首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Carbamoyl phosphate synthetase synchronizes the utilization of two ATP molecules at duplicated ATP-grasp folds to catalyze carbamoyl phosphate formation. To define the dedicated functional role played by each of the two ATP sites, we have carried out pulse/labeling studies using the synthetases from Aquifex aeolicus and Methanococcus jannaschii, hyperthermophilic organisms that encode the two ATP-grasp folds on separate subunits. These studies allowed us to differentially label each active site with [gamma-(32)P]ATP and determine the fate of the labeled gamma-phosphate in the synthetase reaction. Our results provide the first direct demonstration that enzyme-catalyzed transfer of phosphate from ATP to carbamate occurs on the more C-terminal of the two ATP-grasp folds. These findings rule out one mechanism proposed for carbamoyl phosphate synthetase, where one ATP acts as a molecular switch, and provide additional support for a sequential reaction mechanism where the gamma-phosphate groups of both ATP molecules are transferred to reactants. CP synthesis by subunit C in our single turnover pulse/chase assays did not require subunit N, but subunit N was required for detectable CP synthesis in the traditional continuous assay. These findings suggest that cross-talk between domain N and C is required for product release from subunit C.  相似文献   

2.
The ATP-grasp fold is found in enzymes that catalyze the formation of an amide bond and occurs twice in carbamoyl phosphate synthetase. We have used site-directed mutagenesis to further define the relationship of these ATP folds to the ATP-grasp family and to probe for distinctions between the two ATP sites. Mutations at D265 and D810 severely diminished activity, consistent with consensus ATP-grasp roles of facilitating the transfer of the gamma-phosphate group of ATP. H262N was inactive whereas H807N, the corresponding mutation in the second ATP domain, exhibited robust activity, suggesting that these residues were not involved in the ATP-grasp function common to both domains. Mutations at I316 were somewhat catalytically impaired and were structurally unstable, consistent with a consensus role of interaction with the adenine and/or ribose moiety of ATP. L229G was too unstable to be purified and characterized. S228A showed essentially wild-type behavior.  相似文献   

3.
Carbamoyl phosphate synthetase I (CPSI) deficiency, a recessively inherited error of the urea cycle, causes life-threatening hyperammonaemia. CPSI is a multidomain 1500-residue liver mitochondrial matrix protein that is allosterically activated by N-acetyl-l-glutamate, and which synthesises carbamoyl phosphate (CP) in three steps: bicarbonate phosphorylation by ATP, carbamate synthesis from carboxyphosphate and ammonia, and carbamate phosphorylation by ATP. Several missense mutations of CPSI have been reported in patients with CPSI deficiency, but the actual pathogenic potential and effects on the enzyme of these mutations remain non-characterised. Since the structure of Escherichia coli CPS is known and systems for its overexpression and purification are available, we have constructed and purified eight site-directed mutants of E.coli CPS affecting the enzyme large subunit (A126M, R169H, Q262P, N301K, P360L, V640R, R675L, S789P) that are homologous to corresponding missense mutations found in patients with CPSI deficiency, studying their stability and their ability to catalyse the CPS reaction as well as the partial reactions that reflect the different reactional steps, and analysing the substrate kinetics for the overall and partial reactions. The results show that all the mutations significantly decrease CP synthesis without completely inactivating the enzyme (as reflected in the catalysis of at least one partial reaction), that one of these mutations (Q262P) causes marked enzyme instability, and validate the use of E.coli CPS as a pathogenicity testing model for CPSI deficiency. The causality of the reported clinical mutations is supported and the derangements caused by the mutations are identified, revealing the specific roles of the residues that are mutated. In particular, the findings highlight the importance for carbamate phosphorylation and for allosteric activation of a loop that coordinates K(+), stress the key role of intersubunit interactions for CPS stability, and suggest that lid opening at both phosphorylation sites is concerted.  相似文献   

4.
8-Azido-ATP has been found to serve as a photoaffinity label for two distinct ATP sites on rat liver carbamoyl phosphate synthetase I and to allow preliminary localization of these sites. In the dark, 8-azido-ATP acted as a competitive inhibitor with respect to ATP. Ultraviolet irradiation of carbamoyl phosphate synthetase I in the presence of 8-azido-ATP led to an irreversible loss of activity. ATP specifically protected against this inactivation. The incorporation of 2 mol of 8-azido-ATP per mol of enzyme was required for complete inactivation. To localize the 8-azido-ATP-binding sites to discrete regions of carbamoyl phosphate synthetase I which appear to be structural domains, the enzyme was photolabeled with [gamma-32P]8-azido-ATP and subjected to limited proteolytic digestion. The resulting model for the functional roles of the domains is that there is one ATP site on each of the two large internal structural domains of the enzyme. Each of these domains was found to contain the consensus sequences A and B common to many other nucleotide-binding proteins (Walker, J.E., Saraste, M., Runswick, M. J., and Gay, N. J. (1982) EMBO J. 1, 945-951). In addition, there is extensive structural and possibly functional interaction of the smaller N-terminal domain with one of the internal ATP-binding domains, analogous to a subunit interaction observed with the evolutionarily related Escherichia coli carbamoyl phosphate synthetase.  相似文献   

5.
Carbamoyl phosphate synthetase (CPS) catalyzes the production of carbamoyl phosphate which is subsequently employed in the metabolic pathways responsible for the synthesis of pyrimidine nucleotides or arginine. The catalytic mechanism of the enzyme occurs through three highly reactive intermediates: carboxyphosphate, ammonia, and carbamate. As isolated from Escherichia coli, CPS is an alpha, beta-heterodimeric protein with its three active sites separated by nearly 100 A. In addition, there are separate binding sites for the allosteric regulators, ornithine, and UMP. Given the sizable distances between the three active sites and the allosteric-binding pockets, it has been postulated that domain movements play key roles for intramolecular communication. Here we describe the structure of CPS from E. coli where, indeed, such a domain movement has occurred in response to nucleotide binding. Specifically, the protein was crystallized in the presence of a nonhydrolyzable analogue, AMPPNP, and its structure determined to 2.1 A resolution by X-ray crystallographic analysis. The B-domain of the carbamoyl phosphate synthetic component of the large subunit closes down over the active-site pocket such that some atoms move by more than 7 A relative to that observed in the original structure. The trigger for this movement resides in the hydrogen-bonding interactions between two backbone amide groups (Gly 721 and Gly 722) and the beta- and gamma-phosphate groups of the nucleotide triphosphate. Gly 721 and Gly 722 are located in a Type III' reverse turn, and this type of secondary structural motif is also observed in D-alanine:D-alanine ligase and glutathione synthetase, both of which belong to the "ATP-grasp" superfamily of proteins. Details concerning the geometries of the two active sites contained within the large subunit of CPS are described.  相似文献   

6.
Aronsson H  Combe J  Jarvis P 《FEBS letters》2003,544(1-3):79-85
Arabidopsis Toc33 (atToc33) is a GTP-binding protein of the chloroplast outer envelope membrane. We studied its nucleotide-binding properties in vitro, and found that it binds GTP, GDP and XTP, with similar efficiencies, but not ATP. We further demonstrated that atToc33 has intrinsic GTPase activity. Mutations within the putative G4 motif of the atToc33 nucleotide-binding domain (D217N, D219N and E220Q) had no effect on nucleotide specificity or GTPase activity. Similarly, a mutation in the newly assigned G5 motif (E208Q) did not affect nucleotide specificity or GTPase activity. Furthermore, the D217N and D219N mutations did not affect atToc33 functionality in vivo. The data demonstrate that atToc33 belongs to a novel class of GTPases with unusual nucleotide-binding properties.  相似文献   

7.
Kim J  Howell S  Huang X  Raushel FM 《Biochemistry》2002,41(42):12575-12581
The X-ray crystal structure of carbamoyl phosphate synthetase (CPS) from Escherichia coli has unveiled the existence of two molecular tunnels within the heterodimeric enzyme. These two interdomain tunnels connect the three distinct active sites within this remarkably complex protein and apparently function as conduits for the transport of unstable reaction intermediates between successive active sites. The operational significance of the ammonia tunnel for the migration of NH3 is supported experimentally by isotope competition and protein modification. The passage of carbamate through the carbamate tunnel has now been assessed by the insertion of site-directed structural blockages within this tunnel. Gln-22, Ala-23, and Gly-575 from the large subunit of CPS were substituted by mutagenesis with bulkier amino acids in an attempt to obstruct and/or hinder the passage of the unstable intermediate through the carbamate tunnel. The structurally modified proteins G575L, A23L/G575S, and A23L/G575L exhibited a substantially reduced rate of carbamoyl phosphate synthesis, but the rate of ATP turnover and glutamine hydrolysis was not significantly altered. These data are consistent with a model for the catalytic mechanism of CPS that requires the diffusion of carbamate through the interior of the enzyme from the site of synthesis within the N-terminal domain of the large subunit to the site of phosphorylation within the C-terminal domain. The partial reactions of CPS have not been significantly impaired by these mutations, and thus, the catalytic machinery at the individual active sites has not been functionally perturbed.  相似文献   

8.
The amidotransferase family of enzymes utilizes the ammonia derived from the hydrolysis of glutamine for a subsequent chemical reaction catalyzed by the same enzyme. The ammonia intermediate does not dissociate into solution during the chemical transformations. A well-characterized example of the structure and mechanism displayed by this class of enzymes is provided by carbamoyl phosphate synthetase (CPS). Carbamoyl phosphate synthetase is isolated from Escherichia coli as a heterodimeric protein. The smaller of the two subunits catalyzes the hydrolysis of glutamine to glutamate and ammonia. The larger subunit catalyzes the formation of carbamoyl phosphate using 2 mol of ATP, bicarbonate, and ammonia. Kinetic investigations have led to a proposed chemical mechanism for this enzyme that requires carboxy phosphate, ammonia, and carbamate as kinetically competent reaction intermediates. The three-dimensional X-ray crystal structure of CPS has localized the positions of three active sites. The nucleotide binding site within the N-terminal half of the large subunit is required for the phosphorylation of bicarbonate and subsequent formation of carbamate. The nucleotide binding site within the C-terminal domain of the large subunit catalyzes the phosphorylation of carbamate to the final product, carbamoyl phosphate. The three active sites within the heterodimeric protein are separated from one another by about 45 A. The ammonia produced within the active site of the small subunit is the substrate for reaction with the carboxy phosphate intermediate that is formed in the active site found within the N-terminal half of the large subunit of CPS. Since the ammonia does not dissociate from the protein prior to its reaction with carboxy phosphate, this intermediate must therefore diffuse through a molecular tunnel that connects these two sites with one another. Similarly, the carbamate intermediate, initially formed at the active site within the N-terminal half of the large subunit, is the substrate for phosphorylation by the ATP bound to the active site located in the C-terminal half of the large subunit. A molecular passageway has been identified by crystallographic methods that apparently facilitates diffusion between these two active sites within the large subunit of CPS. Synchronization of the chemical transformations is controlled by structural perturbations among the three active sites. Molecular tunnels between distant active sites have also been identified in tryptophan synthase and glutamine phosphoribosyl pyrophosphate amidotransferase and are likely architectural features in an expanding list of enzymes.  相似文献   

9.
Aquifex aeolicus, an extreme hyperthermophile, has neither a full-length carbamoyl-phosphate synthetase (CPSase) resembling the enzyme found in all mesophilic organisms nor a carbamate kinase-like CPSase such as those present in several hyperthermophilic archaea. However, the genome has open reading frames encoding putative proteins that are homologous to the major CPSase domains. The glutaminase, CPS.A, and CPS.B homologs from A. aeolicus were cloned, overexpressed in Escherichia coli, and purified to homogeneity. The isolated proteins could catalyze several partial reactions but not the overall synthesis of carbamoyl phosphate. However, a stable 124-kDa complex could be reconstituted from stoichiometric amounts of CPS.A and CPS.B proteins that synthesized carbamoyl phosphate from ATP, bicarbonate, and ammonia. The inclusion of the glutaminase subunit resulted in the formation of a 171-kDa complex that could utilize glutamine as the nitrogen-donating substrate, although the catalytic efficiency was significantly compromised. Molecular modeling, using E. coli CPSase as a template, showed that the enzyme has a similar structural organization and interdomain interfaces and that all of the residues known to be essential for function are conserved and properly positioned. A steady state kinetic study at 78 degrees C indicated that although the substrate affinity was similar for bicarbonate, ammonia, and glutamine, the K(m) for ATP was appreciably higher than that of any known CPSase. The A. aeolicus complex, with a split gene encoding the major synthetase domains and relatively inefficient coupling of amidotransferase and synthetase functions, may be more closely related to the ancestral precursor of contemporary mesophilic CPSases.  相似文献   

10.
Carbamoyl phosphate synthetases (CPSs) utilize either glutamine or ammonia for the ATP-dependent generation of carbamoyl phosphate. In glutamine-utilizing CPSs (e.g. the single Escherichia coli CPS and mammalian CPS II), the hydrolysis of glutamine to yield ammonia is catalyzed at a triad-type glutamine amidotransferase domain. Non-glutamine-utilizing CPSs (e.g. rat and human CPS I), lacking the catalytic cysteine residue, can generate carbamoyl phosphate only in the presence of free ammonia. Frog CPS I (fCPS I), unlike mammalian CPS Is, retains most of the glutamine amidotransferase residues conserved in glutamine-utilizing CPSs, including an intact catalytic triad, and could therefore be expected to use glutamine. Our work with native fCPS I provides the first demonstration of the inability of this enzyme to bind/utilize glutamine. To determine why fCPS I is unable to utilize glutamine, we compared sequences of glutamine-using and non-glutamine-using CPSs to identify residues that are present or conservatively substituted in all glutamine-utilizing CPSs but absent in fCPS I. We constructed the site-directed mutants Q273E, L270K, Q273E/N240S, and Q273E/L270K in E. coli CPS and have determined that simultaneous occurrence of the two substitutions, Gln-->Glu and Leu-->Lys, found in the frog CPS I glutamine amidotransferase domain are sufficient to eliminate glutamine utilization by the E. coli enzyme.  相似文献   

11.
The recently developed PSI-BLAST method for sequence database search and methods for motif analysis were used to define and expand a superfamily of enzymes with an unusual nucleotide-binding fold, referred to as palmate, or ATP-grasp fold. In addition to D-alanine-D-alanine ligase, glutathione synthetase, biotin carboxylase, and carbamoyl phosphate synthetase, enzymes with known three-dimensional structures, the ATP-grasp domain is predicted in the ribosomal protein S6 modification enzyme (RimK), urea amidolyase, tubulin-tyrosine ligase, and three enzymes of purine biosynthesis. All these enzymes possess ATP-dependent carboxylate-amine ligase activity, and their catalytic mechanisms are likely to include acylphosphate intermediates. The ATP-grasp superfamily also includes succinate-CoA ligase (both ADP-forming and GDP-forming variants), malate-CoA ligase, and ATP-citrate lyase, enzymes with a carboxylate-thiol ligase activity, and several uncharacterized proteins. These findings significantly extend the variety of the substrates of ATP-grasp enzymes and the range of biochemical pathways in which they are involved, and demonstrate the complementarity between structural comparison and powerful methods for sequence analysis.  相似文献   

12.
The X-ray crystal structure of carbamoyl phosphate synthetase (CPS) from Escherichia coli revealed the existence of a molecular tunnel that has been proposed to facilitate the translocation of reaction intermediates between remotely located active sites. Five highly conserved glutamate residues, including Glu-25, Glu-383, Glu-577, Glu-604, and Glu-916, are close together in two clusters in the interior wall of the molecular tunnel that enables the intermediate carbamate to migrate from the site of synthesis to the site of utilization. Two arginines, Arg-306 and Arg-848, are located at either end of the carbamate tunnel and participate in the binding of ATP at each of the two active sites within the large subunit of CPS. The mutation of Glu-25 or Glu-577 results in a diminution in the overall rate of carbamoyl phosphate formation. Similar effects are observed upon mutation of Arg-306 and Arg-848 to alanine residues. The conserved glutamate and arginine residues may function in concert with one another to control entry of carbamate into the tunnel prior to phosphorylation to carbamoyl phosphate. The electrostatic environment of tunnel interior may help to stabilize the tunnel architecture and prevent decomposition of carbamate through protonation.  相似文献   

13.
We use site-directed mutagenesis to clarify the role of effector-mediated oligomerization changes on the modulation of the activity of Escherichia coli carbamoyl phosphate synthetase (CPS) by its allosteric activator ornithine and its inhibitor UMP. The regulatory domain mutations H975L, L990A and N992A abolished, and N987V decreased CPS oligomerization. The oligomerization domain mutation L421E prevented tetramer but not dimer formation. None of the mutations had drastic effects on enzyme activity or changed the sensitivity or apparent affinity of CPS for ornithine and UMP. Our findings exclude the involvement of oligomerization changes in the control of CPS activity, and show that CPS dimers are formed by the interactions across regulatory domains, and tetramers by the interactions of two dimers across the oligomerization domains. A mechanism for effector-mediated changes of the oligomerization state is proposed.  相似文献   

14.
【背景】氨甲酰磷酸是生物合成代谢中精氨酸与嘧啶的重要前体物质,在工业微生物生产精氨酸与嘧啶及其衍生物中发挥关键作用。【目的】在大肠杆菌Escherichia coli BW25113中比较氨甲酰磷酸不同合成途径的催化效率。【方法】在大肠杆菌Escherichia coli BW25113中过表达鸟氨酸氨甲酰基转移酶(OTC)的基础上,分别过表达大肠杆菌自身的氨基甲酸激酶(CK)和氨甲酰磷酸合酶(CPSⅡ)并表征其反应效果。通过优化底物供应(调整底物浓度与引入L-谷氨酰胺合成酶)对CK与CPSⅡ的催化反应进行优化。【结果】在大肠杆菌中过表达OTC,建立细胞水平氨甲酰磷酸检测体系。在此基础上比较不同来源的CK,发现大肠杆菌来源的CK效果最好,50mmol/LNH4HCO3条件下全细胞催化9h得到2.95±0.15mmol/LL-瓜氨酸;过表达CPSⅡ时,50mmol/LL-谷氨酰胺催化9h得到3.16±0.29 mmol/L L-瓜氨酸。通过改变底物NH4HCO3浓度和引入外源L-谷氨酰胺合成酶(GS)等方式对CK与CPSⅡ的催化反应分别进行优化后,100 mmol/L NH4HCO3条件下,L-瓜氨酸浓度分别提高至4.67±0.55mmol/L和6.12±0.38mmol/L,且过表达GS后CPSⅡ途径可以利用NH3,不需要额外添加L-谷氨酰胺。【结论】引入L-谷氨酰胺合成酶后的CPSⅡ途径合成氨甲酰磷酸的能力优于CK途径,为精氨酸、嘧啶及其衍生物的合成提供了一种更加高效的策略。  相似文献   

15.
Carbamoyl phosphate synthetase from Escherichia coli catalyzes the formation of carbamoyl phosphate from bicarbonate, glutamine, and two molecules of ATP. The enzyme consists of a large synthetase subunit and a small amidotransferase subunit. The small subunit is structurally bilobal. The N-terminal domain is unique compared to the sequences of other known proteins. The C-terminal domain, which contains the direct catalytic residues for the amidotransferase activity of CPS, is homologous to other members of the Triad glutamine amidotransferases. The two domains are linked by a hinge-like loop, which contains a type II beta turn. The role of this loop in the hydrolysis of glutamine and the formation of carbamoyl phosphate was probed by site-directed mutagenesis. Based upon the observed kinetic properties of the mutants, the modifications to the small subunit can be separated into two groups. The first group consists of G152I, G155I, and Delta155. Attempts to disrupt the turn conformation were made by the deletion of Gly-155 or substitution of the two glycine residues with isoleucine. However, these mutations only have minor effects on the kinetic properties of the enzyme. The second group includes L153W, L153G/N154G, and a ternary complex consisting of the intact large subunit plus the separate N- and C-terminal domains of the small subunit. Although the ability to synthesize carbamoyl phosphate is retained in these enzymes, the hydrolysis of glutamine is partially uncoupled from the synthetase reaction. It is concluded that the hinge loop, but not the type-II turn structure of the loop per se, is important for maintaining the proper interface interactions between the two subunits and the catalytic coupling of the partial reactions occurring within the separate subunits of CPS.  相似文献   

16.
The catalytic activity of carbamoyl phosphate synthetase (CPS) from Escherichia coli is allosterically regulated by UMP, IMP, and ornithine. Thirteen amino acids within the domain that harbors the overlapping binding sites for IMP and UMP were mutated to alanine and characterized. The four residues that interact directly with the phosphate moiety of IMP in the X-ray crystal structure (K954, T974, T977, and K993) were shown to have the greatest impact on the dissociation constants for the binding of IMP and UMP and the associated allosteric effects on the kinetic constants of CPS. Of the four residues that interact with the ribose moiety of IMP (S948, N1015, T1017, and S1026), S1026 was shown to be more important for the binding of IMP than UMP. Five residues (V994, I1001, D1025, V1028, and I1029) were mutated in the region of the allosteric domain that surrounds the hypoxanthine ring of IMP. With the exception of V994A, these mutations had a modest influence on the binding and subsequent allosteric effects by UMP and IMP.  相似文献   

17.
Miles BW  Raushel FM 《Biochemistry》2000,39(17):5051-5056
Carbamoyl phosphate synthetase from E. coli catalyzes the synthesis of carbamoyl phosphate through a series of four reactions occurring at three active sites connected by a molecular tunnel of 100 A. To understand the mechanism for coordination and synchronization among the active sites, the pre-steady-state time courses for the formation of phosphate, ADP, glutamate, and carbamoyl phosphate were determined. When bicarbonate and ATP were rapidly mixed with CPS, a stoichiometric burst of acid-labile phosphate and ADP was observed with a formation rate constant of 1100 min(-)(1). The burst phase was followed by a linear steady-state phase with a rate constant of 12 min(-)(1). When glutamine or ammonia was added to the initial reaction mixture, the magnitude and the rate of formation of the burst phase for either phosphate or ADP were unchanged, but the rate constant for the linear steady-state phase increased to an average value of 78 min(-)(1). These results demonstrate that the initial phosphorylation of bicarbonate is independent of the binding or hydrolysis of glutamine. The pre-steady-state time course for the hydrolysis of glutamine in the absence of ATP exhibited a burst of glutamate formation with a rate constant of 4 min(-)(1) when the reaction was quenched with base. In the presence of ATP and bicarbonate, the rate constant for the formation of the burst of glutamate was 1100 min(-)(1). The hydrolysis of ATP thus enhanced the hydrolysis of glutamine by a factor of 275, but there was no effect by glutamine on the initial phosphorylation of bicarbonate. The pre-steady-state time course for the formation of carbamoyl phosphate was linear with an overall rate constant of 72 min(-)(1). The absence of an initial burst of carbamoyl phosphate formation eliminates product release as a rate-determining step for CPS. Overall, these results have been interpreted to be consistent with a mechanism whereby the phosphorylation of bicarbonate serves as the initial trigger for the rest of the reaction cascade. The formation of the carboxy phosphate intermediate within the large subunit must induce a conformational change to the active site of the small subunit that enhances the hydrolysis of glutamine. Thus, ammonia is not released into the molecular tunnel until the activated bicarbonate is ready to form carbamate. The rate-limiting step for the steady-state assembly of carbamoyl phosphate is either the formation, migration, or phosphorylation of the carbamate intermediate.  相似文献   

18.
We have studied the kinetics of "unisite" ATP hydrolysis and synthesis in seven mutant Escherichia coli F1-ATPase enzymes. The seven mutations are distributed over a 105-residue segment of the catalytic nucleotide-binding domain in beta-subunit and are: G142S, K155Q, K155E, E181Q, E192Q, M209I, and R246C. We report forward and reverse rate constants and equilibrium constants in all seven mutant enzymes for the four steps of unisite kinetics, namely (i) ATP binding/release, (ii) ATP hydrolysis/synthesis, (iii) Pi release/binding, and (iv) ADP release/binding. The seven mutant enzymes displayed a wide range of deviations from normal in both rate and equilibrium constants, with no discernible common pattern. Notably, steep reductions in Kd ATP were seen in some cases, the value of Kd Pi was high, and K2 (ATP hydrolysis/synthesis) was relatively unaffected. Significantly, when the data from the seven mutations were combined with previous data from two other E. coli F1-beta-subunit mutations (D242N, D242V), normal E. coli F1, soluble and membranous mitochondrial F1, it was found that linear free energy relationships obtained for both ATP binding/release (log k+1 versus log K1) and ADP binding/release (log k-4 versus log K-4). Two conclusions follow. 1) The seven mutations studied here cause subtle changes in interactions between the catalytic nucleotide-binding domain and substrate ATP or product ADP. 2) The mitochondrial, normal E. coli, and nine total beta-subunit mutant enzymes represent a continuum in which subtle structural differences in the catalytic site resulted in changes in binding energy; therefore insights into the nature of energy coupling during ATP hydrolysis and synthesis by F1-ATPase may be ascertained by detailed studies of this group of enzymes.  相似文献   

19.
Huang X  Raushel FM 《Biochemistry》1999,38(48):15909-15914
Carbamoyl phosphate synthetase from Escherichia coli catalyzes the formation of carbamoyl phosphate from bicarbonate, glutamine, and two molecules of ATP. The enzyme consists of a large synthetase subunit, and a small amidotransferase subunit, which belongs to the Triad family of glutamine amidotransferases. Previous studies have established that the reaction mechanism of the small subunit proceeds through the formation of a gamma-glutamyl thioester with Cys-269. The roles in the hydrolysis of glutamine played by the conserved residues, Glu-355, Ser-47, Lys-202, and Gln-273, were determined by mutagenesis. In the X-ray crystal structure of the H353N mutant, Ser-47 and Gln-273 interact with the gamma-glutamyl thioester intermediate [Thoden, J. B., Miran, S. G., Phillips, J. C., Howard, A. J., Raushel, F. M., and Holden, H. M. (1998) Biochemistry 37, 8825-8831]. The mutants E355D and E355A have elevated values of K(m) for glutamine, but the overall carbamoyl phosphate synthesis reaction is unperturbed. E355Q does not significantly affect the bicarbonate-dependent ATPase or glutaminase partial reactions. However, this mutation almost completely uncouples the two partial reactions such that no carbamoyl phosphate is produced. The partial recovery of carbamoyl phosphate synthesis activity in the double mutant E355Q/K202M argues that the loss of activity in E355Q is at least partly due to additional interactions between Gln-355 and Lys-202 in E355Q. The mutants S47A and Q273A have elevated K(m) values for glutamine while the V(max) values are comparable to that of the wild-type enzyme. It is concluded that contrary to the original proposal for the catalytic triad, Glu-355 is not an essential residue for catalysis. The results are consistent with Ser-47 and Gln-273 playing significant roles in the binding of glutamine.  相似文献   

20.
The catalytic functions of the amino-terminal and carboxyl-terminal halves of the large subunit of carbamoyl phosphate synthetase from Escherichia coli have been identified using site-directed mutagenesis. Glycine residues at positions 176, 180, and 722 within the putative mononucleotide-binding site were replaced with isoleucine residues. Each of these mutations resulted in at least a 1 order of magnitude reduction in the Vmax for carbamoyl phosphate synthesis. The mutations on the amino-terminal half, G176I and G180I, caused slight reduction in the rate of synthesis of ATP from ADP and carbamoyl phosphate (the partial ATP synthesis reaction) but the bicarbonate-dependent ATPase reaction velocity was reduced to less than 10% of the wild-type rate. The mutant G722I, which is on the carboxy-terminal half, caused the partial ATP synthesis reaction to be reduced by 1 order of magnitude but the bicarbonate-dependent ATPase reaction was reduced only slightly. All three mutations are within regions which show homology to the putative glycine-rich loops of many ATP-binding proteins. These results have been interpreted to suggest that the two homologous halves of the large subunit of carbamoyl phosphate synthetase each contain a binding site for ATP. The NH2-terminal domain contains the portion of the large subunit that is primarily involved with the phosphorylation of bicarbonate to carboxy phosphate while the COOH-terminal domain contains the region of the enzyme that catalyzes the phosphorylation of carbamate to carbamoyl phosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号