首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background  

Multiple sequence alignment (MSA) is a useful tool in bioinformatics. Although many MSA algorithms have been developed, there is still room for improvement in accuracy and speed. In the alignment of a family of protein sequences, global MSA algorithms perform better than local ones in many cases, while local ones perform better than global ones when some sequences have long insertions or deletions (indels) relative to others. Many recent leading MSA algorithms have incorporated pairwise alignment information obtained from a mixture of sources into their scoring system to improve accuracy of alignment containing long indels.  相似文献   

3.
4.
Recent developments in the MAFFT multiple sequence alignment program   总被引:4,自引:0,他引:4  
The accuracy and scalability of multiple sequence alignment (MSA) of DNAs and proteins have long been and are still important issues in bioinformatics. To rapidly construct a reasonable MSA, we developed the initial version of the MAFFT program in 2002. MSA software is now facing greater challenges in both scalability and accuracy than those of 5 years ago. As increasing amounts of sequence data are being generated by large-scale sequencing projects, scalability is now critical in many situations. The requirement of accuracy has also entered a new stage since the discovery of functional noncoding RNAs (ncRNAs); the secondary structure should be considered for constructing a high-quality alignment of distantly related ncRNAs. To deal with these problems, in 2007, we updated MAFFT to Version 6 with two new techniques: the PartTree algorithm and the Four-way consistency objective function. The former improved the scalability of progressive alignment and the latter improved the accuracy of ncRNA alignment. We review these and other techniques that MAFFT uses and suggest possible future directions of MSA software as a basis of comparative analyses. MAFFT is available at http://align.bmr.kyushu-u.ac.jp/mafft/software/.  相似文献   

5.
Multiple sequence alignment using partial order graphs   总被引:14,自引:0,他引:14  
MOTIVATION: Progressive Multiple Sequence Alignment (MSA) methods depend on reducing an MSA to a linear profile for each alignment step. However, this leads to loss of information needed for accurate alignment, and gap scoring artifacts. RESULTS: We present a graph representation of an MSA that can itself be aligned directly by pairwise dynamic programming, eliminating the need to reduce the MSA to a profile. This enables our algorithm (Partial Order Alignment (POA)) to guarantee that the optimal alignment of each new sequence versus each sequence in the MSA will be considered. Moreover, this algorithm introduces a new edit operator, homologous recombination, important for multidomain sequences. The algorithm has improved speed (linear time complexity) over existing MSA algorithms, enabling construction of massive and complex alignments (e.g. an alignment of 5000 sequences in 4 h on a Pentium II). We demonstrate the utility of this algorithm on a family of multidomain SH2 proteins, and on EST assemblies containing alternative splicing and polymorphism. AVAILABILITY: The partial order alignment program POA is available at http://www.bioinformatics.ucla.edu/poa.  相似文献   

6.
Ashkenazy H  Unger R  Kliger Y 《Proteins》2009,74(3):545-555
The main objective of correlated mutation analysis (CMA) is to predict intraprotein residue-residue interactions from sequence alone. Despite considerable progress in algorithms and computer capabilities, the performance of CMA methods remains quite low. Here we examine whether, and to what extent, the quality of CMA methods depends on the sequences that are included in the multiple sequence alignment (MSA). The results revealed a strong correlation between the number of homologs in an MSA and CMA prediction strength. Furthermore, many of the current methods include only orthologs in the MSA, we found that it is beneficial to include both orthologs and paralogs in the MSA. Remarkably, even remote homologs contribute to the improved accuracy. Based on our findings we put forward an automated data collection procedure, with a minimal coverage of 50% between the query protein and its orthologs and paralogs. This procedure improves accuracy even in the absence of manual curation. In this era of massive sequencing and exploding sequence data, our results suggest that correlated mutation-based methods have not reached their inherent performance limitations and that the role of CMA in structural biology is far from being fulfilled.  相似文献   

7.
Homology-based three-dimensional model for Pisum sativum sieve element occlusion 1 (Ps.SEO1) (forisomes) protein was constructed. A stretch of amino acids (residues 320 to 456) which is well conserved in all known members of forisomes proteins was used to model the 3D structure of Ps.SEO1. The structural prediction was done using Protein Homology/analogY Recognition Engine (PHYRE) web server. Based on studies of local sequence alignment, the thioredoxin-fold containing protein [Structural Classification of Proteins (SCOP) code d1o73a_], a member of the glutathione peroxidase family was selected as a template for modeling the spatial structure of Ps.SEO1. Selection was based on comparison of primary sequence, higher match quality and alignment accuracy. Motif 1 (EVF) is conserved in Ps.SEO1, Vicia faba (Vf.For1) and Medicago truncatula (MT.SEO3); motif 2 (KKED) is well conserved across all forisomes proteins and motif 3 (IGYIGNP) is conserved in Ps.SEO1 and Vf.For1.Key words: comparative protein modeling, forisomes, glutathione peroxidase-like family, protein alignment, secondary structure  相似文献   

8.
Although multiple sequence alignments (MSAs) are essential for a wide range of applications from structure modeling to prediction of functional sites, construction of accurate MSAs for distantly related proteins remains a largely unsolved problem. The rapidly increasing database of spatial structures is a valuable source to improve alignment quality. We explore the use of 3D structural information to guide sequence alignments constructed by our MSA program PROMALS. The resulting tool, PROMALS3D, automatically identifies homologs with known 3D structures for the input sequences, derives structural constraints through structure-based alignments and combines them with sequence constraints to construct consistency-based multiple sequence alignments. The output is a consensus alignment that brings together sequence and structural information about input proteins and their homologs. PROMALS3D can also align sequences of multiple input structures, with the output representing a multiple structure-based alignment refined in combination with sequence constraints. The advantage of PROMALS3D is that it gives researchers an easy way to produce high-quality alignments consistent with both sequences and structures of proteins. PROMALS3D outperforms a number of existing methods for constructing multiple sequence or structural alignments using both reference-dependent and reference-independent evaluation methods.  相似文献   

9.
MOTIVATION: Multiple sequence alignments (MSAs) are at the heart of bioinformatics analysis. Recently, a number of multiple protein sequence alignment benchmarks (i.e. BAliBASE, OXBench, PREFAB and SMART) have been released to evaluate new and existing MSA applications. These databases have been well received by researchers and help to quantitatively evaluate MSA programs on protein sequences. Unfortunately, analogous DNA benchmarks are not available, making evaluation of MSA programs difficult for DNA sequences. RESULTS: This work presents the first known multiple DNA sequence alignment benchmarks that are (1) comprised of protein-coding portions of DNA (2) based on biological features such as the tertiary structure of encoded proteins. These reference DNA databases contain a total of 3545 alignments, comprising of 68 581 sequences. Two versions of the database are available: mdsa_100s and mdsa_all. The mdsa_100s version contains the alignments of the data sets that TBLASTN found 100% sequence identity for each sequence. The mdsa_all version includes all hits with an E-value score above the threshold of 0.001. A primary use of these databases is to benchmark the performance of MSA applications on DNA data sets. The first such case study is included in the Supplementary Material.  相似文献   

10.
MOTIVATION: Alignment-free metrics were recently reviewed by the authors, but have not until now been object of a comparative study. This paper compares the classification accuracy of word composition metrics therein reviewed. It also presents a new distance definition between protein sequences, the W-metric, which bridges between alignment metrics, such as scores produced by the Smith-Waterman algorithm, and methods based solely in L-tuple composition, such as Euclidean distance and Information content. RESULTS: The comparative study reported here used the SCOP/ASTRAL protein structure hierarchical database and accessed the discriminant value of alternative sequence dissimilarity measures by calculating areas under the Receiver Operating Characteristic curves. Although alignment methods resulted in very good classification accuracy at family and superfamily levels, alignment-free distances, in particular Standard Euclidean Distance, are as good as alignment algorithms when sequence similarity is smaller, such as for recognition of fold or class relationships. This observation justifies its advantageous use to pre-filter homologous proteins since word statistics techniques are computed much faster than the alignment methods. AVAILABILITY: All MATLAB code used to generate the data is available upon request to the authors. Additional material available at http://bioinformatics.musc.edu/wmetric  相似文献   

11.
MOTIVATION: The number of known protein sequences is about thousand times larger than the number of experimentally solved 3D structures. For more than half of the protein sequences a close or distant structural analog could be identified. The key starting point in a classical comparative modeling is to generate the best possible sequence alignment with a template or templates. With decreasing sequence similarity, the number of errors in the alignments increases and these errors are the main causes of the decreasing accuracy of the molecular models generated. Here we propose a new approach to comparative modeling, which does not require the implicit alignment - the model building phase explores geometric, evolutionary and physical properties of a template (or templates). RESULTS: The proposed method requires prior identification of a template, although the initial sequence alignment is ignored. The model is built using a very efficient reduced representation search engine CABS to find the best possible superposition of the query protein onto the template represented as a 3D multi-featured scaffold. The criteria used include: sequence similarity, predicted secondary structure consistency, local geometric features and hydrophobicity profile. For more difficult cases, the new method qualitatively outperforms existing schemes of comparative modeling. The algorithm unifies de novo modeling, 3D threading and sequence-based methods. The main idea is general and could be easily combined with other efficient modeling tools as Rosetta, UNRES and others.  相似文献   

12.
Protein structure prediction by comparative modeling benefits greatly from the use of multiple sequence alignment information to improve the accuracy of structural template identification and the alignment of target sequences to structural templates. Unfortunately, this benefit is limited to those protein sequences for which at least several natural sequence homologues exist. We show here that the use of large diverse alignments of computationally designed protein sequences confers many of the same benefits as natural sequences in identifying structural templates for comparative modeling targets. A large-scale massively parallelized application of an all-atom protein design algorithm, including a simple model of peptide backbone flexibility, has allowed us to generate 500 diverse, non-native, high-quality sequences for each of 264 protein structures in our test set. PSI-BLAST searches using the sequence profiles generated from the designed sequences ("reverse" BLAST searches) give near-perfect accuracy in identifying true structural homologues of the parent structure, with 54% coverage. In 41 of 49 genomes scanned using reverse BLAST searches, at least one novel structural template (not found by the standard method of PSI-BLAST against PDB) is identified. Further improvements in coverage, through optimizing the scoring function used to design sequences and continued application to new protein structures beyond the test set, will allow this method to mature into a useful strategy for identifying distantly related structural templates.  相似文献   

13.
John B  Sali A 《Nucleic acids research》2003,31(14):3982-3992
Comparative or homology protein structure modeling is severely limited by errors in the alignment of a modeled sequence with related proteins of known three-dimensional structure. To ameliorate this problem, we have developed an automated method that optimizes both the alignment and the model implied by it. This task is achieved by a genetic algorithm protocol that starts with a set of initial alignments and then iterates through re-alignment, model building and model assessment to optimize a model assessment score. During this iterative process: (i) new alignments are constructed by application of a number of operators, such as alignment mutations and cross-overs; (ii) comparative models corresponding to these alignments are built by satisfaction of spatial restraints, as implemented in our program MODELLER; (iii) the models are assessed by a variety of criteria, partly depending on an atomic statistical potential. When testing the procedure on a very difficult set of 19 modeling targets sharing only 4–27% sequence identity with their template structures, the average final alignment accuracy increased from 37 to 45% relative to the initial alignment (the alignment accuracy was measured as the percentage of positions in the tested alignment that were identical to the reference structure-based alignment). Correspondingly, the average model accuracy increased from 43 to 54% (the model accuracy was measured as the percentage of the Cα atoms of the model that were within 5 Å of the corresponding Cα atoms in the superposed native structure). The present method also compares favorably with two of the most successful previously described methods, PSI-BLAST and SAM. The accuracy of the final models would be increased further if a better method for ranking of the models were available.  相似文献   

14.
Multiple sequence alignments have wide applicability in many areas of computational biology, including comparative genomics, functional annotation of proteins, gene finding, and modeling evolutionary processes. Because of the computational difficulty of multiple sequence alignment and the availability of numerous tools, it is critical to be able to assess the reliability of multiple alignments. We present a tool called StatSigMA to assess whether multiple alignments of nucleotide or amino acid sequences are contaminated with one or more unrelated sequences. There are numerous applications for which StatSigMA can be used. Two such applications are to distinguish homologous sequences from nonhomologous ones and to compare alignments produced by various multiple alignment tools. We present examples of both types of applications.  相似文献   

15.

Background  

For successful protein structure prediction by comparative modeling, in addition to identifying a good template protein with known structure, obtaining an accurate sequence alignment between a query protein and a template protein is critical. It has been known that the alignment accuracy can vary significantly depending on our choice of various alignment parameters such as gap opening penalty and gap extension penalty. Because the accuracy of sequence alignment is typically measured by comparing it with its corresponding structure alignment, there is no good way of evaluating alignment accuracy without knowing the structure of a query protein, which is obviously not available at the time of structure prediction. Moreover, there is no universal alignment parameter option that would always yield the optimal alignment.  相似文献   

16.
In spite of the tremendous increase in the rate at which protein structures are being determined, there is still an enormous gap between the numbers of known DNA-derived sequences and the numbers of three-dimensional structures. In order to shed light on the biological functions of the molecules, researchers often resort to comparative molecular modeling. Earlier work has shown that when the sequence alignment is in error, then the comparative model is guaranteed to be wrong. In addition, loops, the sites of insertions and deletions in families of homologous proteins, are exceedingly difficult to model. Thus, many of the current problems in comparative molecular modeling are minor versions of the global protein folding problem. In order to assess objectively the current state of comparative molecular modeling, 13 groups submitted blind predictions of seven different proteins of undisclosed tertiary structure. This assessment shows that where sequence identity between the target and the template structure is high (> 70%), comparative molecular modeling is highly successful. On the other hand, automated modeling techniques and sophisticated energy minimization methods fail to improve upon the starting structures when the sequence identity is low (~30%). Based on these results it appears that insertions and deletions are still major problems. Successfully deducing the correct sequence alignment when the local similarity is low is still difficult. We suggest some minimal testing of submitted coordinates that should be required of authors before papers on comparative molecular modeling are accepted for publication in journals. © 1995 Wiley-Liss, Inc.  相似文献   

17.
For the past ten years, CASP (Critical Assessment of Structure Prediction) has monitored the state of the art in modeling protein structure from sequence. During this period, there has been substantial progress in both comparative modeling of structure (using information from an evolutionarily related structural template) and template-free modeling. The quality of comparative models depends on the closeness of the evolutionary relationship on which they are based. Template-free modeling, although still very approximate, now produces topologically near correct models for some small proteins. Current major challenges are refining comparative models so that they match experimental accuracy, obtaining accurate sequence alignments for models based on remote evolutionary relationships, and extending template-free modeling methods so that they produce more accurate models, handle parts of comparative models not available from a template and deal with larger structures.  相似文献   

18.
An algorithm is presented for the multiple alignment of protein sequences that is both accurate and rapid computationally. The approach is based on the conventional dynamic-programming method of pairwise alignment. Initially, two sequences are aligned, then the third sequence is aligned against the alignment of both sequences one and two. Similarly, the fourth sequence is aligned against one, two and three. This is repeated until all sequences have been aligned. Iteration is then performed to yield a final alignment. The accuracy of sequence alignment is evaluated from alignment of the secondary structures in a family of proteins. For the globins, the multiple alignment was on average 99% accurate compared to 90% for pairwise comparison of sequences. For the alignment of immunoglobulin constant and variable domains, the use of many sequences yielded an alignment of 63% average accuracy compared to 41% average for individual variable/constant alignments. The multiple alignment algorithm yields an assignment of disulphide connectivity in mammalian serotransferrin that is consistent with crystallographic data, whereas pairwise alignments give an alternative assignment.  相似文献   

19.

Background  

The alignment of multiple protein sequences is a fundamental step in the analysis of biological data. It has traditionally been applied to analyzing protein families for conserved motifs, phylogeny, structural properties, and to improve sensitivity in homology searching. The availability of complete genome sequences has increased the demands on multiple sequence alignment (MSA) programs. Current MSA methods suffer from being either too inaccurate or too computationally expensive to be applied effectively in large-scale comparative genomics.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号