首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Opioid and alpha-adrenergic receptor activation protect the heart from ischemic damage. One possible intracellular mechanism to explain this is that an improvement in ATP availability contributes to cardioprotection. We tested this hypothesis by correlating postischemic left ventricular developed pressure (LVDP) and myofibrillar Ca(2+)-dependent actomyosin Mg(2+)-ATPase from isolated rat hearts treated with the kappa-opioid receptor agonist U-50488H (1 microM) or the alpha-adrenergic receptor agonist phenylephrine (10 microM) + propranolol (3 microM). Preischemic treatment with U-50488H or phenylephrine + propranolol improved postischemic LVDP recovery by 25-30% over control hearts. Ca(2+)-dependent actomyosin Mg(2+)-ATPase was found to be 20% lower in both U-50488H- and phenylephrine + propranolol-treated hearts compared with control hearts. The kappa-opioid receptor antagonist nor-binaltorphimine (1 microM) abolished the effects of U-50488H on postischemic LVDP and actomyosin Mg(2+)-ATPase activity. Reduced actomyosin ATP utilization was also suggested in single ventricular myocytes treated with either U-50488H or the protein kinase C activator, phorbol 12-myristate 13-acetate (PMA), because U-50488H and PMA lowered maximum velocity of unloaded shortening by 15-25% in myocytes. U-50488H and phenylephrine + propranolol treatment both resulted in increased phosphorylation of troponin I and C protein. These findings are consistent with the hypothesis that kappa-opioid and alpha-adrenergic receptors decrease actin-myosin cycling rate, leading to a conservation of ATP and cardioprotection during ischemia.  相似文献   

2.
Activation of myocardial kappa-opioid receptor-protein kinase C (PKC) pathways may improve postischemic contractile function through a myofilament reduction in ATP utilization. To test this, we first examined the effects of PKC inhibitors on kappa-opioid receptor-dependent cardioprotection. The kappa-opioid receptor agonist U50,488H (U50) increased postischemic left ventricular developed pressure and reduced postischemic end-diastolic pressure compared with controls. PKC inhibitors abolished the cardioprotective effects of U50. To determine whether kappa-opioid-PKC-dependent decreases in Ca2+-dependent actomyosin Mg2+-ATPase could account for cardioprotection, we subjected hearts to three separate actomyosin ATPase-lowering protocols. We observed that moderate decreases in myofibrillar ATPase were equally cardioprotective as kappa-opioid receptor stimulation. Immunoblot analysis and confocal microscopy revealed a kappa-opioid-induced increase in myofilament-associated PKC-epsilon, and myofibrillar Ca2+-independent PKC activity was increased after kappa-opioid stimulation. This PKC-myofilament association led to an increase in troponin I and C-protein phosphorylation. Thus we propose PKC-epsilon activation and translocation to the myofilaments causes a decrease in actomyosin ATPase, which contributes to the kappa-opioid receptor-dependent cardioprotective mechanism.  相似文献   

3.
To determine whether sarcolemmal and/or mitochondrial ATP-sensitive potassium (K(ATP)) channels (sarcK(ATP), mitoK(ATP)) are involved in stretch-induced protection, isolated isovolumic rat hearts were assigned to the following protocols: nonstretched hearts were subjected to 20 min of global ischemia (Is) and 30 min of reperfusion, and before Is stretched hearts received 5 min of stretch + 10 min of no intervention. Stretch was induced by a transient increase in left ventricular end-diastolic pressure (LVEDP) from 10 to 40 mmHg. Other hearts received 5-hydroxydecanoate (5-HD; 100 microM), a selective inhibitor of mitoK(ATP), or HMR-1098 (20 microM), a selective inhibitor of sarcK(ATP), before the stretch protocol. Systolic function was assessed through left ventricular developed pressure (LVDP) and maximal rise in velocity of left ventricular pressure (+dP/dt(max)) and diastolic function through maximal decrease in velocity of left ventricular pressure (-dP/dt(max)) and LVEDP. Lactate dehydrogenase (LDH) release and ATP content were also measured. Stretch resulted in a significant increase of postischemic recovery and attenuation of diastolic stiffness. At 30 min of reperfusion LVDP and +dP/dt(max) were 87 +/- 4% and 92 +/- 6% and -dP/dt(max) and LVEDP were 95 +/- 9% and 10 +/- 4 mmHg vs. 57 +/- 6%, 53 +/- 6%, 57 +/- 10%, and 28 +/- 5 mmHg, respectively, in nonstretched hearts. Stretch increased ATP content and did not produce LDH release. 5-HD did not modify and HMR-1098 prevented the protection achieved by stretch. Our results show that the beneficial effects of stretch on postischemic myocardial dysfunction, cellular damage, and energetic state involve the participation of sarcK(ATP) but not mitoK(ATP).  相似文献   

4.
Whereas activation of ATP-dependent potassium (K(ATP)) channels greatly improves postischemic myocardial recovery, the final effector mechanism for K(ATP) channel-induced cardioprotection remains elusive. RhoA is a GTPase that regulates a variety of cellular processes known to be involved with K(ATP) channel cardioprotection. Our goal was to determine whether the activity of a key rhoA effector, rho kinase (ROCK), is required for K(ATP) channel-induced cardioprotection. Four groups of perfused rat hearts were subjected to 36 min of zero-flow ischemia and 44 min of reperfusion with continuous measurements of mechanical function and (31)P NMR high-energy phosphate data: 1) untreated, 2) pinacidil (10 microM) to activate K(ATP) channels, 3) fasudil (15 microM) to inhibit ROCK, and 4) both fasudil and pinacidil. Pinacidil significantly improved postischemic mechanical recovery [39 +/- 16 vs. 108 +/- 4 mmHg left ventricular diastolic pressure (LVDP), untreated and pinacidil, respectively]. Fasudil did not affect reperfusion LVDP (41 +/- 13 mmHg) but completely blocked the marked improvement in mechanical recovery that occurred with pinacidil treatment (54 +/- 15 mmHg). Substantial attenuation of the postischemic energetic recovery was also observed. These data support the hypothesis that ROCK activity plays a role in K(ATP) channel-induced cardioprotection.  相似文献   

5.
The functional significance of ATP-sensitive K(+) (K(ATP)) channels is controversial. In the present study, transgenic mice expressing a mutant Kir6.2, with reduced ATP sensitivity, were used to examine the role of sarcolemmal K(ATP) in normal cardiac function and after an ischemic or metabolic challenge. We found left ventricular developed pressure (LVDP) was 15-20% higher in hearts from transgenics in the absence of cardiac hypertrophy. beta-Adrenergic stimulation caused a positive inotropic response from nontransgenic hearts that was not observed in transgenic hearts. Decreasing extracellular Ca(2+) decreased LVDP in hearts from nontransgenics but not in those from transgenics. These data suggest an increase in intracellular [Ca(2+)] in transgenic hearts. Additional studies have demonstrated hearts from nontransgenics and transgenics have a similar postischemic LVDP. However, ischemic preconditioning does not improve postischemic recovery in transgenics. Transgenic hearts also demonstrate a poor recovery after metabolic inhibition. These data are consistent with the hypothesis that sarcolemmal K(ATP) channels are required for development of normal myocardial function, and perturbations of K(ATP) channels lead to hearts that respond poorly to ischemic or metabolic challenges.  相似文献   

6.
Hypoxia from birth increases resistance to myocardial ischemia in infant rabbits. We hypothesized that increased cardioprotection in hearts chronically hypoxic from birth persists following development in a normoxic environment and involves increased activation of nitric oxide synthase (NOS) and ATP-dependent K (K(ATP)) channels. Resistance to myocardial ischemia was determined in rabbits raised from birth to 10 days of age in a normoxic (Fi(O(2)) = 0.21) or hypoxic (Fi(O(2)) = 0.12) environment and subsequently exposed to normoxia for up to 60 days of age. Isolated hearts (n = 8/group) were subjected to 30 min of global ischemia followed by 35 min of reperfusion. At 10 days of age, resistance to myocardial ischemia (percent recovery postischemic recovery left ventricular developed pressure) was higher in chronically hypoxic hearts (68 +/- 4%) than normoxic controls (43 +/- 4%). At 10 days of age, N(G)-nitro-L-arginine methyl ester (200 microM) and glibenclamide (3 microM) abolished the cardioprotective effects of chronic hypoxia (45 +/- 4% and 46 +/- 5%, respectively) but had no effect on normoxic hearts. At 30 days of age resistance to ischemia in normoxic hearts declined (36 +/- 5%). However, in hearts subjected to chronic hypoxia from birth to 10 days and then exposed to normoxia until 30 days of age, resistance to ischemia persisted (63 +/- 4%). L-NAME or glibenclamide abolished cardioprotection in previously hypoxic hearts (37 +/- 4% and 39 +/- 5%, respectively) but had no effect on normoxic hearts. Increased cardioprotection was lost by 60 days. We conclude that cardioprotection conferred by adaptation to hypoxia from birth persists on subsequent exposure to normoxia and is associated with enhanced NOS activity and activation of K(ATP) channels.  相似文献   

7.
8.
Recent studies have demonstrated that increased expression of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) 2a improves myocardial contractility and Ca2+ handling at baseline and in disease conditions, including myocardial ischemia-reperfusion (I/R). Conversely, it has also been reported that pharmacological inhibition of SERCA might improve postischemic function in stunned hearts or in isolated myocardium following I/R. The goal of this study was to test how decreases in SERCA pump level/activity affect cardiac function following I/R. To address this question, we used a heterozygous SERCA2a knockout (SERCA2a+/-) mouse model with decreased SERCA pump levels and studied the effect of myocardial stunning (20-min ischemia followed by reperfusion) and infarction (30-min ischemia followed by reperfusion) following 60-min reperfusion. Our results demonstrate that postischemic myocardial relaxation was significantly impaired in SERCA2a+/- hearts with both stunning and infarction protocols. Interestingly, postischemic recovery of contractile function was comparable in SERCA2a+/- and wild-type hearts subjected to stunning. In contrast, following 30-min ischemia, postischemic contractile function was reduced in SERCA2a+/- hearts with significantly larger infarction. Rhod-2 spectrofluorometry revealed significantly higher diastolic intracellular Ca2+ in SERCA2a+/- hearts compared with wild-type hearts. Both at 30-min ischemia and 2-min reperfusion, intracellular Ca2+ levels were significantly higher in SERCA2a+/- hearts. Electron paramagnetic resonance spin trapping showed a similar extent of postischemic free-radical generation in both strains. These data provide direct evidence that functional SERCA2a level, independent of oxidative stress, is crucial for postischemic myocardial function and salvage during I/R.  相似文献   

9.
We studied the role of mitochondrial ATP-sensitive K(+) (K(ATP)) channels in modifying functional responses to 20 min global ischemia and 30 min reperfusion in wild-type mouse hearts and in hearts with approximately 250-fold overexpression of functionally coupled A(1)-adenosine receptors (A(1)ARs). In wild-type hearts, time to onset of contracture (TOC) was 303 +/- 24 s, with a peak contracture of 89 +/- 5 mmHg. Diastolic pressure remained elevated at 52 +/- 6 mmHg after reperfusion, and developed pressure recovered to 40 +/- 6% of preischemia. A(1)AR overexpression markedly prolonged TOC to 517 +/- 84 s, reduced contracture to 64 +/- 6 mmHg, and improved recovery of diastolic (to 9 +/- 4 mmHg) and developed pressure (to 82 +/- 8%). 5-Hydroxydecanoate (5-HD; 100 microM), a mitochondrial K(ATP) blocker, did not alter ischemic contracture in wild-type hearts, but increased diastolic pressure to 69 +/- 8 mmHg and reduced developed pressure to 10 +/- 5% during reperfusion. In transgenic hearts, 5-HD reduced TOC to 348 +/- 18 s, increased postischemic contracture to 53 +/- 4 mmHg, and reduced recovery of developed pressure to 22 +/- 4%. In summary, these data are the first to demonstrate that endogenous activation of K(ATP) channels improves tolerance to ischemia-reperfusion in murine myocardium. This functional protection occurs without modification of ischemic contracture. The data also support a role for mitochondrial K(ATP) channel activation in the pronounced cardioprotection afforded by overexpression of myocardial A(1)ARs.  相似文献   

10.
Zhu SS  Zhang ZM  Zhang YC  Xu PC  Dong HY  Fan JW  Zeng YM 《生理学报》2004,56(3):389-396
本文拟探讨缺血预处理(ischemic preconditioning,IP)合并低温及晶体停搏液对幼兔的离体心脏是否具有心肌保护作用.采用Langendorff离体心脏灌注模型,灌注液为Krebs-Henseleit液(K-H液).取3~4周龄幼兔心脏,在第一部分实验中分为Con、IP1、IP2、IP3组(n=6),分别给予0、1、2、3次IP,其后各组心脏均在20℃低温下停灌2 h,37℃常温下再灌注30 min.在第二部分实验中分为SConI、SCon2、SCon3、SIPl、SIP2、SIP3组(n=8),其中SIPl、SIP2、SIP3组给予2次IP后灌注St.Tho-mas Ⅱ晶体停搏液(CCS)使心脏停搏,然后分别使心脏在32℃、25℃、20℃下停灌30、90和120min,其后各组均在37℃再灌注30 min.SConl,SCon2,SCon3三组则不给予IP,继续灌注20min后灌注CCS使心脏停搏,然后分别在32℃、25℃、20℃下停灌30、90和120 min,其后各组均在37℃再灌注30 min.以Maclab/4 s生理实验系统记录平衡末、缺血前、再灌注后1、3、5、10、20、30 min时心率(HR)、左心室发展压(LVDP)以及左心室内压上升及下降最大速率(±dp/dtmax),测定再灌注末心肌组织中ATP和丙二醛(MDA)的含量,以及超氧化物歧化酶(SOD)的活性.在20℃低温停灌且停灌期间不给予CCS时,再灌注末IP2组LVDP×HR、+dp/dtmax和-dp/dtmax的恢复率分别为96%±21%、101%±19%和84%±15%,显著高于Con组和IP3组(P<0.01,P<0.05);心肌组织的ATP含量亦高于Con组(P<0.01).在不同低温停灌且停灌期间给予CCS时,再灌注末SIP1、SIP2组的LVDP×HR、+dp/dtmax分别恢复到87%±14%、99%±26%(P<0.05,vs SConl group)和87%±16%、102%±20%(P<0.05,vs SCon2 group);心肌组织的ATP含量均分别显著高于SCon1组和SCon2组(P<0.05),心肌组织MDA含量亦分别低于SCon1组和SCon2组(P<0.05).上述结果提示,IP对在20℃低温停灌的兔未成熟心脏具有一定的心肌保护作用,2次IP的保护效应优于1次或3次IP.在停灌期间应用CCS,IP的心肌保护作用随停灌期间低温程度的升高而减弱.  相似文献   

11.
The role of NO in ischemia/reperfusion injury in isolated rat heart   总被引:5,自引:0,他引:5  
Nitric oxide (NO) is an important regulator of myocardial function and vascular tone under physiological conditions. However, its role in the pathological situations, such as myocardial ischemia is not unequivocal, and both positive and negative effects have been demonstrated in different experimental settings including human pathology. The aim of the study was to investigate the role of NO in the rat hearts adapted and non-adapted to ischemia. Isolated Langendorff-perfused hearts were subjected to test ischemic (TI) challenge induced by 25 min global ischemia followed by 35 min reperfusion. Short-term adaptation to ischemia (ischemic preconditioning, IP) was evoked by 2 cycles of 5 min ischemia and 5 min reperfusion, before TI. Recovery of function at the end of reperfusion and reperfusion-induced arrhythmias served as the end-points of injury. Coronary flow (CF), left ventricular developed pressure (LVDP), and dP/dt(max) (index of contraction) were measured at the end of stabilization and throughout the remainder of the protocol until the end of reperfusion. The role of NO was investigated by subjecting the hearts to 15 min perfusion with NO synthase (NOS) inhibitor L-NAME (100 mmol/l), prior to sustained ischemia. At the end of reperfusion, LVDP in the controls recovered to 29.0 +/- 3.9 % of baseline value, whereas preconditioned hearts showed a significantly increased recovery (LVDP 66.4 +/- 5.7 %, p < 0.05). Recovery of both CF and dP/dt(max) after TI was also significantly higher in the adapted hearts (101.5 +/- 5.8 % and 83.64 +/- 3.92 % ) as compared with the controls (71.9 +/- 6.3 % and 35.7 +/- 4.87 %, respectively, p < 0.05). NOS inhibition improved contractile recovery in the non-adapted group (LVDP 53.8 +/- 3.1 %; dP/dt(max) 67.5 +/- 5.92 %) and increased CF to 82.4 +/- 5.2 %. In contrast, in the adapted group, it abolished the protective effect of IP (LVDP 31.8 +/- 3.1 %; CF 70.3 +/- 3.4 % and dP/dt(max) 43.25 +/- 2.19 %). Control group exhibited 100 % occurrence of ventricular tachycardia (VT), 57 % incidence of ventricular fibrillation (VF) - 21 % of them was sustained VF (SVF); application of L-NAME attenuated reperfusion arrhythmias (VT 70 %, VF 20 %, SVF 0 %). Adaptation by IP also reduced arrhythmias, however, L-NAME in the preconditioned hearts increased the incidence of arrhythmias (VT 100 %, VF 58 %, SVF 17 %). In conclusion: our results indicate that administration of L-NAME might be cardioprotective in the normal hearts exposed to ischemia/reperfusion (I/R) alone, suggesting that NO contributes to low ischemic tolerance in the non-adapted hearts. On the other hand, blockade of cardioprotective effect of IP by L-NAME points out to a dual role of NO in the heart: a negative role in the non-adapted myocardium subjected to I/R, and a positive one, due to its involvement in the mechanisms of protection triggered by short-term cardiac adaptation by preconditioning.  相似文献   

12.
Myocardial function is impaired 24 h after the induction of sepsis, however, recovery of left ventricular (LV) function after 35 min of global ischemia is complete. The mechanisms by which this protection occurs are unknown. Ischemic preconditioning, another form of myocardial protection from ischemia/reperfusion (I/R) injury, has been shown to be modulated by ATP-sensitive potassium (K+ATP) channels. To investigate the role of K+ATP channels in the regulation of coronary flow (CF) and protection from I/R injury in septic rat hearts, we assessed the effects of the K+ATP channel antagonist glibenclamide (GLIB) and the agonist cromakalim (CROM) on pre- and post-ischemic CF and left ventricular developed pressure (LVDP). Although GLIB decreased pre-ischemic CF in both control and septic rat hearts, LVDP was unaffected. After I/R, CF was decreased in GLIB-treated control and septic rat hearts and LVDP was more severely depressed in control rat hearts than in septic rat hearts. CROM increased pre-ischemic CF in the septic group although LVDP was unaltered in both groups. After I/R, control rat heart CF was depressed but LVDP completely recovered. Post-ischemic CF in septic rat hearts was elevated compared with vehicle-treated septic rat hearts, but the recovery of LVDP was not improved. These results suggest that K+ATP channels modulate CF in septic rat hearts, but do not mediate cardioprotection as observed in control rat hearts.  相似文献   

13.
To determine whether A(3) adenosine receptor (A(3)AR) signaling modulates myocardial function, energetics, and cardioprotection, hearts from wild-type and A(3)AR-overexpressor mice were subjected to 20-min ischemia and 40-min reperfusion while (31)P NMR spectra were acquired. Basal heart rate and left ventricular developed pressure (LVDP) were lower in A(3)AR-overexpressor hearts than wild-type hearts. Ischemic ATP depletion was delayed and postischemic recoveries of contractile function, ATP, and phosphocreatine were greater in A(3)AR-hearts. To determine the role of depressed heart rate and to confirm A(3)AR-specific signaling, hearts were paced at 480 beats/min with or without 60 nmol/l MRS-1220 (A(3)AR-specific inhibitor) and then subjected to ischemia-reperfusion. LVDP was similar in paced A(3)AR-overexpressor and paced wild-type hearts. Differences in ischemic ATP depletion and postischemic contractile and energetic dysfunction remained in paced A(3)AR-overexpressor hearts versus paced wild-type hearts but were abolished by MRS-1220. In summary, A(3)AR overexpression decreased basal heart rate and contractility, preserved ischemic ATP, and decreased postischemic dysfunction. Pacing abolished the decreased contractility but not the ATP preservation or cardioprotection. Therefore, A(3)AR overexpression results in cardioprotection via a specific A(3)AR effect, possibly involving preservation of ATP during ischemia.  相似文献   

14.
Although both lipophilic and more hydrophilic statins share the same pathway of the inhibition of HMG-CoA reductase, their pleiotropic cardioprotective effects associated with the ability to cross cellular membranes, including membranes of heart cells, may differ. To test this hypothesis, isolated rat hearts were Langendorff-perfused either with simvastatin (S, 10 micromol/l) or pravastatin (P, 30 micromol/l), 15 min prior to ischemia. Control untreated hearts (C) were perfused with perfusion medium only. Postischemic contractile dysfunction, reperfusion-induced ventricular arrhythmias and infarct size were investigated after exposure of the hearts to 30-min global ischemia and 2-h reperfusion. Both lipophilic S and hydrophilic P reduced the severity of ventricular arrhythmias (arrhythmia score) from 4.3 +/- 0.2 in C to 3.0 +/- 0 and 2.7 +/- 0.2 in S and P, respectively, (both P < 0.05), decreased the duration of ventricular tachycardia and suppressed ventricular fibrillation. Likewise, the extent of lethal injury (infarct size) determined by tetrazolium staining and expressed in percentage of risk area, was significantly lower in both treated groups, moreover, the effect of P was more pronounced (27 +/- 2 % and 10 +/- 2 % in S and P groups, respectively, vs. 42 +/- 1 % in C; P < 0.05). In contrast, only S, but not P, was able to improve postischemic recovery of left ventricular developed pressure (LVDP; 48 +/- 12 % of preischemic values vs. 25 +/- 4 % in C and 21 +/ -7 % in P groups; P < 0.05). Our results suggest that differences in water solubility of statins indicating a different ability to cross cardiac membranes may underlie their distinct cardioprotective effects on myocardial stunning and lethal injury induced by ischemia/reperfusion.  相似文献   

15.
Superoxide dismutase scavenges oxygen radicals, which have been implicated in ischemia/reperfusion (I/R) injury in the heart. Our experiments were designed to study the effect of a moderate increase of copper/zinc superoxide dismutase (CuZnSOD) on myocardial I/R injury in TgN(SOD1)3Cje transgenic mice. A species of 0.8 kb human CuZnSOD mRNA was expressed, and a 273% increase in CuZnSOD activity was detected in the hearts of transgenic mice with no changes in the activities of other antioxidant enzymes. Furthermore, immunoblot analysis revealed no changes in the levels of HSP-70 or HSP-25 levels. Immunocytochemical study indicated that there was increased labeling of CuZnSOD in the cytosolic fractions of both endothelial cells and smooth muscle cells, but not in the myocytes of the hearts from transgenic mice. When these hearts were perfused as Langendorff preparations for 45 min after 35 min of global ischemia, the functional recovery of the hearts, expressed as heart rate x LVDP, was 48 +/- 3% in the transgenic hearts as compared to 30 +/- 5% in the nontransgenic hearts (p <.05). The improved cardiac function was accompanied by a significant reduction in lactate dehydrogenase release from the transgenic hearts. Our results demonstrate that overexpression of CuZnSOD in coronary vascular cells renders the heart more resistant to I/R injury.  相似文献   

16.
We assessed the role of A(1) adenosine receptor (A(1)AR) activation by endogenous adenosine in the modulation of ischemic contracture and postischemic recovery in Langendorff-perfused mouse hearts subjected to 20 min of total ischemia and 30 min of reperfusion. In control hearts, the rate-pressure product (RPP) and first derivative of pressure development over time (+dP/dt) recovered to 57 +/- 3 and 58 +/- 3% of preischemia, respectively. Diastolic pressure remained elevated at 20 +/- 2 mmHg (compared with 3 +/- 1 mmHg preischemia). Interstitial adenosine, assessed by microdialysis, rose from approximately 0.3 to 1.9 microM during ischemia compared with approximately 15 microM in rat heart. Nonetheless, these levels will near maximally activate A(1)ARs on the basis of effects of exogenous adenosine and 2-chloroadenosine. Neither A(1)AR blockade with 200 nM 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) during the ischemic period alone nor A(1)AR activation with 50 nM N(6)-cyclopentyladenosine altered rapidity or extent of ischemic contracture. However, ischemic DPCPX treatment significantly depressed postischemic recovery of RPP and +dP/dt (44 +/- 3 and 40 +/- 4% of preischemia, respectively). DPCPX treatment during the reperfusion period alone also reduced recovery of RPP and +dP/dt (to 44 +/- 2 and 47 +/- 2% of preischemia, respectively). These data indicate that 1) interstitial adenosine is lower in mouse versus rat myocardium during ischemia, 2) A(1)AR activation by endogenous adenosine or exogenous agonists does not modify ischemic contracture in murine myocardium, 3) A(1)AR activation by endogenous adenosine during ischemia attenuates postischemic stunning, and 4) A(1)AR activation by endogenous adenosine during the reperfusion period also improves postischemic contractile recovery.  相似文献   

17.
To investigate the role of 12-lipoxygenase in preconditioning, we examined whether hearts lacking the "leukocyte-type" 12-lipoxygenase (12-LOKO) would be protected by preconditioning. In hearts from wild-type (WT) and 12-LOKO mice, left ventricular developed pressure (LVDP) and (31)P NMR were monitored during treatment (+/-preconditioning) and during global ischemia and reperfusion. Postischemic function (rate-pressure product, percentage of initial value) measured after 20 min of ischemia and 40 min of reperfusion was significantly improved by preconditioning in WT hearts (78 +/- 12% in preconditioned vs. 44 +/- 7% in nonpreconditioned hearts) but not in 12-LOKO hearts (47 +/- 7% in preconditioned vs. 33 +/- 10% in nonpreconditioned hearts). Postischemic recovery of phosphocreatine was significantly better in WT preconditioned hearts than in 12-LOKO preconditioned hearts. Preconditioning significantly reduced the fall in intracellular pH during sustained ischemia in both WT and 12-LOKO hearts, suggesting that attenuation of the fall in pH during ischemia can be dissociated from preconditioning-induced protection. Necrosis was assessed after 25 min of ischemia and 2 h of reperfusion using 2,3,5-triphenyltetrazolium chloride. In WT hearts, preconditioning significantly reduced the area of necrosis (26 +/- 4%) compared with nonpreconditioned hearts (62 +/- 10%) but not in 12-LOKO hearts (85 +/- 3% in preconditioned vs. 63 +/- 11% in nonpreconditioned hearts). Preconditioning resulted in a significant increase in 12(S)-hydroxyeicosatetraenoic acid in WT but not in 12-LOKO hearts. These data demonstrate that 12-lipoxygenase is important in preconditioning.  相似文献   

18.
We have investigated the cardioprotective effects of novel tetrahydroisoquinoline nitrobenzylmercaptopurine riboside (NBMPR) analog nucleoside transport (NT) inhibitors, compounds 2 and 4, in isolated perfused rat hearts. Langendorff-perfused heart preparations were subjected to 10 min of treatment with compound 2, compound 4, or vehicle (control) followed by 30 min of global ischemia and 120 min of reperfusion. For determination of infarct size, reperfusion time was 180 min. At 1 microM, compounds 2 and 4 provided excellent cardioprotection, with left ventricular developed pressure (LVDP) recovery and end-diastolic pressure (EDP) increase of 82.9 +/- 4.0% (P<0.001) and 14.1 +/- 2.0 mmHg (P<0.03) for compound 2-treated hearts and 79.2 +/- 5.9% (P<0.002) and 7.5 +/- 2.7 mmHg (P<0.01) for compound 4-treated hearts compared with 41.6 +/- 5.2% and 42.5 +/- 6.5 mmHg for control hearts. LVDP recovery and EDP increase were 64.1 +/- 4.2% and 29.1 +/- 2.5 mmHg for hearts treated with 1 microM NBMPR. Compound 4 was the best cardioprotective agent, affording significant cardioprotection, even at 0.1 microM, with LVDP recovery and EDP increase of 76.0 +/- 4.9% (P<0.003) and 14.1 +/- 1.0 mmHg (P<0.03). At 1 microM, compound 4 and NBMPR reduced infarct size, with infarct area-to-total risk area ratios of 29.13 +/- 3.17 (P<0.001) for compound 4 and 37.5 +/- 3.42 (P<0.01) for NBMPR vs. 51.08 +/- 5.06% for control hearts. Infarct size was more effectively reduced by compound 4 than by NBMPR (P<0.02). These new tetrahydroisoquinoline NBMPR analogs are not only potent cardioprotective agents but are, also, more effective than NBMPR in this model.  相似文献   

19.
We have recently demonstrated the cardioprotective effects of a non-alcoholic extract of Argentinian red wine (RWE) on ischemia-reperfusion injury. The aim of the present study was to assess the relative contribution of four phenolic fractions separated from RWE by liquid/liquid extraction with solvents of decreasing hydrophobicity, to the myocardial protection achieved by the original extract. Isovolumic perfused rat hearts treated with each fraction 10 min before ischemia and the first 10 min of reperfusion were submitted to a 20-min global ischemic period followed by 30 min of reperfusion. The treatment with the fraction rich in polymeric proanthocyanidins (fraction IV = aqueous residue) significantly improved the postischemic recovery of left ventricular developed pressure (LVDP) and +dP/dt (max) (111 +/- 5% and 117 +/- 6% vs 61 +/- 4%, 62 +/- 5% , respectively, detected in control hearts) and abolished the increase of left ventricular end diastolic pressure (LVEDP) (8 +/- 2 mmHg vs 42 +/- 4 mmHg in untreated hearts). However, the fraction rich in anthocyanins (III: butanol) elicited a cardioprotective action weaker than the original extract. On the other hand, the representative of either resveratrol or flavan-3-ols and flavonols (fractions I and II) failed to induce this type of response. LDH release and TBARS concentration were significantly lowered after treatment with fraction IV alone. These data show that the fraction rich in polymeric proanthocyanidins exerts a protective effect against myocardial alterations derived from ischemia and reperfusion comparable to the original RWE. This beneficial effect can be correlated to the ability of that fraction to attenuate the degree of lipid peroxidation.  相似文献   

20.
We examined the effect of inhibition of p38 mitogen-activated protein kinase (MAPK) alpha/beta during ischemia and preconditioning by using the inhibitor SB-202190. Isolated rat hearts were perfused with Krebs-Henseleit buffer, while left ventricular developed pressure (LVDP) and (31)P nuclear magnetic resonance spectra were acquired continuously. After 20 min of ischemia and 25 min of reperfusion, recovery of LVDP in untreated hearts was 32 +/- 4%, whereas hearts treated with SB-202190 5 min before ischemia recovered 59 +/- 7% of their pretreatment LVDP. Preconditioning improved functional recovery to 65 +/- 5%, which was unaffected by SB-202190 treatment, added either throughout the preconditioning protocol (56 +/- 5% recovery) or during the final reperfusion period of preconditioning (71 +/- 11% recovery). Necrosis was assessed after 40 min of ischemia and 2 h of reperfusion using 2,3,5-triphenyltetrazolium chloride (TTC) staining and creatine kinase release. The untreated group had 54 +/- 8% necrotic myocardium, whereas the SB-202190-treated group had 32 +/- 7% and the preconditioned group had 21 +/- 4% necrotic tissue by TTC staining.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号