首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tricarboxylate carrier from rat liver mitochondria was purified by chromatography on hydroxyapatite/celite and reconstituted in phospholipid vesicles by removing the detergent using hydrophobic chromatography on Amberlite. Optimal transport activity was obtained by using a Triton X-114/phospholipid ratio of 0.8, 6% cardiolipin and 24 passages through a single Amberlite column. In the reconstituted system the incorporated tricarboxylate carrier catalyzed a first-order reaction of citrate/citrate or citrate/malate exchange. The activation energy of the exchange reaction was 70.1 kJ/mol. The rate of the exchange had a pH optimum between 7 and 8. The half-saturation constant was 0.13 mM for citrate and 0.76 mM for malate. All these properties were similar to those described for the tricarboxylate transport system in intact mitochondria. In proteoliposomes the maximum exchange rate at 25 degrees C reached 2000 mumols/min per g protein. This value was independent of the type of substrate present at the external or internal space of the liposomes (citrate or malate).  相似文献   

2.
The carnitine carrier was purified from rat liver mitochondria and reconstituted into liposomes by removing the detergent from mixed micelles by Amberlite. Optimal transport activity was obtained with 1 microgram/ml and 12.5 mg/ml of protein and phospholipid concentration, respectively, with a Triton X-100/phospholipid ratio of 1.8 and with 16 passages through the same Amberlite column. The activity of the carrier was influenced by the phospholipid composition of the liposomes, being increased in the presence of cardiolipin and decreased in the presence of phosphatidylinositol. In the reconstituted system the incorporated carnitine carrier catalyzed a carnitine/carnitine exchange which followed a first-order reaction. The maximum transport rate of external [3H]carnitine was 1.7 mmol/min per g protein at 25 degrees C and was independent of the type of countersubstrate. The half-saturation constant (Km) for carnitine was 0.51 mM. The affinity of the carrier for acylcarnitines was in the microM range and depended on the carbon chain length. The activation energy of the carnitine/carnitine exchange was 133 kJ/mol. The carrier function was independent of the pH in the range between 6 and 8 and was inhibited at pH below 6.  相似文献   

3.
The tricarboxylate carrier from eel liver mitochondria was purified by chromatography on hydroxyapatite and Matrix Gel Blue B and reconstituted into liposomes by removal of the detergent with Amberlite. Optimal transport activity was obtained by using a phospholipid concentration of 11.5 mg/ml, a Triton X-114/phospholipid ratio of 0.9, and ten passages through the same Amberlite column. The activity of the carrier was influenced by the phospholipid composition of the liposomes, being increased by cardiolipin and phosphatidylethanolamine and decreased by phosphatidylinositol. The reconstituted tricarboxylate carrier catalyzed a first-order reaction of citrate/citrate or citrate/malate exchange. The maximum transport rate of external [14C]citrate was 9.0 mmol/min per g of tricarboxylate carrier protein at 25°C and this value was virtually independent of the type of substrate present in the external or internal space of the liposomes. The half-saturation constant (K m) was 62 M for citrate and 541 M for malate. The activation energy of the citrate/citrate exchange reaction was 74 kJ/mol from 5 to 19°C and 31 kJ/mol from 19 to 35°C. The rate of the exchange had an external pH optimum of 8.  相似文献   

4.
The exchange between external [14C] malonate and internal malate or phosphate was reconstituted in liposomes prepared by incorporation of a Triton-extract of mitochondrial rat-liver inner membranes. The conditions of transport were investigated and the kinetic parameters of malonate-malate and malonate-phosphate exchanges were determined. The exchange was sensitive to butylmalonate and to organomercurials. Sulfate and phosphate decreased the rate of malonatemalate exchange and phosphate inhibition was found to be competitive. This report demonstrates the possibility to reconstitute a functional dicarboxylate transport and to use the system for further purification and for studies at the molecular level.  相似文献   

5.
The mitochondrial dicarboxylate carrier has been substantially purified from rat liver mitoplasts by extraction with Triton X-114 in the presence of cardiolipin followed by chromatography on hydroxylapatite. Upon incorporation of the hydroxylapatite eluate into phospholipid vesicles, an n-butylmalonate-sensitive malonate/malate exchange has been demonstrated. This exchange activity is enhanced 226-fold relative to the starting material (i.e. detergent-extracted mitoplasts). Silver-stained sodium dodecyl sulfate-polyacrylamide gradient gels verify the high purity of this fraction relative to the starting material. Nonetheless, the banding pattern indicates that several protein species are still present. As isolated, the dicarboxylate transporter is rather unstable but can be stabilized either by the addition of 10% ethylene glycol and subsequent storage at -20 degrees C or by incorporation into phospholipid vesicles in the presence of malate followed by freezing in liquid nitrogen. Such proteoliposomes catalyze a [14C]malonate uptake which is characterized by a first order rate constant of 1.02 min-1 and a t 1/2 of 41 s. This uptake can be inhibited by dicarboxylates (e.g. succinate, malate, unlabeled malonate) but not by either alpha-ketoglutarate or by tricarboxylates (e.g. citrate, threo-Ds-isocitrate). Furthermore, the reconstituted malonate transport is dependent on internal malate and can be inhibited by n-butylmalonate, mersalyl, p-chloromercuribenzoate, and Pi, but not by N-ethylmaleimide. It is concluded that this highly purified fraction contains a reconstitutively active dicarboxylate transporter which, based on its substrate specificity and inhibitor sensitivity, appears to be identical to the native dicarboxylate transport system found in intact rat liver mitochondria.  相似文献   

6.
The carnitine transporter was solubilized from rat liver microsomes with Triton X-100 and reconstituted into liposomes, after addition of Triton X-114, by removing the detergent from mixed micelles by hydrophobic chromatography on Amberlite (Bio-Beads SM 2). The reconstitution was optimized with respect to the detergent/phospholipid ratio, the protein concentration, and the number of passages through a single Amberlite column. The reconstituted carnitine transporter catalyzed a first-order uniport reaction inhibited by HgCl2 and DIDS. The IC50 for HgCl2 was 0.16+/-0.03 mM. The reconstituted transporter also catalyzed carnitine efflux from the proteoliposomes; the efflux was stimulated by externally added long-chain acylcarnitines. Besides carnitine, ornithine, arginine, glutamine and lysine were taken up by the reconstituted liposomes with lower efficiency respect to carnitine. Optimal activity was found at pH 8.0. The Km for carnitine on the external side of the transporter was 10.9+/-0.16 mM. The activation energy of the carnitine transport derived by Arrhenius plot was 16.1 kJ/mol.  相似文献   

7.
The carnitine transporter was solubilized from rat renal apical plasma membrane (brush-border membrane) with C12E8 and reconstituted into liposomes by removing the detergent from mixed micelles by hydrophobic chromatography on Amberlite XAD-4. The reconstitution was optimised with respect to the protein concentration, the detergent/phospholipid ratio and the number of passages through a single Amberlite column. The reconstituted carnitine transporter catalysed a first-order antiport reaction (carnitine/carnitine or carnitine/substrate) stimulated by external, not internal, Na+, with a positive cooperativity. Na+ was co-transported with carnitine. Optimal activity was found between pH 5.5 and pH 6.0. The sulfhydryl reagents MTSES, MTSET and mercurials strongly inhibited the transport. Substrate analogues inhibited the transport; the most effective were acylcarnitines and betaine, followed by dimethylglicine, tetraethylammonium and arginine. Besides carnitine, only acylcarnitines and betaine were efficiently translocated. The Km for carnitine on the external and internal side of the transporter was 0.08 and 1.2 mM, respectively. The transporter is asymmetrical and it is unidirectionally inserted into the proteoliposomal membrane with an orientation corresponding to that of the native membrane. The reconstituted carnitine transporter corresponds, very probably, to the OCTN2 protein.  相似文献   

8.
The phosphate transporter from mitochondria will exchange matrix phosphate for cytosolic phosphate and facilitate either phosphate/proton symport or phosphate/hydroxyl ion antiport. The phosphate transported into the matrix by this carrier is either used for ATP synthesis or exchanges back out to the cytosol on the dicarboxylate transporter, permitting entry of malate and succinate into the matrix. The phosphate transporter was solubilized from etiolated pea (Pisum sativum L. cv Alaska) mitochondrial membranes with Triton X-114, purified approximately 500-fold by hydroxylapatite chromatography, and reconstituted into azolectin vesicles that were preloaded with 0.1 or 10 mM phosphate. Phosphate transport was measured as the exchange of preloaded phosphate for external [32P]phosphate. Phosphate/phosphate exchange occurred for over 40 min at room temperature with an apparent K0.5 of 1.6 mM and a maximum velocity of over 700 nmol (mg protein)-1 min-1. Diethyl pyrocarbonate was used as an inhibitor-stop reagent. Transport was inhibited by p-hydroxyphenylglyoxal, p-hydroxymercuribenzoate, pyridoxal 5-phosphate, and dansyl chloride but was insensitive to sulfate, nitrate, and N-ethylmaleimide, the standard inhibitor for the mammalian phosphate transporter. Phosphate/hydroxyl exchange was stimulated when the proton gradient was collapsed with carbonyl cyanide m-chlorophenylhydrazone, but phosphate/phosphate exchange was unaffected by the uncoupler.  相似文献   

9.
The carnitine transporter was solubilized from rat renal apical plasma membrane (brush-border membrane) with C12E8 and reconstituted into liposomes by removing the detergent from mixed micelles by hydrophobic chromatography on Amberlite XAD-4. The reconstitution was optimised with respect to the protein concentration, the detergent/phospholipid ratio and the number of passages through a single Amberlite column. The reconstituted carnitine transporter catalysed a first-order antiport reaction (carnitine/carnitine or carnitine/substrate) stimulated by external, not internal, Na+, with a positive cooperativity. Na+ was co-transported with carnitine. Optimal activity was found between pH 5.5 and pH 6.0. The sulfhydryl reagents MTSES, MTSET and mercurials strongly inhibited the transport. Substrate analogues inhibited the transport; the most effective were acylcarnitines and betaine, followed by dimethylglicine, tetraethylammonium and arginine. Besides carnitine, only acylcarnitines and betaine were efficiently translocated. The Km for carnitine on the external and internal side of the transporter was 0.08 and 1.2 mM, respectively. The transporter is asymmetrical and it is unidirectionally inserted into the proteoliposomal membrane with an orientation corresponding to that of the native membrane. The reconstituted carnitine transporter corresponds, very probably, to the OCTN2 protein.  相似文献   

10.
The carnitine transporter was solubilized from rat liver microsomes with Triton X-100 and reconstituted into liposomes, after addition of Triton X-114, by removing the detergent from mixed micelles by hydrophobic chromatography on Amberlite (Bio-Beads SM 2). The reconstitution was optimized with respect to the detergent/phospholipid ratio, the protein concentration, and the number of passages through a single Amberlite column. The reconstituted carnitine transporter catalyzed a first-order uniport reaction inhibited by HgCl2 and DIDS. The IC50 for HgCl2 was 0.16 ± 0.03 mM. The reconstituted transporter also catalyzed carnitine efflux from the proteoliposomes; the efflux was stimulated by externally added long-chain acylcarnitines. Besides carnitine, ornithine, arginine, glutamine and lysine were taken up by the reconstituted liposomes with lower efficiency respect to carnitine. Optimal activity was found at pH 8.0. The Km for carnitine on the external side of the transporter was 10.9 ± 0.16 mM. The activation energy of the carnitine transport derived by Arrhenius plot was 16.1 kJ/mol.  相似文献   

11.
In this study we examined the processes by which malate and pyruvate are taken up across the leucoplast envelope for fatty acid synthesis in developing castor (Ricinus communis L.) seed endosperm. Malate was taken up by isolated leucoplasts with a concentration dependence indicative of protein-mediated transport. The maximum rate of malate uptake was 704 [plus or minus] 41 nmol mg-1 protein h-1 and the Km was 0.62 [plus or minus] 0.08 mM. In contrast, the rate of pyruvate uptake increased linearly with respect to the substrate concentration and was 5-fold less than malate at a concentration of 5 mM. Malate uptake was inhibited by inorganic phosphate (Pi), glutamate, malonate, succinate, 2-oxoglutarate, and n-butyl malonate, an inhibitor of the mitochondrial malate/Pi-exchange translocator. Back-exchange experiments confirmed that malate was taken up by leucoplasts in counterexchange for Pi. The exchange stoichiometry was 1:1. The rate of malate-dependent fatty acid synthesis by isolated leucoplasts was 3-fold greater than from pyruvate at a concentration of 5 mM and was inhibited by n-butyl malonate. It is proposed that leucoplasts from developing castor endosperm contain a malate/Pi translocator that imports malate for fatty acid synthesis. This type of dicarboxylate transport activity has not been identified previously in plastids.  相似文献   

12.
In previous studies, we provided evidence for uptake of glutathione (GSH) by the dicarboxylate and the 2-oxoglutarate carriers in rat kidney mitochondria. To investigate further the role of these two carriers, GSH transport activity was enriched from rabbit kidney mitochondria and functionally reconstituted into phospholipid vesicles. Starting with 200 mg of mitoplast protein, 2 mg of partially enriched proteins were obtained after Triton X-114 solubilization and hydroxyapatite chromatography. The reconstituted proteoliposomes catalyzed butylmalonate-sensitive uptake of [(14)C]malonate, phenylsuccinate-sensitive uptake of [(14)C]2-oxoglutarate, and transport activity with [(3)H]GSH. The initial rate of uptake of 5 mM GSH was approximately 170 nmol/min per mg protein, with a first-order rate constant of 0.3 min(-1), which is very close to that previously determined in freshly isolated rat kidney mitochondria. The enrichment procedure resulted in an approximately 60-fold increase in the specific activity of GSH transport. Substrates and inhibitors for the dicarboxylate and the 2-oxoglutarate carriers (i.e., malate, malonate, 2-oxoglutarate, butylmalonate, phenylsuccinate) significantly inhibited the uptake of [(3)H]GSH, whereas most substrates for the tricarboxylate and monocarboxylate carriers had no effect. GSH uptake exhibited an apparent K(m) of 2.8 mM and a V(max) of 260 nmol/min per mg protein. Analysis of mutual inhibition between GSH and the dicarboxylates suggested that the dicarboxylate carrier contributes a somewhat higher proportion to overall GSH uptake and that both carriers account for 70 to 80% of total GSH uptake. These results provide further evidence for the function of the dicarboxylate and 2-oxoglutarate carriers in the mitochondrial transport of GSH.  相似文献   

13.
The carnitine carrier from rat liver mitochondria was purified by chromatography on hydroxyapatite and celite and reconstituted in egg yolk phospholipid vesicles by adsorbing the detergent on polystyrene beads. In the reconstituted system, in addition to the carnitine/carnitine exchange, the purified protein catalyzed a uni-directional transport (uniport) of carnitine measured as uptake into unloaded proteoliposomes as well as efflux from prelabelled proteoliposomes. In both cases the reaction followed a first-order kinetics with a rate constant of 0.023-0.026 min-1. Besides carnitine, also acylcarnitines were transported in the uniport mode. N-Ethylmaleimide inhibited the uni-directional transport of carnitine completely. The uniport of carnitine is not influenced by the delta pH and the electric gradient across the membrane. The activation energy for uniport was 115 kJ/mol and the half-saturation constant on the external side of the proteoliposomes was 0.53 mM. The maximal rate of the uniport at 25 degrees C was 0.2 mumol/min per mg protein, i.e. about 10 times lower than that of the reconstituted carnitine transport in exchange mode.  相似文献   

14.
The transport of sulphate and sulphite in rat liver mitochondria   总被引:4,自引:2,他引:4       下载免费PDF全文
1. The mechanism of sulphite and sulphate permeation into rat liver mitochondria was investigated. 2. Extramitochondrial sulphite and sulphate elicit efflux of intramitochondrial phosphate, malate, succinate and malonate. The sulphate-dependent effluxes and the sulphite-dependent efflux of dicarboxylate anions are inhibited by butylmalonate, phenylsuccinate and mersalyl. Inhibition of the phosphate efflux produced by sulphite is caused by mersalyl alone and by N-ethylmaleimide and butylmalonate when present together. 3. External sulphite and sulphate cause efflux of intramitochondrial sulphate, and this is inhibited by butylmalonate, phenylsuccinate and mersalyl. 4. External sulphite and sulphate do not cause efflux of oxoglutarate or citrate. 5. Mitochondria swell when suspended in an iso-osmotic solution of ammonium sulphite; this is not inhibited by N-ethylmaleimide or mersalyl. 6. Low concentrations of sulphite, but not sulphate, produce mitochondrial swelling in iso-osmotic solutions of ammonium malate, succinate, malonate, sulphate, or phosphate in the presence of N-ethylmaleimide. 7. It is concluded that both sulphite and sulphate may be transported by the dicarboxylate carrier of rat liver mitochondria and also that sulphite may permeate by an additional mechanism; the latter may involve the permeation of sulphurous acid or SO(2) or an exchange of the sulphite anion for hydroxyl ion(s).  相似文献   

15.
The isolated aspartate/glutamate carrier and oxoglutarate carrier from mitochondria were coreconstituted into phospholipid vesicles. Reconstitution of the functionally active carrier proteins with high protein/lipid ratios was achieved by detergent removal on hydrophobic ion-exchange columns. A simplified version of the mitochondrial malate/aspartate shuttle was constructed by inclusion of glutamate-oxaloacetate transaminase and the substrates aspartate and oxaloacetate within the interior of the liposomes. Addition of external glutamate led to internal production of oxoglutarate which could be exchanged against externally added labeled malate. The reconstitution procedure was characterized with respect to the optimum ratio of reconstituted carrier proteins, the lipid concentration, and the concentration of internal substrates.  相似文献   

16.
  1. The mechanism of transport of Krebs cycle intermediates, phosphateand sulfurcontaining compounds across the membrane of purifiedbean mitochondria was investigated by directly measuring dieexchange between intramitochondrial labelled substrates andexternal anions and by testing die inhibitor sensitivity ofdiese transport processes.
  2. The exchange between intramitochondrialphosphate and externalphosphate or sulfite is insensitive toN-ediylmaleimide or butylmalonatewhen either is added alone,but is completely inhibited by N-ethylmaleimideplus butylmalonateor by mersalyl. Internal phosphate is exchangedwith malate,succinate, oxaloacetate, sulfate and thiosulfate;these reactionsare inhibited by butylmalonate but not affectedby N-ethylmaleimide.
  3. Internal sulfate is exchanged with malate, malonate, succinate,phosphate and sulfite in a butylmalonate- and mersalyl-sensitivereaction. Also the exchanges of malonate with phosphate, sulfateand sulfite are inhibited by butylmalonate and mersalyl. Onthe other hand, the exchange between intra- and extramitochondrialmalonate is completely inhibited only by the combination ofbutylmalonate and 1,2,3-benzenetricarboxylate.
  4. Citrate isexchanged with some di- and tricarboxylates and phosphoenolpyruvate(but not with phosphate, sulfate, oxoglutarate, trans-aconitateand benzenetricarboxylates). These exchanges are inhibited by1,2,3-benzenetricarboxylate, but not by 1,2,4-benzenetricarboxylateor 1,3,5-pentanetricarboxylate.
  5. Oxoglutarate is exchangedwith succinate, malate, malonate andoxaloacetate (but not withphosphate, citrate or phosphoenolpyruvate)in a mersalyl-insensitive,butylmalonate- and phenylsuccinate-sensitivereaction.
  6. Weconcluded that bean mitochondria contain the following transportsystems: a phosphate carrier inhibited by N-ethylmaleimide ormersalyl, a dicarboxylate carrier inhibited by butylmalonateor mersalyl, a citrate carrier inhibited by 1,2,3-benzenetricarboxylateand an oxoglutarate carrier inhibited by phenylsuccinate orbutylmalonate but insensitive to mersalyl.
(Received June 23, 1976; )  相似文献   

17.
The kinetic interaction of various substrates and inhibitors with the dicarboxylate carrier from rat liver mitochondria was investigated using the isolated and reconstituted carrier protein. Due to their inhibitory interrelation the ligands could be divided into two classes: dicarboxylates, sulphate, sulphite and butylmalonate on the one hand and phosphate, thiosulphate and arsenate on the other. The mutual inhibition of substrates or inhibitors taken from one single class was found to be competitive, whereas the kinetic interaction of ligands when taken from the two different classes could be described as purely non-competitive. The half-saturation transport constants Km and the corresponding inhibition constants Ki of one single ligand, either used as substrate or as inhibitor, respectively, were found to be very similar. These kinetic data strongly support the presence of two different binding sites at the dicarboxylate carrier for the two different classes of substrates considering the external side of the reconstituted protein. When these two sites were saturated simultaneously with malate and phosphate, the turnover of the carrier was considerably reduced, hence indicating that a non-catalytic ternary complex is formed by the two substrates and the carrier molecule.  相似文献   

18.
The 2-oxoglutarate carrier from the inner membrane of bovine heart mitochondria was purified by chromatography on hydroxyapatite/celite and reconstituted with egg yolk phospholipid vesicles by the freeze-thaw-sonication technique. In the reconstituted system the incorporated 2-oxoglutarate carrier catalyzed a first-order reaction of 2-oxoglutarate/2-oxoglutarate exchange. The substrate affinity for 2-oxoglutarate was determined to be 65 +/- 18 microM (15 determinations) and the maximum exchange rate at 25 degrees C reaches 4000-22,000 mumol/min per g protein, in dependence of the particular reconstitution conditions. The activation energy of the exchange reaction is 54.3 kJ/mol. The transport is independent of pH in the range between 6 and 8. When the first fraction of the hydroxyapatite/celite column eluate was used for reconstitution, besides the 2-oxoglutarate/2-oxoglutarate exchange, a significant activity of unidirectional uptake was observed. This activity may be due to a population of the carrier protein which is in a different state.  相似文献   

19.
The citrate carrier from maize (Zea mays) shoot mitochondria was solubilized with Triton X-100 and purified by sequential chromatography on hydroxyapatite and hydroxyapatite/celite in the presence of cardiolipin. SDS-gel electrophoresis of the purified fraction showed a single polypeptide band with an apparent molecular mass of 31 kD. When reconstituted into liposomes, the citrate carrier catalyzed a pyridoxal 5'-P-sensitive citrate/citrate exchange. It was purified 224-fold with a recovery of 50% and a protein yield of 0.22% with respect to the mitochondrial extract. In the reconstituted system the purified citrate carrier catalyzed a first-order reaction of citrate/citrate (0.065 min-1) or citrate/malate exchange (0.075 min-1). Among the various substrates and inhibitors tested, the reconstituted protein transported citrate, cis-aconitate, isocitrate, L-malate, succinate, malonate, glutarate, alpha-ketoglutarate, oxaloacetate, and alpha-ketoadipate and was inhibited by pyridoxal 5'-P, phenylisothiocyanate, mersalyl, and p-hydroxymercuribenzoate (but not N-ethylmaleimide), 1,2, 3-benzentricarboxylate, benzylmalonate, and butylmalonate. The activation energy of the citrate/citrate exchange was 66.5 kJ/mol between 10 degrees C and 35 degrees C; the half-saturation constant (Km) for citrate was 0.65 +/- 0.05 mM and the maximal rate (Vmax) of the citrate/citrate exchange was 13.0 +/- 1.0 micromol min-1 mg-1 protein at 25 degrees C.  相似文献   

20.
The glutamine/amino acid transporter was solubilized from rat renal apical plasma membrane (brush-border membrane) with C12E8 and reconstituted into liposomes by removing the detergent from mixed micelles by hydrophobic chromatography on Amberlite XAD-4. The reconstitution was optimised with respect to the protein concentration, the detergent/phospholipid ratio and the number of passages through a single Amberlite column. The reconstituted glutamine/amino acid transporter catalysed a first-order antiport reaction stimulated by external, not internal, Na+. Optimal activity was found at pH 7.0. The sulfhydryl reagents HgCl2, mersalyl and p-hydroxymercuribenzoate and the amino acids alanine, serine, threonine, cysteine, asparagine, methionine and valine strongly inhibited the transport, whereas the amino acid analogue methylaminoisobutyrate had no effect. Glutamine, alanine, serine, asparagine, threonine were efficiently translocated from outside to inside and from inside to outside the proteoliposomes as well. Cysteine and valine were translocated preferentially from outside to inside. The Km for glutamine on the external and internal side of the transporter was 0.47 and 11 mM, respectively; the values were not influenced by the type of the counter substrate. The transporter is functionally asymmetrical and it is unidirectionally inserted into the proteoliposomal membrane with an orientation corresponding to that of the native membrane. By a bisubstrate kinetic analysis of the glutamine antiport, a random simultaneous mechanism was found. The glutamine antiport was strongly stimulated by internal nucleoside triphosphates and, to a lower extent, by pyrophoshate. The reconstituted glutamine/amino acid transporter functionally corresponds to the ASCT2 protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号