首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously showed that chronic cold exposure inhibits endothelial nitric oxide synthase (eNOS) expression and decreases nitric oxide (NO) production. The aim of the present study was to evaluate the possible role of the NO system in the development of cold-induced hypertension (CIH) by testing the hypothesis that adenoviral delivery of human eNOS gene increases NO production and attenuates CIH in rats. The effect of in vivo delivery of adenovirus carrying human eNOS full-length cDNA (rAdv.heNOS) on CIH was tested using four groups of Sprague-Dawley rats (6 rats/group). Blood pressure (BP) did not differ among the four groups during the control period at room temperature (24 degrees C). Two groups of rats received intravenous injection of rAdv.heNOS (1 x 10(9) plaque-forming units/rat), and the other two groups received the same dose of rAdv.LacZ to serve as controls. After gene delivery, one rAdv.heNOS-treated group and one rAdv.LacZ-treated group were exposed to cold (6 degrees C) while the remaining groups were kept at 24 degrees C. We found that the BP of the rAdv.LacZ group increased significantly within 1 wk of exposure to cold and reached a peak level at week 5 (152.2 +/- 6.4 mmHg). In contrast, BP (118.7 +/- 8.4 mmHg) of the cold-exposed rAdv.heNOS group did not increase until 5 wk after exposure to cold. The rAdv.heNOS increased plasma and urine levels of NO significantly in cold-exposed rats, which indicates that eNOS gene transfer increased NO production. Notably, rAdv.heNOS decreased plasma levels of norepinephrine and plasma renin activity in cold-exposed rats, which suggests that eNOS gene transfer may decrease the activities of the sympathetic nervous system and the renin-angiotensin system. Immunohistochemical analysis showed that the transferred human eNOS was expressed in both endothelium and adventitia of mesenteric arteries. We conclude that 1) eNOS gene transfer attenuates CIH by increasing NO production and inhibiting the sympathetic nervous system and the renin-angiotensin system; and 2) the NO system appears to mediate this nongenetic, nonpharmacological, nonsurgical model of hypertension.  相似文献   

2.
The objective was to determine whether the mineralocorticoid receptor (MR) plays a role in the initiation and development of cold-induced hypertension (CIH) by testing the hypothesis that the RNA interference (RNAi) inhibition of the MR attenuates CIH. The recombinant adeno-associated virus (AAV) carrying a short-hairpin small-interference RNA for MR (MRshRNA) or a scrambled sequence (ControlshRNA) was constructed. Six groups of albino mice were used (6 mice/group). Three groups were exposed to cold (6.7 degrees C), whereas the remaining three groups were kept at room temperature (RT; warm) as controls. In each temperature condition, three groups received an intravenous injection of MRshRNA, ControlshRNA, or virus-free PBS, respectively, before exposure to cold. The viral complexes (0.35 x 10(11) particles/mouse, 0.5 ml) or PBS (0.5 ml) was delivered into the circulation via the tail vein. The blood pressure (BP) of the mice treated with ControlshRNA or PBS increased significantly during exposure to cold, whereas the BP of the cold-exposed MRshRNA-treated mice did not increase and remained at the level of the control group kept at RT. Thus AAV delivery of MRshRNA prevented the initiation of CIH. MRshRNA significantly attenuated cardiac and renal hypertrophy. MRshRNA decreased the cold-induced increase in MR protein expression to the control level in the hypothalamus, kidneys, and heart, indicating an effective prevention of the cold-induced upregulation of MR. RNAi inhibition of MR resulted in significant decreases in the plasma level of norepinephrine, plasma renin activity, and plasma level of aldosterone in cold-exposed mice. MR played a critical role in the initiation and development of CIH. AAV delivery of MRshRNA may serve as a new approach for the prevention of cold-induced hypertension.  相似文献   

3.
4.
The effects of intracerebroventricular (ICV) injection of angiotensin II (ANG II) on blood pressure and water intake were examined with the use of ANG II receptor-deficient mice. ICV injection of ANG II increased systolic blood pressure in a dose-dependent manner in wild-type (WT) mice and ANG type 2 AT(2) receptor null (knockout) (AT(2)KO) mice; however, this increase was significantly greater in AT(2)KO mice than in WT mice. The pressor response to a central injection of ANG II in WT mice was inhibited by ICV preinjection of the selective AT(1) receptor blocker valsartan but exaggerated by the AT(2) receptor blocker PD-123319. ICV injection of ANG II also increased water intake. It was partly but significantly suppressed both in AT(2)KO and AT(1)aKO mice. Water intake in AT(2)/AT(1)aKO mice did not respond to ICV injection of ANG II. Both valsartan and PD-123319 partly inhibited water intake in WT mice. These results indicate an antagonistic action between central AT(1)a and AT(2) receptors in the regulation of blood pressure, but they act synergistically in the regulation of water intake induced by ANG II.  相似文献   

5.
6.
The medial region of the nucleus tractus solitarius (mNTS) is a key brain stem site controlling cardiovascular function, wherein ANG II modulates neuronal L-type Ca(2+) currents via activation of ANG II type 1 receptors (AT(1)R) and production of reactive oxygen species (ROS). ANG II type 2 receptors (AT(2)R) induce production of nitric oxide (NO), which may interact with ROS and modulate AT(1)R signaling. We sought to determine whether AT(2)R-mediated NO production occurs in mNTS neurons and, if so, to elucidate the NO source and the functional interaction with AT(1)R-induced ROS or Ca(2+) influx. Electron microscopic (EM) immunolabeling showed that AT(2)R and neuronal NO synthase (nNOS) are coexpressed in neuronal somata and dendrites receiving synapses in the mNTS. In the presence of the AT(1)R antagonist losartan, ANG II increased NO production in isolated mNTS neurons, an effect blocked by the AT(2)R antagonist PD123319, but not the angiotensin (1-7) antagonist D-Ala. Studies in mNTS neurons of nNOS-null or endothelial NOS (eNOS)-null mice established nNOS as the source of NO. ANG II-induced ROS production was enhanced by PD123319, the NOS inhibitor N(G)-nitro-l-arginine (LNNA), or in nNOS-null mice. Moreover, in the presence of losartan, ANG II reduced voltage-gated L-type Ca(2+) current, an effect blocked by PD123319 or LNNA. We conclude that AT(2)R are closely associated and functionally coupled with nNOS in mNTS neurons. The resulting NO production antagonizes AT(1)R-mediated ROS and dampens L-type Ca(2+) currents. The ensuing signaling changes in the NTS may counteract the deleterious effects of AT(1)R on cardiovascular function.  相似文献   

7.
Acute nitric oxide (NO) inhibits angiotensin II (ANG II)-stimulated aldosterone synthesis in zona glomerulosa (ZG) cells. In this study, we investigated the effects of chronic administration of NO on the ANG II receptor type 1 (AT1) expression and aldosterone synthesis. ZG cells were treated daily with DETA NONOate (10(-4) M), an NO donor, for 0, 12, 24, 48, 72, and 96 h. Chinese hamster ovary (CHO) cells, stably transfected with the AT1B receptor, were used as a positive control. Western blot analysis indicated that AT1 receptor expression was decreased as a function of time of NO administration in both CHO and ZG cells. ANG II binding to its receptors was determined by radioligand binding. NO treatment of ZG cells for 96 h resulted in a decrease in ANG II binding compared with control. The receptor density was decreased to 1,864 +/- 129 fmol/mg protein from 3,157 +/- 220 fmol/mg protein (P < 0.005), but the affinity was not changed (1.95 +/- 0.22 vs. 1.88 +/- 0.21 nM). Confocal Raman microspectroscopy and immunocytochemistry both confirmed that the expression of AT1 receptors in ZG cells decreased with chronic NO administration. In addition, chronic NO administration also decreased the expression of cholesterol side-chain cleavage enzyme in ZG cells and inhibited ANG II- and 25-hydroxycholesterol-stimulated aldosterone synthesis in ZG cells. This study demonstrates that chronic administration of NO inhibits aldosterone synthesis in ZG cells by downregulation of the expression of both AT1 receptors and cholesterol side-chain cleavage enzyme.  相似文献   

8.
Angiotensin (ANG) II via ANG II type 1 receptors (AT1R) activates renal sodium transporters including Na-K-ATPase and regulates sodium homeostasis and blood pressure. It is reported that at a high concentration, ANG II either inhibits or fails to stimulate Na-K-ATPase. However, the mechanisms for these phenomena are not clear. Here, we identified the signaling molecules involved in regulation of renal proximal tubular Na-K-ATPase at high ANG II concentrations. Proximal tubules from spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats were incubated with low concentrations of ANG II (pM), which activated Na-K-ATPase in both the groups; however, the stimulation was more robust in SHR. A high concentration of ANG II (μM) failed to stimulate Na-K-ATPase in WKY rats. However, in SHR ANG II (μM) continued to stimulate Na-K-ATPase, which was sensitive to the AT1R antagonist candesartan. In the presence of N(G)-nitro-l-arginine methyl ester (l-NAME), a nitric oxide (NO) synthase (NOS) inhibitor, ANG II (μM) caused stimulation of Na-K-ATPase in proximal tubules of WKY rats while having no further stimulatory effect in SHR. ANG II (μM), via AT1R, increased proximal tubular NO levels in WKY rats but not in SHR. In SHR, NOS was uncoupled as incubation of proximal tubules with ANG II and l-arginine, a NOS substrate, caused superoxide generation only in SHR and not in WKY rats. The superoxide production in SHR was sensitive to l-NAME. There was exaggerated proximal tubular AT1R-G protein coupling and NAD(P)H oxidase activation in response to ANG II (μM) in proximal tubules of SHR compared with WKY rats. In SHR, inhibition of NADPH oxidase restored NOS coupling and ANG II-induced NO accumulation. In conclusion, at a high concentration ANG II (μM) activates renal NO signaling, which prevents stimulation of Na-K-ATPase in WKY rats. However, in SHR ANG II (μM) overstimulates NADPH oxidase, which impairs the NO system and leads to continued Na-K-ATPase activation.  相似文献   

9.
We tested whether the respective angiotensin type 1 (AT(1)) and 2 (AT(2)) receptor subtype antagonists losartan and PD-123319 could block the descending vasa recta (DVR) endothelial intracellular calcium concentration ([Ca(2+)](i)) suppression induced by ANG II. ANG II partially reversed the increase in [Ca(2+)](i) generated by cyclopiazonic acid (CPA; 10(-5) M), acetylcholine (ACh; 10(-5) M), or bradykinin (BK; 10(-7) M). Losartan (10(-5) M) blocked that effect. When vessels were treated with ANG II before stimulation with BK and ACh, concomitant AT(2) receptor blockade with PD-123319 (10(-8) M) augmented the suppression of endothelial [Ca(2+)](i) responses. Similarly, preactivation with the AT(2) receptor agonist CGP-42112A (10(-8) M) prevented AT(1) receptor stimulation with ANG II + PD-123319 from suppressing endothelial [Ca(2+)](i). In contrast to endothelial [Ca(2+)](i) suppression by ANG II, pericyte [Ca(2+)](i) exhibited typical peak and plateau [Ca(2+)](i) responses that were blocked by losartan but not PD-123319. DVR vasoconstriction by ANG II was augmented when AT(2) receptors were blocked with PD-123319. Similarly, AT(2) receptor stimulation with CGP-42112A delayed the onset of ANG II-induced constriction. PD-123319 alone (10(-5) M) showed no AT(1)-like action to constrict microperfused DVR or increase pericyte [Ca(2+)](i). We conclude that ANG II suppression of endothelial [Ca(2+)](i) and stimulation of pericyte [Ca(2+)](i) is mediated by AT(1) or AT(1)-like receptors. Furthermore, AT(2) receptor activation opposes ANG II-induced endothelial [Ca(2+)](i) suppression and abrogates ANG II-induced DVR vasoconstriction.  相似文献   

10.
Swallowed volumes in the fetus are greater than adult values (per body weight) and serve to regulate amniotic fluid volume. Central ANG II stimulates swallowing, and nonspecific ANG II receptor antagonists inhibit both spontaneous and ANG II-stimulated swallowing. In the adult rat, AT1 receptors mediate both stimulated drinking and pressor activities, while the role of AT2 receptors is controversial. As fetal brain contains increased ANG II receptors compared with the adult brain, we sought to investigate the role of both AT1 and AT2 receptors in mediating fetal swallowing and pressor activities. Five pregnant ewes with singleton fetuses (130 +/- 1 days) were prepared with fetal vascular and lateral ventricle (LV) catheters and electrocorticogram and esophageal electromyogram electrodes and received three studies over 5 days. On day 1 (ANG II), following a 2-h basal period, 1 ml artificial cerebrospinal fluid (aCSF) was injected in the LV. At time 4 h, ANG II (6.4 microg) was injected in the LV, and the fetus was monitored for a final 2 h. On day 3, AT1 receptor blocker (losartan 0.5 mg) was administered at 2 h, and ANG II plus losartan was administered at 4 h. On day 5, AT2 receptor blocker (PD-123319; 0.8 mg was administered at 2 h and ANG II plus PD-123319 at 4 h. In the ANG II study, LV injection of ANG II significantly increased fetal swallowing (0.9 +/- 0.1 to 1.4 +/- 0.1 swallows/min; P < 0.05). In the losartan study, basal fetal swallowing significantly decreased in response to blockade of AT1 receptors (0.9 +/- 0.1 to 0.4 +/- 0.1 swallows/min; P < 0.05), while central injection of ANG II in the presence of AT1 receptor antagonism did not increase fetal swallowing (0.6 +/- 0.1 swallows/min). In the PD-123319 study, basal fetal swallowing did not change in response to blockade of AT2 receptor (0.9 +/- 0.1 swallows/min), while central injection of ANG II in the presence of AT2 blockade significantly increased fetal swallowing (1.5 +/- 0.1 swallows/min; P < 0.05). ANG II caused significant pressor responses in the control and PD-123319 studies but no pressor response in the presence of AT1 blockade. These data demonstrate that in the near-term ovine fetus, AT1 receptor but not AT2 receptors accessible via CSF contribute to dipsogenic and pressor responses.  相似文献   

11.
The renin-angiotensin system (RAS) plays important roles in various pathophysiological processes. However, the role of the RAS in pancreatic fibrosis has not been established. We investigated the role of angiotensin II (ANG II)-ANG II type 1 (AT(1)) receptor pathway in the development of pancreatic fibrosis with AT(1a) receptor-deficient [AT(1a)(-/-)] mice. To induce pancreatic fibrosis, AT(1a)(-/-) and wild-type (WT) mice were submitted to three episodes of acute pancreatitis induced by six intraperitoneal injections of 50 microg/kg body wt cerulein at hourly intervals, per week, for four consecutive weeks. Pancreatic fibrosis was assessed by histology and hydroxyproline content. Pancreatic stellate cell (PSC) activation and the localization of AT(1) receptors were assessed by Western blot analysis for alpha-smooth muscle actin and immunostaining. Transforming growth factor-beta(1) (TGF-beta(1)) mRNA expression in the pancreas was assessed by RT-PCR. Six intraperitoneal injections of cerulein induced acute pancreatitis in both AT(1a)(-/-) and WT mice. There were no significant differences between two groups with regard to serum amylase and histological changes. Pancreatic fibrosis induced by repeated episodes of acute pancreatitis was significantly attenuated in AT(1a)(-/-) mice compared with that in WT mice. This finding was accompanied by a reduction of activated PSCs. Dual-immunofluorescence staining in WT mice revealed that activated PSCs express AT(1) receptors. The level of TGF-beta(1) mRNA was lower in AT(1a)(-/-) mice than in WT mice. Our results demonstrate that the ANG II-AT(1) receptor pathway is not essential for the local pancreatic injury in acute pancreatitis but plays an important role in the development of pancreatic fibrosis through PSC activation and proliferation.  相似文献   

12.
It has been shown that the female sex hormones have a protective role in the development of angiotensin II (ANG II)-induced hypertension. The present study tested the hypotheses that 1) the estrogen receptor-alpha (ERalpha) is involved in the protective effects of estrogen against ANG II-induced hypertension and 2) central ERs are involved. Blood pressure (BP) was measured in female mice with the use of telemetry implants. ANG II (800 ng.kg(-1).min(-1)) was administered subcutaneously via an osmotic pump. Baseline BP in the intact, ovariectomized (OVX) wild-type (WT) and ERalpha knockout (ERalphaKO) mice was similar; however, the increase in BP induced by ANG II was greater in OVX WT (23.0 +/- 1.0 mmHg) and ERalphaKO mice (23.8 +/- 2.5 mmHg) than in intact WT mice (10.1 +/- 4.5 mmHg). In OVX WT mice, central infusion of 17beta-estradiol (E(2); 30 microg.kg(-1).day(-1)) attenuated the pressor effect of ANG II (7.0 +/- 0.4 mmHg), and this protective effect of E(2) was prevented by coadministration of ICI-182,780 (ICI; 1.5 microg.kg(-1).day(-1), 18.8 +/- 1.5 mmHg), a nonselective ER antagonist. Furthermore, central, but not peripheral, infusions of ICI augmented the pressor effects of ANG II in intact WT mice (17.8 +/- 4.2 mmHg). In contrast, the pressor effect of ANG II was unchanged in either central E(2)-treated OVX ERalphaKO mice (19.0 +/- 1.1 mmHg) or central ICI-treated intact ERalphaKO mice (19.6 +/- 1.6 mmHg). Lastly, ganglionic blockade on day 7 after ANG II infusions resulted in a greater reduction in BP in OVX WT, central ER antagonist-treated intact WT, central E(2) + ICI-treated OVX WT, ERalphaKO, and central E(2)- or ICI-treated ERalphaKO mice compared with that in intact WT mice given just ANG II. Together, these data indicate that ERalpha, especially central expression of the ER, mediates the protective effects of estrogen against ANG II-induced hypertension.  相似文献   

13.
Cold temperatures have adverse effects on the human cardiovascular system. Endothelin (ET)-1 is a potent vasoconstrictor. We hypothesized that cold exposure increases ET-1 production and upregulates ET type A (ETA) receptors. The aim of this study was to determine the effect of cold exposure on regulation of the ET system. Four groups of rats (6-7 rats/group) were used: three groups were exposed to moderate cold (6.7 +/- 2 degrees C) for 1, 3, and 5 wk, respectively, and the remaining group was maintained at room temperature (25 degrees C) and served as control. Cold exposure significantly increased ET-1 levels in the heart, mesenteric arteries, renal cortex, and renal medulla. Cold exposure increased ETA receptor protein expression in the heart and renal cortex. ET type B (ETB) receptor expression, however, was decreased significantly in the heart and renal medulla of cold-exposed rats. Cold exposure significantly increased the ratio of ETA to ETB receptors in the heart. An additional four groups of rats (3 rats/group) were used to localize changes in ETA and ETB receptors at 1, 3, and 5 wk of cold exposure. Immunohistochemical analysis showed an increase in ETA, but a decrease in ETB, receptor immunoreactivity in cardiomyocytes of cold-exposed rats. Increased ETA receptor immunoreactivity was also found in vascular smooth muscle cells of cold-exposed rats. Cold exposure increased ETA receptor immunoreactivity in tubule epithelial cells in the renal cortex but decreased ETB receptor immunoreactivity in tubule epithelial cells in the renal medulla. Therefore, cold exposure increased ET-1 production, upregulated ETA receptors, and downregulated ETB receptors.  相似文献   

14.
Chronic intermittent hypoxia (CIH) and cardiovascular dysfunction occur in patients with obstructive sleep apnea. We hypothesized that the Na(+)/Ca(2+) exchanger-1 (NCX1) mediates, at least partially, left ventricular (LV) dysfunction in CIH. Four groups of mice (N = 15-17 per group), either cardiac-specific NCX1 knockouts (KO) or wild types (WT), were exposed to either CIH or normoxia [i.e., handled controls (HC)] 10 h/day for 8 wk. As expected, myocardial expression of NCX1 was greater in WT than in KO animals, both in HC and CIH-exposed groups. In both CIH groups (WT or KO), but not the HC groups, blood pressure increased by 10% at week 1 over their baseline and remained elevated for all 8 wk, with no differences between WT and KO. LV dilation (increased diastolic and systolic dimension) and hypertrophy (increased left heart weight), along with LV dysfunction (greater end-diastolic pressure and lower ejection fraction), were observed in the WT animals compared with the KO following CIH exposure. Compared with HC, CIH exposure was associated with apoptosis (terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling and caspase-3) in WT, but not KO, mice. We conclude that myocardial NCX1 does not mediate changes in blood pressure, but is one of the mediators for LV global dysfunction and cardiomyocyte injury in CIH.  相似文献   

15.
Diabetes is associated with increased production of 12(S)-hydroxyeicosatetraenoic acid [12(S)-HETE]. The mechanisms involved in this process remain unclear. We hypothesized that hyperglycemia and angiotensin II (ANG II) regulate renal 12(S)-HETE production via a balance between angiotensin AT(1) and AT(2) receptors activities. Using a microdialysis technique, renal interstitial fluid (RIF) levels of ANG II and 12(S)-HETE were monitored in normal control and streptozotocin-induced diabetic rats at baseline and then weekly thereafter for 12 wk. In a second group of normal and diabetic rats, 3 wk after development of diabetes, we monitored RIF 12(S)-HETE levels in response to acute AT(1) receptor blockade with valsartan or AT(2) receptor blockade with PD123319 individually or combined. Two weeks after induction of diabetes there was a 404% increase in ANG II (P < 0.05), a 149% increase in 12S-HETE (P < 0.05), and a 649% increase in urinary albumin excretion (P < 0.05). These levels remained elevated throughout the study. PD123319 given alone had no effect on 12(S)-HETE. Valsartan decreased 12(S)-HETE by 61.6% (P < 0.0001), a response that was abrogated when PD123319 was given with valsartan. These data demonstrate that hyperglycemia increases renal ANG II and 12(S)-HETE levels. The increase in 12(S)-HETE is mediated via AT(1) receptor. The attenuation of the effects of AT(1) receptor blockade by PD123319 suggests that AT(2) receptor contributes to the downregulation of renal 12(S)-HETE production.  相似文献   

16.
Experiments in wild-type (WT; C57BL/6J) mice, endothelial nitric oxide synthase null mutant [eNOS(-/-)] mice, and neuronal NOS null mutant [nNOS(-/-)] mice were performed to determine which NOS isoform regulates renal cortical and medullary blood flow under basal conditions and during the infusion of ANG II. Inhibition of NOS with N(omega)-nitro-l-arginine methyl ester (l-NAME; 50 mg/kg iv) in Inactin-anesthetized WT and nNOS(-/-) mice increased arterial blood pressure by 28-31 mmHg and significantly decreased blood flow in the renal cortex (18-24%) and the renal medulla (13-18%). In contrast, blood pressure and renal cortical and medullary blood flow were unaltered after l-NAME administration to eNOS(-/-) mice, indicating that NO derived from eNOS regulates baseline vascular resistance in mice. In subsequent experiments, intravenous ANG II (20 ng x kg(-1) x min(-1)) significantly decreased renal cortical blood flow (by 15-25%) in WT, eNOS(-/-), nNOS(-/-), and WT mice treated with l-NAME. The infusion of ANG II, however, led to a significant increase in medullary blood flow (12-15%) in WT and eNOS(-/-) mice. The increase in medullary blood flow following ANG II infusion was not observed in nNOS(-/-) mice, in WT or eNOS(-/-) mice pretreated with l-NAME, or in WT mice administered the nNOS inhibitor 5-(1-imino-3-butenyl)-l-ornithine (1 mg x kg(-1) x h(-1)). These data demonstrate that NO from eNOS regulates baseline blood flow in the mouse renal cortex and medulla, while NO produced by nNOS mediates an increase in medullary blood flow in response to ANG II.  相似文献   

17.
Unilateral ureteral obstruction (UUO) induces activation of the renin-angiotensin system and upregulation of transforming growth factor-beta1 (TGF-beta1; a cytokine modulating cellular adhesion and fibrogenesis) and clusterin (a glycoprotein produced in response to cellular injury). This study was designed to examine the regulation of renal TGF-beta1 and clusterin by ANG II in the neonatal rat. Animals were subjected to UUO in the first 2 days of life, and renal TGF-beta1 and clusterin mRNA were measured 3 days later. Rats were divided into treatment groups receiving saline vehicle, ANG, losartan (AT(1) receptor inhibitor), or PD-123319 (AT(2) receptor inhibitor). ANG stimulated renal TGF-beta1 expression via AT(1) receptors, a response similar to that in the adult. In contrast, clusterin expression was stimulated via AT(2) receptors, a response differing from that in the adult, in which ANG inhibits clusterin expression via AT(1) receptors. We speculate that the unique response of the neonatal hydronephrotic kidney to ANG II is due to the preponderance of AT(2) receptors in the developing kidney.  相似文献   

18.
The renin-angiotensin system (RAS) constitutes an important hormonal system in the physiological regulation of blood pressure. The dysregulation of the RAS is considered a major influence in the development and progression of cardiovascular disease and other pathologies. Indeed, experimental and clinical evidence indicates that blockade of this system with angiotensin-converting enzyme (ACE) inhibitors or angiotensin type 1 receptor (AT1R) antagonists is an effective therapy to attenuate hypertension and diabetic renal injury, and to improve heart failure. Originally defined as a circulating system, multiple tissues express a complete RAS, and compelling evidence now favors an intracellular system involved in cell signaling and function. Within the kidney, intracellular expression of the three predominant ANG receptor subtypes is evident in the nuclear compartment. The ANG type 1 receptor (AT1R) is coupled to the generation of reactive oxygen species (ROS) through the activation of phosphoinositol-3 kinase (PI3K) and PKC. In contrast, both ANG type 2 (AT2R) and ANG-(1-7) (AT7R) receptors stimulate nitric oxide (NO) formation, which may involve nuclear endothelial NO synthase (eNOS). Moreover, blockade of either ACE2-the enzyme that converts ANG II to ANG-(1-7)-or the AT7 receptor exacerbates the ANG II-ROS response on renal nuclei. Finally, in a model of fetal programmed hypertension, the nuclear ROS response to ANG II is enhanced, while both AT2 and AT7 stimulation of NO is attenuated, suggesting that an imbalance in the intracellular RAS may contribute to the development of programming events. We conclude that a functional intracellular or nuclear RAS may have important implications in the therapeutic approaches to cardiovascular disease.  相似文献   

19.
Current evidence points to renin-angiotensin system as a key mediator in ischemia-reperfusion injury. Rosiglitazone, a peroxisome proliferator-activated receptor-gamma (PPAR-gamma) ligand, has recently been shown to confer cardioprotection against ischemia-reperfusion in animal models. We sought to examine the expression of ANG II receptors during PPAR-gamma-mediated cardioprotection. Male Sprague-Dawley rats (nondiabetic) were fed either regular rat chow (control diet group, n = 9) or rosiglitazone-rich diet (rosiglitazone-rich diet group, n = 9) and were subjected to 1 h of myocardial ischemia followed by 1 h of reperfusion. A third group of rats had only thoracotomy and pericardiotomy and served as a sham control group (n = 9). Hemodynamics, infarct size, and expression of ANG II type 1 and type 2 receptors (AT1 and AT2) were measured in all groups. There was a 58% reduction of infarct size in the rosiglitazone-rich diet group (P < 0.01 vs. control diet group). Increased myocardial expression of AT(1) receptors in the ischemic-reperfused myocardium was attenuated in the rosiglitazone-rich diet group (P < 0.05 vs. control diet group). Importantly, myocardial AT2 mRNA and protein expression were significantly increased (by >100-fold) in the rosiglitazone-rich diet group (P < 0.05). These changes were accompanied by inhibition of p42/44 MAPK in the rosiglitazone-rich diet group, while the Akt1 expression, believed to mediate insulin sensitization, remained similar in all three groups. The cardioprotective effects of rosiglitazone against myocardial ischemia-reperfusion injury are independent of its insulin-sensitizing properties and are associated with significant overexpression of AT2 receptors along with inhibition of p42/44 MAPK.  相似文献   

20.
Sex differences may play a significant role in determining the risk of hypertension. Bulbospinal neurons in the rostral ventrolateral medulla (RVLM) are involved in the tonic regulation of arterial pressure and participate in the central mechanisms of hypertension. Angiotensin II (ANG II) acting on angiotensin type 1 (AT(1)) receptors in RVLM neurons is implicated in the development of hypertension by activating NADPH oxidase and producing reactive oxygen species (ROS). Therefore, we analyzed RVLM bulbospinal neurons to determine whether there are sex differences in: 1) immunolabeling for AT(1) receptors and the key NADPH oxidase subunit p47 using dual-label immunoelectron microscopy, and 2) the effects of ANG II on ROS production and Ca(2+) currents using, respectively, hydroethidine fluoromicrography and patch-clamping. In tyrosine hydroxylase-positive RVLM neurons, female rats displayed significantly more AT(1) receptor immunoreactivity and less p47 immunoreactivity than male rats (P < 0.05). Although ANG II (100 nM) induced comparable ROS production in dissociated RVLM bulbospinal neurons of female and male rats (P > 0.05), an effect mediated by AT(1) receptors and NADPH oxidase, it triggered significantly larger dihydropyridine-sensitive long-lasting (L-type) Ca(2+) currents in female RVLM neurons (P < 0.05). These observations suggest that an increase in AT(1) receptors in female RVLM neurons is counterbalanced by a reduction in p47 levels, such that ANG II-induced ROS production does not differ between females and males. Since the Ca(2+) current activator Bay K 8644 induced larger Ca(2+) currents in females than in male RVLM neurons, increased ANG II-induced L-type Ca(2+) currents in females may result from sex differences in calcium channel densities or dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号