mammals and dinosaurs with increasing size. Our sample consisted of giant mammal and reptile taxa (i.e., elephants, rhinos, sauropods) plus erect and non-erect outgroups with thin and thick articular cartilage. Our results show that eutherian mammal sub-articular shape becomes narrow with well-defined surface features as size increases. In contrast, this region in saurischian dinosaurs expands and remains gently convex with increasing size. Similar trends were observed in non-erect outgroup taxa (monotremes, alligators), showing that the trends we report are posture-independent. These differences support our hypothesis that sub-articular shape scales differently between eutherian mammals and saurischian dinosaurs. Our results show that articular cartilage thickness and sub-articular shape are correlated. In mammals, joints become ever more congruent and thinner with increasing size, whereas archosaur joints remained both congruent and thick, especially in sauropods. We suggest that gigantism occurs less frequently in mammals, in part, because joints composed of thin articular cartilage can only become so congruent before stress cannot be effectively alleviated. In contrast, frequent gigantism in saurischian dinosaurs may be explained, in part, by joints with thick articular cartilage that can deform across large areas with increasing load.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号