首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Iron fortification of rice seed by the soybean ferritin gene   总被引:79,自引:0,他引:79  
  相似文献   

2.
3.
We have developed a highly sensitive in situ Western hybridization technique to study tissue-specific expression of foreign and endogenous genes in transgenic and non-transformed rice seed. The expression pattern of the soybean ferritin gene directed by a rice glutelin gene promoter, GluB-1, in transgenic rice seed revealed by this method was exactly the same as that revealed by immunological tissue printing but much clearer than the latter, and corresponded well to the results of GluB-1 promoter characterization studies. This method provides an alternative choice for studying the tissue-specific expression of a promoter, omitting the complicated transgenic procedure. The method can also be used to study the expression and accumulation pattern of endogenous genes, such as glutelin and prolamine genes, in non-transformed plants.Abbreviations DAF Days after flowering - GUS -Glucuronidase - GFP Green fluorescent protein - TBS Tris-HCl-buffered saline - TBST TBS with Tween-20Communicated by H. Ebinuma  相似文献   

4.
5.
We compared the effect of the rice storage protein glutelin B-1 (GluB-1) terminator with the nopaline synthase (Nos) terminator on the accumulation of the modified house dust mite allergen mDer f 2 driven by the maize ubiquitin promoter in transgenic rice. Accumulation of mDer f 2 in transgenic seed and leaf using the GluB-1 terminator was greater than when using the Nos terminator construct. The mDer f 2 mRNA containing the GluB-1 3′UTR was processed and polyadenylated at the same sites as the native GluB-1 mRNA in the seeds but diverged in leaves of the transgenic plants. In contrast, the poly(A) sites of mDer f 2 containing Nos 3′UTR were more divergent in both seed and leaf. These results suggest that GluB-1 3′UTR functions as a faithful terminator and that termination at the specific sites may play an important role in mRNA stability and/or translatability, resulting in higher levels of protein accumulation.  相似文献   

6.
转基因水稻胚乳中表达铁结合蛋白提高稻米铁含量   总被引:27,自引:0,他引:27  
为提高我国稻米的铁含量,通过农杆菌介导将自行克隆的菜豆(Phaseolus limensis)铁结合蛋白(Ferritin)基因导入了一个高产粳稻(Oryaz sativa L.ssp.japonuica)品种中,获得17个独立的转基因水稻株系。分子检测证明,外源基因在多数转基因水稻植株基因组中有1~3个整合位点,并可稳定遗传。在水稻种子贮存蛋白谷蛋白基因GluB-1启动子的控制下,铁结合蛋白基因可在转基因水稻的种子中高效特异地表达,不同转化子中的表达量有明显不同。在转基因水稻种子中表达铁结合蛋白后对提高精米中的铁含量有明显的效果,相对于未转化对照最多可提高64%,而锌的含量并无明显变化。  相似文献   

7.
8.
Many metal transporters in plants are promiscuous, accommodating multiple divalent cations including some which are toxic to humans. Previous attempts to increase the iron (Fe) and zinc (Zn) content of rice endosperm by overexpressing different metal transporters have therefore led unintentionally to the accumulation of copper (Cu), manganese (Mn) and cadmium (Cd). Unlike other metal transporters, barley Yellow Stripe 1 (HvYS1) is specific for Fe. We investigated the mechanistic basis of this preference by constitutively expressing HvYS1 in rice under the control of the maize ubiquitin1 promoter and comparing the mobilization and loading of different metals. Plants expressing HvYS1 showed modest increases in Fe uptake, root‐to‐shoot translocation, seed accumulation and endosperm loading, but without any change in the uptake and root‐to‐shoot translocation of Zn, Mn or Cu, confirming the selective transport of Fe. The concentrations of Zn and Mn in the endosperm did not differ significantly between the wild‐type and HvYS1 lines, but the transgenic endosperm contained significantly lower concentrations of Cu. Furthermore, the transgenic lines showed a significantly reduced Cd uptake, root‐to‐shoot translocation and accumulation in the seeds. The underlying mechanism of metal uptake and translocation reflects the down‐regulation of promiscuous endogenous metal transporters revealing an internal feedback mechanism that limits seed loading with Fe. This promotes the preferential mobilization and loading of Fe, therefore displacing Cu and Cd in the seed.  相似文献   

9.
The feasibility of producing plant cell wall polysaccharide-hydrolysing feed enzymes in the endosperm of barley grain was investigated. The coding region of a modified xylanase gene (xynA) from the rumen fungus, Neocallimastix patriciarum, linked with an endosperm-specific promoter from cereal storage protein genes was introduced into barley by Agrobacterium-mediated transformation. Twenty-four independently transformed barley lines with the xylanase gene were produced and analysed. The fungal xylanase was produced in the developing endosperm under the control of either the rice glutelin B-1 (GluB-1) or barley B1 hordein (Hor2-4) promoter. The rice GluB-1 promoter provided an apparently higher expression level of recombinant proteins in barley grain than the barley Hor2-4 promoter in both transient and stable expression experiments. In particular, the mean value for the fungal xylanase activity driven by the GluB-1 promoter in the mature grains of transgenic barley was more than twice that with the Hor2-4 promoter. Expression of the xylanase transgene under these endosperm-specific promoters was not observed in the leaf, stem and root tissues. Accumulation of the fungal xylanase in the developing grains of transgenic barley followed the pattern of storage protein deposition. The xylanase was stably maintained in the grain during grain maturation and desiccation and post-harvest storage. These results indicate that the cereal grain expression system may provide an economic means for large scale production of feed enzymes in the future.  相似文献   

10.
水稻籽粒铁(Fe)缺乏和镉(Cd)含量超标是农业生产亟待解决的重要问题。以往研究表明,OsVIT1和OsVIT2是液泡铁转运蛋白,本研究选取野生型ZH11为背景材料,使用胚乳特异性表达启动子Glb-1构建了胚乳过表达OsVIT1和OsVIT2材料。RT-qPCR分析表明,OsVIT1在转化植株的胚乳和叶片过量表达,OsVIT2在转化植株的胚乳过量表达。通过田间试验,研究胚乳过表达OsVIT1和OsVIT2对水稻不同部位Fe和Cd积累的影响。结果表明,胚乳过表达OsVIT1显著降低籽粒中的Fe浓度约50%,显著增加秸秆的锌(Zn)、铜(Cu)浓度和籽粒中的Cu浓度,胚乳过表达OsVIT2显著降低籽粒中的Fe、Cd浓度约50%,显著增加秸秆的Fe浓度45%–120%。胚乳过表达OsVIT1和OsVIT2不影响水稻的农艺性状。总之,胚乳过表达OsVIT1和OsVIT2降低了水稻籽粒的Fe积累,未达到预期效果,胚乳过表达OsVIT2还降低籽粒的Cd积累,增加秸秆Fe积累,为水稻铁生物强化和降镉提供了借鉴。  相似文献   

11.
铁是植物生长发育的必需元素。由于土壤中的三价铁离子不能被植物直接利用, 使一些植物经常表现出缺铁症状。为探讨利用铁蛋白基因提高植物耐低铁胁迫的作用, 利用农杆菌介导法将大豆铁蛋白基因SoyFer1和内源反义铁蛋白基因NtFer2的cDNA分别导入烟草基因组, 采集转基因烟草种子。对T1转基因烟草的卡那霉素抗性分析表明, 整合到烟草基因组的外源基因多为单拷贝基因, 也有少数为多拷贝基因。对具有卡那霉素抗性的转基因植株进行PCR检测和Northern杂交分析表明, 外源基因已整合到烟草基因组中, 并且得到了正确表达。将转基因株系移栽到铁离子浓度不同的培养基中生长2个月后进行比较表明, 转大豆铁蛋白基因烟草株系的生长量明显高于非转基因烟草株系, 而转内源反义铁蛋白基因烟草株系的生长量则明显低于非转基因烟草株系。转大豆铁蛋白基因和转内源反义铁蛋白基因烟草株系的叶绿素含量、丙二醛(MDA)含量和过氧化物酶(POD)活性等生理性状也发生了明显变化, 表现为转大豆铁蛋白基因株系的叶绿素含量明显增加, POD活性明显增强, MDA含量明显降低; 而转内源反义铁蛋白基因株系的叶绿素含量、POD活性和MDA含量等则表现为与转大豆铁蛋白基因株系的相反。铁蛋白过量表达提高了烟草耐低铁能力, 而铁蛋白抑制表达则降低了烟草耐低铁能力。  相似文献   

12.
13.
The -197 bp promoter of the rice seed storage protein gene, GluB-1, is capable of conferring endosperm-specific gene expression. This proximal 5' flanking region contains four motifs, GCN4, AACA, ACGT and Prolamin-box, which are conserved in many seed storage protein genes. We previously showed that multiple copies of GCN4 conferred endosperm expression pattern when fused to the -46 core promoter of CaMV 35S. In this paper we demonstrate, using a similar approach, that tandem repeated copies of any of the other three motifs are unable to direct expression in seeds as well as other tissues of transgenic rice plants. Mutational analysis of individual motifs in the -197 bp promoter resulted in remarkable reductions in promoter activity. These results indicate that the GCN4 motif acts as an essential element determining endosperm-specific expression and that the AACA, ACGT and Prolamin-box are involved in quantitative regulation of the GluB-1 gene. A set of gain-of-function experiments using transgenic rice showed that either the Prolamin-box or AACA, although often coupled with GCN4 in many genes, is insufficient to form a functional promoter unit with GCN4, whereas a combination of GCN4, AACA and ACGT motifs was found sufficient to confer a detectable level of endosperm expression. Taken together, our results provide direct insight into the importance of combinatorial interplay between cis-elements in regulating the expression of seed storage protein genes.  相似文献   

14.
Nicotianamine,a Novel Enhancer of Rice Iron Bioavailability to Humans   总被引:1,自引:0,他引:1  

Background

Polished rice is a staple food for over 50% of the world''s population, but contains little bioavailable iron (Fe) to meet human needs. Thus, biofortifying the rice grain with novel promoters or enhancers of Fe utilization would be one of the most effective strategies to prevent the high prevalence of Fe deficiency and iron deficiency anemia in the developing world.

Methodology/Principal Findings

We transformed an elite rice line cultivated in Southern China with the rice nicotianamine synthase gene (OsNAS1) fused to a rice glutelin promoter. Endosperm overexpression of OsNAS1 resulted in a significant increase in nicotianamine (NA) concentrations in both unpolished and polished grain. Bioavailability of Fe from the high NA grain, as measured by ferritin synthesis in an in vitro Caco-2 cell model that simulates the human digestive system, was twice as much as that of the control line. When added at 1∶1 molar ratio to ferrous Fe in the cell system, NA was twice as effective when compared to ascorbic acid (one of the most potent known enhancers of Fe bioavailability) in promoting more ferritin synthesis.

Conclusions

Our data demonstrated that NA is a novel and effective promoter of iron utilization. Biofortifying polished rice with this compound has great potential in combating global human iron deficiency in people dependent on rice for their sustenance.  相似文献   

15.
The ability of genetic manipulation to yield greatly increased concentrations of free amino acids (FAAs) in seeds of soybean was evaluated by introduction of a feedback-insensitive mutant enzyme of tryptophan (Trp) biosynthesis into two transformation-competent breeding lines deficient in major seed storage proteins. The storage protein-deficient lines exhibited increased accumulation of certain other seed proteins as well as of FAAs including arginine (Arg) and asparagine in mature seeds. Introduction of the gene for a feedback-insensitive mutant of an α subunit of rice anthranilate synthase (OASA1D) into the two high-FAA breeding lines by particle bombardment resulted in a >10-fold increase in the level of free Trp in mature seeds compared with that in nontransgenic seeds. The amount of free Trp in these transgenic seeds was similar to that in OASA1D transgenic seeds of the wild-type cultivar Jack. The composition of total amino acids in seeds of the high-FAA breeding lines remained largely unaffected by the expression of OASA1D with the exception of an increase in the total Trp content. Our results therefore indicate that the extra nitrogen resource originating from storage protein deficiency was used exclusively for the synthesis of inherent alternative nitrogen reservoirs such as free Arg and not for deregulated Trp biosynthesis conferred by OASA1D. The intrinsic null mutations responsible for storage protein deficiency and the OASA1D transgene affecting Trp content were thus successfully combined and showed additive effects on the amino acid composition of soybean seeds.  相似文献   

16.
Differential regulation of the two rice ferritin genes (OsFER1 and OsFER2)   总被引:1,自引:0,他引:1  
Iron is essential to plants. However, when free and in excess, iron can catalyze the formation of oxygen free radicals. Ferritin, a protein capable of storing up to 4500 atoms of iron, can act as an iron buffer inside plant cells. Using a strategy based in amplicon size difference, we were able to analyze the expression profile of the two rice ferritin genes (OsFER1 and OsFER2). Both genes are expressed, although with different regulation and organ distribution. Exposure to copper, Paraquat, SNP and excess iron led to accumulation of ferritin mRNA, remarkably of OsFER2. The iron-induced expression was abolished by treatment with GSH, indicating that the induction observed is dependent of an oxidative step. OsFER2 mRNA levels in rice flag leaves and panicles at different reproductive stages were higher than OsFER1 mRNA levels. No ferritin mRNA was detected in rice seeds. However, imbibition under light led to ferritin expression, which was abolished when seeds were kept in the dark, suggesting a light-regulated induction. Ferritin mRNA accumulation was seen in the dark only when seeds were germinated in the presence of externally supplied iron. We suggest that the primary role of rice ferritins is related to defense against iron-mediated oxidative stress.  相似文献   

17.
18.
19.
20.
The shortage of strong endosperm-specific expression promoters for driving the expression of recombinant protein genes in cereal endosperm is a major limitation in obtaining the required level and pattern of expression. Six promoters of seed storage glutelin genes (GluA-1, GluA-2, GluA-3, GluB-3, GluB-5, and GluC) were isolated from rice (Oryza sativa L.) genomic DNA by PCR. Their spatial and temporal expression patterns and expression potential in stable transgenic rice plants were examined with beta-glucuronidase (GUS) used as a reporter gene. All the promoters showed the expected spatial expression within the endosperm. The GluA-1, GluA-2, and GluA-3 promoters directed GUS expression mainly in the outer portion (peripheral region) of the endosperm. The GluB-5 and GluC promoters directed GUS expression in the whole endosperm, with the latter expressed almost evenly throughout the whole endosperm, a feature different from that of other rice glutelin gene promoters. The GluB-3 promoter directed GUS expression solely in aleurone and subaleurone layers. Promoter activities examined during seed maturation showed that the GluC promoter had much higher activity than the other promoters. These promoters are ideal candidates for achieving gene expression for multiple purposes in monocot endosperm but avoid promoter homology-based gene silencing. The GluC promoter did not contain the endosperm specificity-determining motifs GCN4, AACA, and the prolamin-box, which suggests the existence of additional regulatory mechanism in determining endosperm specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号