首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
We investigated the growth and nutrient uptake of the Lycopersicon esculentum symbiosis mycorrhiza-defective plant mutant rmc, challenged with arbuscular mycorrhiza (AM) fungal propagules, in the presence or absence of roots of the commercial wild-type tomato cv. Golden Queen (GQ). Two plants shared the middle (combi) compartment of a horizontal three-compartment split-root pot with one part of their root system; the other part was grown separately in an outer (solo) pot. Combinations of rmc and GQ plants were grown together in soil that was either mycorrhiza-free (-M) or prepared with AM fungal inoculum (+M). Surface colonization of rmc roots was strongly increased in the presence of (+M) GQ roots. AM fungal inoculation increased phosphorus uptake of GQ plants, but decreased growth and P uptake of rmc plants. Growth and P uptake of (+M) GQ plants were reduced when plants were grown in combination with rmc rather than another GQ plant. AM fungi in the (combi) compartment may have preferentially formed hyphae spreading infection rather than functioning in P uptake in (+M) GQ plants grown in combination with rmc. Surface colonization of (+M) rmc roots, in the presence of GQ roots, was probably established at the expense of carbohydrates from associated GQ plants. Possible reasons for a decreased P uptake of rmc plants in response to AM fungal inoculation are proposed.  相似文献   

3.
4.
Development of the mutualistic arbuscular mycorrhiza (AM) symbiosis between most land plants and fungi of the Glomeromycota is regulated by phytohormones. The role of jasmonate (JA) in AM colonization has been investigated in the dicotyledons Medicago truncatula, tomato and Nicotiana attenuata and contradicting results have been obtained with respect to a neutral, promotive or inhibitory effect of JA on AM colonization. Furthermore, it is currently unknown whether JA plays a role in AM colonization of monocotyledonous roots. Therefore we examined whether JA biosynthesis is required for AM colonization of the monocot rice. To this end we employed the rice mutant constitutive photomorphogenesis 2 (cpm2), which is deficient in JA biosynthesis. Through a time course experiment the amount and morphology of fungal colonization did not differ between wild-type and cpm2 roots. Furthermore, no significant difference in the expression of AM marker genes was detected between wild type and cpm2. However, treatment of wild-type roots with 50 μM JA lead to a decrease of AM colonization and this was correlated with induction of the defense gene PR4. These results indicate that JA is not required for AM colonization of rice but high levels of JA in the roots suppress AM development likely through the induction of defense.  相似文献   

5.
Arbuscular mycorrhizal (AM) fungi influence the expression of defence-related genes in roots and can cause systemic resistance in plants probably due to the induced expression of specific defence proteins. Among the different groups of defence proteins, plant food allergens were identified. We hypothesized that tomato-allergic patients differently react to tomatoes derived from plants inoculated or not by mycorrhizal fungi. To test this, two tomato genotypes, wild-type 76R and a nearly isogenic mycorrhizal mutant RMC, were inoculated with the AM fungus Glomus mosseae or not under conditions similar to horticultural practice. Under such conditions, the AM fungus showed only a very low colonisation rate, but still was able to increase shoot growth of the wild-type 76R. Nearly no colonisation was observed in the mutant RMC, and shoot development was also not affected. Root fresh weights were diminished in AM-inoculated plants of both genotypes compared to the corresponding controls. No mycorrhizal effects were observed on the biomass and the concentration of phosphate and nitrogen in fruits. Real-time quantitative polymerase chain reaction analysis revealed that six among eight genes encoding for putative allergens showed a significant induced RNA accumulation in fruits of AM-colonised plants. However, human skin reactivity tests using mixed samples of tomato fruits from the AM-inoculated and control plants showed no differences. Our data indicate that AM colonisation under conditions close to horticultural practice can induce the expression of allergen-encoding genes in fruits, but this does not lead necessarily to a higher allergenic potential.  相似文献   

6.
Root colonization by arbuscular mycorrhizal (AM) fungi is a dynamic process involving major changes in plant gene expression. Here, the expression of a phosphate transporter gene (PT3) and several defense genes, already known to be involved in the various stages of AM establishment, were monitored in the mycelium donor plant (MDP) in vitro culture system associating potato plantlets with an AM fungus. This system allows fast and homogenous mycorrhization of seedlings at their early stage of development by growing the plantlets in active mycelial networks, but has never been validated for gene expression analysis. Here, QRT-PCR analyses were conducted in parallel to pre- (1 day), early (2 and 3 days), and late (6, 9, and 15 days) stages of root colonization. We observed the induction of a plant gene marker of AM root colonization (PT3) at the late stage and the induction of MAPK and PAL genes at the early and late stages of root colonization. We also demonstrated the induction of PR1 and PR2 genes at pre- and late stages and of GST1 and Lox genes at a late stage of root colonization. These results validated the MDP in vitro culture system as an optimal tool to study gene expression analysis during the AM fungi establishment. This system further opened the door to investigate gene networks associated with the plants–AM fungi symbiosis.  相似文献   

7.
Song F Q  Song G  Dong A R  Kong X S 《农业工程》2011,31(6):322-327
Arbuscular mycorrhizal (AM) fungi colonize the roots of over 80% of terrestrial plant species, forming mutually beneficial symbioses. During the colonization process, symbiotic partners recognize each other, and undergo observable morphological and physiological changes; indicating that symbiosis formation involves multiple factors that are finely regulated. Sometimes host plants generate a transient, weak, defense response. This response and its down-regulation play a very important role in the development of AM symbioses. Although AM fungi can infect a wide range of host root tissues, which host defense may play a crucial role is hypothesized from the fact that hyphal expansion is only observed in the root cortex.
We discuss five defense mechanisms. (1) The degradation of exogenous elicitors. The host’s weak defense response may be due to the degradation of the exogenous elicitor chitin, or the prevention of release of an endogenous inductor from the plant cell wall. (2) The inactivation of defense signal molecules. Some defense signal molecules such as hydrogen peroxidase, salicylic acid (SA), and jasmonic acid (JA), are inactivated in host plants. This helps to avoid the turn-on of defense-related genes and facilitate mycorrhizal formation. (3) The regulation of plant hormones and plant photosynthates. Plant hormone levels and plant photosynthate metabolism both change during AM colonization. These mechanisms need further exploration. (4) Changes in levels of phosphorous (P), and (iso)flavonoids. High P levels can induce some defense genes to express hydrogen peroxidase, chitinase, and glucanase. These gene products can repress colonization by AM fungi. The plant defense response regulatory effect for different (iso)flavonoids varies, and their levels are regulated by P. (5) The suppressed expression of symbiotic genes. Some symbiosis-related genes inhibit plant defense responses, but it is still unclear which mechanisms underlie gene regulation. We provide here a theoretical basis for research into AM symbiosis that may promote study of host plant resistance and the mechanisms of symbiosis formation.
We provide a deeper insight into the signal transduction pathways of mycorrhization that will aid understanding and analysis of plant defense mechanisms in the AM context. The on-going development of genome sequencing technology will contribute greatly to the detailed study of symbiosis-related genes, and pathogenesis-related protein genes. These related genes may be induced to express corresponding proteins, be repressed, postpone expression or even shutdown, or both may work together to form symbioses. Elucidation of these features will help us understand the roles that plant defenses play in mycorrhizal formation; providing an unprecedented opportunity for research into mycorrhizal molecular biology and the interaction of symbiotic partners, and allowing the underlying mechanisms to be gradually uncovered.  相似文献   

8.
【目的】揭示脱落酸(ABA)对丛枝菌根(AM)真菌侵染和产孢的影响,建立利用外源ABA促进孢子产量的高效菌剂扩繁方法。【方法】利用番茄毛状根和AM真菌Rhizophagus irregularis DAOM 197198建立双重培养体系,通过外源施用ABA、赤霉素(GA)或者使用ABA、GA的缺陷突变体,染色观察菌根侵染,荧光定量PCR测定丛枝发育和脂质合成运输相关基因的表达,统计丛枝和孢子的数量,从而揭示ABA对AM真菌侵染和产孢的影响。【结果】ABA缺陷突变体not中的F%(侵染频率)、a%(丛枝丰度)、丛枝数量,以及丛枝发育特异性相关基因EXO70A1-like (LOC101253481)、脂质合成运输相关基因RAM2和STR2的表达均显著低于其野生型MT;外源施用ABA显著促进了F%、M%(侵染强度)、丛枝数量、孢子产量,以及脂质合成运输相关基因RAM2和STR2的表达,外源添加ABA处理的孢子产量约为不添加处理的4.5倍;外源GA处理极显著抑制了菌根侵染的所有指标和孢子产量;GA缺陷突变体gib3与其野生型MM的AM真菌侵染之间没有显著差异,但gib3的孢子产量显著高于MM...  相似文献   

9.
hrp genes, encoding type III secretion machinery, have been shown to be key determinants for pathogenicity in the vascular phytopathogenic bacterium Ralstonia solanacearum GMI1000. Here, we show phenotypes of R. solanacearum mutant strains disrupted in the prhJ, hrpG, or hrpB regulatory genes with respect to root infection and vascular colonization in tomato plants. Tests of bacterial colonization and enumeration in tomato plants, together with microscopic observations of tomato root sections, revealed that these strains display different phenotypes in planta. The phenotype of a prhJ mutant resembles that of the wild-type strain. An hrpB mutant shows reduced infection, colonization, and multiplication ability in planta, and induces a defense reaction similar to a vascular hypersensitive response at one protoxylem pole of invaded plants. In contrast, the hrpG mutant exhibited a wild-type level of infection at secondary root axils, but the ability of the infecting bacteria to penetrate into the vascular cylinder was significantly impaired. This indicates that bacterial multiplication at root infection sites and transit through the endodermis constitute critical stages in the infection process, in which hrpB and hrpG genes are involved. Moreover, our results suggest that the hrpG gene might control, in addition to hrp genes, other functions required for vascular colonization.  相似文献   

10.
Plant viruses elicit the expression of common sets of genes in susceptible hosts. Studies in Arabidopsis (Arabidopsis thaliana) and tomato (Lycopersicon esculentum) indicate that at least one-third of the genes induced in common by viruses have been previously associated with plant defense and stress responses. The genetic and molecular requirements for the induction of these stress and defense-related genes during compatible host-virus interactions were investigated with a panel of Arabidopsis mutant and transgenic plants defective in one or more defense signaling pathways. pad4, eds5, NahG, npr1, jar1, ein2, sid2, eds1, and wild-type Columbia-0 and Wassilewskija-2 plants were infected with two different viruses, cucumber mosaic virus and oilseed rape mosaic virus. Gene expression was assayed by a high-throughput fiber-optic bead array consisting of 388 genes and by RNA gel blots. These analyses demonstrated that, in compatible host-virus interactions, the expression of the majority of defense-related genes is induced by a salicylic acid-dependent, NPR1-independent signaling pathway with a few notable exceptions that did require NPR1. Interestingly, none of the mutant or transgenic plants showed enhanced susceptibility to either cucumber mosaic virus or oilseed rape mosaic virus based on both symptoms and virus accumulation. This observation is in contrast to the enhanced disease susceptibility phenotypes that these mutations or transgenes confer to some bacterial and fungal pathogens. These experimental results suggest that expression of many defense-related genes in compatible host plants might share components of signaling pathways involved in incompatible host-pathogen interactions, but their increased expression has no negative effect on viral infection.  相似文献   

11.
Comparison of the expression of 13 genes involved in arbuscular mycorrhizal (AM) symbiosis was performed in a wild type tomato (Solanum lycopersicum cv 76R) and its reduced mycorrhizal colonization mutant rmc in response to colonization with Glomus fasiculatum. Four defense-related genes were induced to a similar extent in the mutant and wild type AM colonized plants, indicating a systemic response to AM colonization. Genes related to nutrient exchange between the symbiont partners showed higher expression in the AM roots of wild type plants than the mutant plants, which correlated with their arbuscular frequency. A symbiosis receptor kinase that is involved in both nodulation and AM symbiosis was not expressed in the rmc mutant. The fact that some colonization was observed in rmc was suggestive of the existence of an alternate colonization signaling pathway for AM symbiosis in this mutant.  相似文献   

12.
13.
14.
The effect of flavonoids isolated from arbuscular mycorrhizal (AM) colonized and noncolonized clover roots on the number of entry points and percentage of root colonization of tomato (Lycopersicum esculentum L.) by Gigaspora rosea, Gi margarita, Glomus mosseae and G. intrarradices symbionts was determined. With fungi of both genera, a correlation between the number of entry points and the percentage of root colonization was found in the presence of some of the tested flavonoids. The flavonoids acacetin and rhamnetin, present in AM clover roots, inhibited the formation of AM penetration structures and the AM colonization of tomato roots, whereas the flavonoid 5,6,7,8,9-hydroxy chalcone, which could not be detected in AM clover root, inhibited both parameters. The flavonoid quercetin, which was present in AM clover roots, stimulated the penetration and root colonization of tomato by Gigaspora. However, the flavonoids 5,6,7,8-hydroxy-4'-methoxy flavone and 3,5,6,7,4'-hydroxy flavone, which was not found in AM clover root, increased the number of entry points and the AM colonization of tomato roots by Gigaspora. These results indicated that flavonoids could be imnplicated in the process of regulation of AM colonization in plant root, but its role is highly complex and depend not only on flavonoids, but also on AM fungal genus or even species.  相似文献   

15.
16.
This paper reports the successful isolation and preliminary characterisation of a mutant of Lycopersicon esculentum Mill. with highly reduced vesicular-arbuscular (VA) mycorrhizal colonization. The mutation is recessive and has been designated rmc . Colonization by G. mosseae is characterised by poor development of external mycelium and a few abnormal appressoria. Vesicles were never formed by this fungus in association with the mutant. Gi. margarita formed large amounts of external mycelium, complex branched structures and occasional auxiliary cells. Small amounts of internal colonization also occurred. Laser scanning confocal microscopy (LSCM) gave a clear picture of the differences in development of G. intraradices and Gi. margarita in mutant and wild-type roots and confirmed that the fungus is restricted to the root surface of the mutants. The amenability of tomato for molecular genetic characterisation should enable us to map and clone the mutated gene, and thus identify one of the biochemical bases for inability to establish a normal mycorrhizal symbiosis. The mutant represents a key advance in molecular research on VA mycorrhizal symbiosis.  相似文献   

17.
18.
19.
The role of the jasmonate signalling pathway in modulating the establishment of the arbuscular mycorrhiza (AM) symbiosis between tomato plants and Glomus intraradices fungus was studied. The consequences of AM formation due to the blockage of the jasmonate signalling pathway were studied in experiments with plant mutants impaired in JA perception. The tomato jai-1 mutant (jasmonic acid insensitive 1) failed to regulate colonization and was more susceptible to fungal infection, showing accelerated colonization. The frequency and the intensity of fungal colonization were greatly increased in the jai-1 insensitive mutant plants. In parallel, the systemic effects on mycorrhization due to the activation of the jasmonate signalling pathway by foliar application of MeJA were evaluated and histochemical and molecular parameters of mycorrhizal intensity and efficiency were measured. Histochemical determination of fungal infectivity and fungal alkaline phosphatase activity reveal that the systemic application of MeJA was effective in reducing mycorrhization and mainly affected fungal phosphate metabolism and arbuscule formation, analyzed by the expression of GiALP and the AM-specific gene LePT4, respectively. The results of the present study clearly show that JA participates in the susceptibility of tomato to infection by arbuscular mycorrhizal fungi, and it seems that arbuscular colonization in tomato is tightly controlled by the jasmonate signalling pathway.  相似文献   

20.
The aims of the present study are to find out whether the effects of arbuscular mycorrhizal (AM) symbiosis on plant resistance to water deficit are mediated by the endogenous abscisic acid (ABA) content of the host plant and whether the exogenous ABA application modifies such effects. The ABA-deficient tomato mutant sitiens and its near-isogenic wild-type parental line were used. Plant development, physiology, and expression of plant genes expected to be modulated by AM symbiosis, drought, and ABA were studied. Results showed that only wild-type tomato plants responded positively to mycorrhizal inoculation, while AM symbiosis was not observed to have any effect on plant development in sitiens plants grown under well-watered conditions. The application of ABA to sitiens plants enhanced plant growth both under well-watered and drought stress conditions. In respect to sitiens plants subjected to drought stress, the addition of ABA had a cumulative effect in relation to that of inoculation with G. intraradices. Most of the genes analyzed in this study showed different regulation patterns in wild-type and sitiens plants, suggesting that their gene expression is modulated by the plant ABA phenotype. In the same way, the colonization of roots with the AM fungus G. intraradices differently regulated the expression of these genes in wild-type and in sitiens plants, which could explain the distinctive effect of the symbiosis on each plant ABA phenotype. This also suggests that the effects of the AM symbiosis on plant responses and resistance to water deficit are mediated by the plant ABA phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号