首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chen J  Zhang Y  Wang C  Lü W  Jin JB  Hua X 《Amino acids》2011,40(5):1473-1484
Although free proline accumulation is a well-documented phenomenon in many plants in response to a variety of environmental stresses, and is proposed to play protective roles, high intracellular proline content, by either exogenous application or endogenous over-production, in the absence of stresses, is found to be inhibitory to plant growth. We have shown here that exogenous application of proline significantly induced intracellular Ca2+ accumulation in tobacco and calcium-dependent ROS production in Arabidopsis seedlings, which subsequently enhanced salicylic acid (SA) synthesis and PR genes expression. This suggested that proline can promote a reaction similar to hypersensitive response during pathogen infection. Other amino acids, such as glutamate, but not arginine and phenylalanine, were also found to be capable of inducing PR gene expression. In addition, proline at concentration as low as 0.5 mM could induce PR gene expression. However, proline could not induce the expression of PDF1.2 gene, the marker gene for jasmonic acid signaling pathway. Furthermore, proline-induced SA production is mediated by NDR1-dependent signaling pathway, but not that mediated by PAD4. Our data provide evidences that exogenous proline, and probably some other amino acids can specifically induce SA signaling and defense response.  相似文献   

2.
A basic endopolygalacturonase (PG) isoform, produced early by Sclerotinia sclerotiorum when infecting soybean seedlings, was used to examine the signaling role of the enzyme in aequorin-expressing soybean cells. A cytosolic Ca2+ elevation was induced, with a rapid increase (phase 1) and a very slow decrease (phase 2) of Ca2+ concentration, indicating the involvement of Ca2+ ions in PG signaling. Within 1 h of PG-cell contact a remarkable level of cell death was recorded, significantly higher than the control cell culture turnover. The observed morphological and biochemical changes were indicative of the activation of programmed cell death; in particular, cytochrome c release in the cytoplasm and activation of both caspase 9-like and caspase 3-like proteases were found. When a polygalacturonase-inhibiting protein (PGIP) and the PG were simultaneously applied to cells, both the Ca2+ increase and cell death were annulled. The possible roles of prolonged sustained cytosolic Ca2+ concentrations in inducing cell death and of the PG-PGIP interaction in preventing PG signaling are discussed.  相似文献   

3.
The biosynthesis of thrombospondin, a glycoprotein first described in platelets, has been studied in human endothelial cells. This glycoprotein has a molecular mass of 450 kDa. It is secreted and incorporated into the extracellular matrix of several cell types in culture. Pulse-chase experiments with [3H]leucine were performed and the synthesis and secretion of the glycoprotein was studied by immunoprecipitation and sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The results of these experiments show that the three subunits of thrombospondin are identical in molecular mass. During synthesis there is a small but significant increase in molecular mass within 20 min after pulse labeling. The early form of thrombospondin is sensitive to endoglucosaminidase H treatment, indicating that a transformation of the oligosaccharide structures from 'high-mannose' to 'complex' structures takes place. Within 60 min after synthesis only the mature form of the glycoprotein is secreted into the medium. In the presence of tunicamycin, an inhibitor of N-glycosylation, there is a reduction in molecular mass of the subunit from 165 kDa to 155 kDa. Pulse-chase experiments in the presence of tunicamycin supported the conclusion that the carbohydrate part is processed during biosynthesis. Inhibition of glycosylation had a pronounced effect on the secretion of thrombospondin. The decreased occurrence of thrombospondin in the culture medium seemed to be due to a high intracellular degradation rate of unglycosylated thrombospondin. Characterization of the glycopeptide structures of thrombospondin metabolically labeled with [3H]mannose by Bio-Gel P-4 and concanavalin-A-Sepharose column chromatography revealed that the oligosaccharide structures of the cellular and secreted forms of thrombospondin differ in their composition.  相似文献   

4.
The pancreas is vulnerable to ethanol toxicity, but the pathogenesis of alcoholic pancreatitis is not fully defined. The intracellular oxidative balance and the characteristics of the secretion of isolated rat pancreatic acinar cells stimulated with the cholecystokinin analogue cerulein were assayed after acute oral ethanol (4 g/kg) load. Pancreatic acinar cells from ethanol-treated rats showed a significant (p < 0.02) lower content of total glutathione and protein sulfhydryls, and higher levels of oxidized glutathione (p < 0.03), malondialdehyde, and protein carbonyls (p < 0.05). Ethanol-intoxicated acinar cells showed a lower baseline amylase output compared to controls, with the difference being significantly exacerbated by cerulein stimulation. After cerulein, the release of protein carbonyls by ethanol-treated cells was significantly increased, whereas that of protein sulfhydryls was significantly decreased. In conclusion, ethanol oxidatively damages pancreatic acinar cells; cerulein stimulation is followed by a lower output of amylase and by a higher release of oxidized proteins by pancreatic acinar cells from ethanol-treated rats. These findings may account for the decreased exocrine function, intraductular plug formation, and protein precipitation in alcoholic pancreatitis.  相似文献   

5.
Somatostatin (somatotropin release inhibitory factor; SRIF) is an endogenous peptide produced at sites of inflammation, making the SRIF a candidate in regulating vascular inflammation. We have used primary human coronary artery endothelial cells (hCAEC) as a model to study SRIF's vascular actions. RT-PCR analysis of hCAEC total mRNA demonstrated the presence of the sst(4) receptor subtype, providing a target for SRIF intracellular signaling. Western blotting with phospho-specific ERK1/2 antibodies showed that SRIF-14 acutely inhibited basal phosphorylation of the extracellular regulated kinases (ERK1/2) by 80%. In addition, SRIF-14 treated hCAEC cell lysates showed a 2.6-fold increase in phosphatase activity, which was inhibited by sodium vanadate. Furthermore, SRIF-14 appeared to be anti-inflammatory in hCAEC as IL-1beta-induced adhesion molecule expression was reduced by 50%. Together, these results show that the coronary artery endothelium is a direct target of SRIF action.  相似文献   

6.
FLG 29.1 cells, cultured at 1xg, are able to switch on a differentiating process only when they are suitably induced by chemical factors. On the contrary, when FLG 29.1 cells are cultured in conditions of gravitational unloading, simulated by a Random Positioning Machine, the switching on of the differentiation process occurs in the absence of any added differentiating agent or any stimulating factor. The phenotypic characterization of the cells and quantitative measures of their bone resorption activity are consistent with a differentiation process through the osteoclastic pathway.  相似文献   

7.
Transforming growth factor beta regulates many biological processes including cell motility and invasion. Podosomes are specialized F-actin rich structures found in normal cells, such as osteoclasts and macrophages. Tumor cells often form related structures called invadopodia that are thought to promote invasion and metastasis. Here we show that human breast cancer cells organize F-actin rich structures in response to transforming growth factor beta that colocalize with areas of extracellular matrix degradation. We further show that organizing the complex of proteins needed to form these structures requires signaling through phosphatidylinositide 3-kinase and Src kinase, while activating the proteases involved in degradation of extracellular matrix requires extracellular signal-regulated kinase signaling, and that each of these pathways is activated by transforming growth factor beta in CA1D human breast cancer cells.  相似文献   

8.
9.
Regulation of human neutrophil chemotaxis by intracellular pH   总被引:9,自引:0,他引:9  
The relationship of N-formyl-methionyl-leucyl-phenylalanine-stimulated Na+/H+ exchange to the chemotactic responsiveness of human neutrophils was investigated. The pHi changes, measured from the equilibrium distribution of 5,5-dimethyloxazolidine-2,4-dione, were correlated with the migratory behavior of the cells as assessed by the leading front method. Exposure of cells to 10 nM FMLP caused activation of Na+/H+ exchange, leading to a rise in pHi from approximately 7.25 to approximately 7.75. This intracellular alkalinization was inhibited by amiloride and by three more potent analogues. All four compounds reduced the chemotactic response to FMLP with apparent Ki values similar to those for inhibition of the pHi transients, thereby suggesting that the blocking effect of the drugs on directed cell migration was related to inhibition of Na+/H+ exchange. The effect was specific for stimulated cell locomotion: FMLP-induced chemotaxis and chemokinesis were inhibited in parallel, whereas random motility was unimpaired. The relationship of pHi to function was also studied as the pHi of FMLP-activated cells was varied between 6.8 and 8.6 by altering the chemical gradients for Na+ and H+ across the cell membrane. There was a direct, positive correlation between the pHi value attained following FMLP-stimulation and the locomotor response to a chemotactic gradient. These results indicate that the motile functions of human neutrophils can be regulated by their pHi.  相似文献   

10.
IL-3, a cytokine with hematopoietic differentiating capability, induced murine bone marrow cells to differentiate into cells resembling osteoclasts. The cells resulting from treatment with IL-3 were multi-nucleated and demonstrated tartrate-resistant acid-phosphatase activity, as do resident osteoclasts found in bone. IL-3-induced osteoclast-like cell development in the absence of serum-derived vitamin D metabolites, and a mAb that inhibited IL-3-induced proliferation of an addicted cell line also inhibited the development of osteoclasts in the presence of IL-3. The same Ab had no effect on 1 alpha, 25-dihydroxyvitamin D3-induced differentiation of osteoclasts. This newly described function of IL-3 may indicate a role for activated T cells in the bone resorption seen with rheumatoid arthritis.  相似文献   

11.
Interferon-gamma (IFN-gamma) inhibits osteoclastic bone resorption in vitro, but the mechanism responsible for this inhibition is unknown. We have used a long-term human marrow culture system that forms multinucleated cells (MNC) with osteoclast characteristics to test the effect of recombinant human IFN-gamma on MNC formation. The addition of 1,25-dihydroxy-vitamin D3 (1,25D3) at 10(-8) M to these cultures significantly increased both MNC formation and the number of nuclei per MNC. IFN-gamma at 100 U/ml strongly inhibited both of these effects of 1,25D3 in this system. IFN-gamma significantly inhibited MNC formation at very low concentrations (4 U/ml), with 10 U/ml inhibiting 1,25D3-stimulated MNC formation by 50%. In contrast, 100 U/ml of IFN-gamma were required to inhibit the growth of granulocyte-macrophage colony-forming cells, the probable progenitor for MNC, by 50%. Treatment of cultures with IFN-gamma for only the first or last week of culture significantly inhibited MNC formation stimulated by 1,25D3. Autoradiographic studies with [3H]thymidine showed that IFN-gamma did not inhibit proliferation of precursors for MNC. Additionally, IFN-gamma inhibited MNC formation stimulated by parathyroid hormone or interleukin 1. These results suggest that IFN-gamma inhibits MNC formation, and that IFN-gamma inhibits bone resorption in part by inhibiting osteoclast formation.  相似文献   

12.
13.
We are interested in determining whether carbohydrates are important regulatory determinants in the intracellular transport and secretion of glycoproteins. In the present study, we have used swainsonine, an indolizidine alkaloid, to modify the structure of N-glycosidically linked complex oligosaccharides. By inhibiting Golgi mannosidase II, swainsonine prevents the trimming of GlcNAc(Man)5(GlcNAc)2 to GlcNAc-(Man)3(GlcNAc)2, resulting in the formation of hybrid-type oligosaccharides. We find, from pulse-chase experiments using [35S]methionine and immunoprecipitation of individual proteins from culture media, that swainsonine treatment (1 microgram/ml) accelerated the secretion of glycoproteins (transferrin, ceruloplasmin, alpha 2-macroglobulin, and alpha 1-antitrypsin) by decreasing the lag period by 10-15 min relative to untreated cultures. The enhanced secretion was specific for glycoproteins since the secretion of albumin, a nonglycoprotein, was unaffected. When alpha 1-antitrypsin was immunoprecipitated from the cell lysates, sodium dodecyl sulfate-polyacrylamide gel electrophoresis fluorographic analysis demonstrated that the conversion of the high-mannose precursor to the hybrid form in swainsonine-treated cells occurred more rapidly (by about 10 min) than the conversion to the complex form in control cells. Since both the hybrid and complex forms of alpha 1-antitrypsin are terminally sialylated by sialyltransferase in the trans-Golgi, these results suggest that swainsonine-modified glycoproteins traverse the Golgi more rapidly than their normal counterparts. Therefore, accelerated transport within this organelle may account for the decreased lag period of glycoprotein secretion in the swainsonine-treated cultures.  相似文献   

14.
Bacterial DNA containing unmethylated CpG motifs is emerging as an important regulator of functions of human neutrophil granulocytes (polymorphonuclear leukocytes (PMN)). These motifs are recognized by TLR-9. Recent studies indicate that peroxynitrite (ONOO-) may function as an intracellular signal for the production of IL-8, one of the key regulators of leukocyte trafficking in inflammation. In this study we investigated whether bacterial DNA (CpG-DNA) could induce ONOO- signaling in human PMN. Human whole blood, isolated PMN (purity, >95%), and high purity (>99%) PMN respond to CpG-DNA, but not to calf thymus DNA, with secretion of IL-8 and, to a lesser extent, IL-6 and TNF. Methylation of cytosines in CpG-DNA resulted in a complete loss of activity. The endosomal acidification inhibitors, bafilomycin A and chloroquine, inhibited CpG-DNA-induced cytokine release from PMN. CpG-DNA-induced IL-8 mRNA expression and release was also blocked by the NO synthase inhibitor Nomega-nitro-L-arginine methyl ester. CpG-DNA evoked concomitant increases in intracellular superoxide and NO levels, leading to enhanced ONOO- formation and, consequently, nuclear accumulation of c-Fos and NF-kappaB. Pharmacological inhibition of NF-kappaB activation attenuated approximately 75% of CpG-DNA-evoked IL-8 release. These results identify ONOO- -dependent activation of NF-kappaB and c-Fos as an important mechanism that mediates PMN responses, including IL-8 gene expression and release, to bacterial DNA and unmethylated CpG motifs in particular. Enhanced ONOO- formation represents a mechanism by which bacterial DNA may contribute to prolongation and amplification of the inflammatory response.  相似文献   

15.
N-acyl-l-homoserine lactones (AHLs) are quorum sensing (QS) signal molecules that are commonly used in gram-negative bacteria. Recently, it has become evident that AHLs can influence the behavior of plant cells. However, little is known about the mechanism of the plants’ response to these bacterial signals. Calcium ions (Ca2+), ubiquitous intracellular second messengers, play an essential role in numerous signal transduction pathways in plants. In this study, the cytosolic free Ca2+ concentration ([Ca2+]cyt) was measured by a luminometric method in the excised root cells of Arabidopsis plants that were treated with N-butyryl-homoserine lactone (C4-HSL). There was a transient and immediate increase in [Ca2+]cyt levels, and the highest level (0.4 μM), approximately 2-fold higher than the basal level, was observed at the 6th second after the addition of 10 μM C4-HSL. Pretreatments with La3+, verapamil or ethylene glycol tetraacetic acid (EGTA) inhibited the increase in [Ca2+]cyt caused by C4-HSL, whereas it remained unaffected by pretreatment with Li+, indicating that the Ca2+ contributing to the increase in [Ca2+]cyt was mobilized from the extracellular medium via the plasma membrane Ca2+ channels but not from the intracellular Ca2+ stores. Furthermore, electrophysiological approaches showed that the transmembrane Ca2+ current was significantly increased with the addition of C4-HSL. Taken together, our observations suggest that C4-HSL may act as an elicitor from bacteria to plants and that Ca2+ signaling participates in the ability of plant cells to sense the bacterial QS signals.  相似文献   

16.
J F Hess  K Oosawa  N Kaplan  M I Simon 《Cell》1988,53(1):79-87
Six cytoplasmic che gene products are required for signal transduction in bacterial chemotaxis, but the nature of their biochemical interactions is not known. We show that in vitro the CheA protein becomes autophosphorylated in the presence of ATP. In addition, the phosphate group on CheA can be rapidly transferred to CheB, a protein involved in adaptation to stimuli, or to CheY, a protein involved in the excitation response. The phosphorylation of CheB and CheY is transient; they readily dephosphorylate. We have also found that CheZ, a protein that appears to antagonize CheY function in vivo, accelerates the hydrolysis of the phosphate on CheY. These results suggest that signal transduction in bacterial chemotaxis may involve the flow of phosphate through a cascade of phosphorylated protein intermediates.  相似文献   

17.
Melanoma has a high tendency to metastasize to lymph nodes, which is one of the clinicopathological factors to indicate poor prognosis. Recent investigations have shown the importance of lymphangiogenesis in lymph node metastasis in a variety of human tumors including melanoma. However, molecular mechanism of lymphatic metastasis is still poorly defined. We examined influence of interactions between normal lymphatic endothelial cells (LECs) and melanoma cells on cell migration. Medium conditioned with LEC (LEC‐CM) contained chemotactic and chemokinetic activities for human melanoma cell lines. The chemotactic activity was fractionated in more than 100 kDa, and inactivated by heat‐treatment. The chemotactic activity of LEC‐CM was abolished by immunodepletion with anti‐laminin‐1 antibody. And immunoprecipitation and Western blot analyses revealed that LEC‐CM contained laminin‐421. When melanoma C8161 cells were treated with function‐blocking antibodies to integrin α3 or α6, their chemotactic responses to LEC‐CM were markedly reduced. Furthermore, the knock‐down of tetraspanin CD151 weakened the chemotactic responses of C8161 and MeWo cells to LEC‐CM. These data suggest that laminin‐421 secreted by LEC possibly facilitates lymphatic metastasis through the induction of chemotaxis of melanoma cells.  相似文献   

18.
Pratt J  Roy R  Annabi B 《Glycobiology》2012,22(9):1245-1255
Pre-clinical trials for cancer therapeutics support the anti-neoplastic properties of the lectin from Canavalia ensiformis (Concanavalin-A, ConA) in targeting apoptosis and autophagy in a variety of cancer cells. Given that membrane type-1 matrix metalloproteinase (MT1-MMP), a plasma membrane-anchored matrix metalloproteinase, is a glycoprotein strongly expressed in radioresistant and chemoresistant glioblastoma that mediates pro-apoptotic signalling in brain cancer cells, we investigated whether MT1-MMP could also signal autophagy. Among the four lectins tested, we found that the mannopyranoside/glucopyranoside-binding ConA, which is also well documented to trigger MT1-MMP expression, increases autophagic acidic vacuoles formation as demonstrated by Acridine Orange cell staining. Although siRNA-mediated MT1-MMP gene silencing effectively reversed ConA-induced autophagy, inhibition of the MT1-MMP extracellular catalytic function with Actinonin or Ilomastat did not. Conversely, direct overexpression of the recombinant Wt-MT1-MMP protein triggered proMMP-2 activation and green fluorescent protein-microtubule-associated protein light chain 3 puncta indicative of autophagosomes formation, while deletion of MT1-MMP's cytoplasmic domain disabled such autophagy induction. ConA-treated U87 cells also showed an upregulation of BNIP3 and of autophagy-related gene members autophagy-related protein 3, autophagy-related protein 12 and autophagy-related protein 16-like 1, where respective inductions were reversed when MT1-MMP gene expression was silenced. Altogether, we provide molecular evidence supporting the pro-autophagic mechanism of action of ConA in glioblastoma cells. We also highlight new signal transduction functions of MT1-MMP within apoptotic and autophagic pathways that often characterize cancer cell responses to chemotherapeutic drugs.  相似文献   

19.
ADP-ribosyl cyclase/CD38 is a bifunctional enzyme that catalyzes at its ectocellular domain the synthesis from NAD(+) (cyclase) and the hydrolysis (hydrolase) of the calcium-mobilizing second messenger cyclic ADP ribose (cADPR). Furthermore, CD38 mediates cADPR influx inside a number of cells, thereby inducing Ca(2+) mobilization. Intracellularly, cADPR releases Ca(2+) from ryanodine-sensitive pools, thus activating several Ca(2+)-dependent functions. Among these, the inhibition of osteoclastic-mediated bone resorption has been demonstrated. We found that HOBIT human osteoblastic cells display ADP-ribosyl cyclase activity and we examined the effects of CD38 stimulation on osteoblasts function. Extracellular NAD(+) induced elevation of cytosolic calcium due to both Ca(2+) influx from the extracellular medium and Ca(2+) release from ryanodine-sensitive intracellular stores. Culturing these cells in the presence of NAD(+) caused a complete growth arrest with a time-dependent decrease of cell number and the appearance of apoptotic nuclei. The first changes could be observed after 24 h of treatment and became fully evident after 72-96 h. We propose a role of extracellular NAD(+) in bone homeostatic control.  相似文献   

20.
Abstract

Studies on interaction of tumor cells with ECM components showed increased extracellular protease activity mediated by the family of matrix metalloproteinases (MMPs). Here we studied the effect of human prostate adenocarcinoma PC-3 cells–fibronectin (FN) interaction on MMPs and the underlying signaling pathways. Culturing of PC-3 cells on FN-coated surface upregulated MMP-9 and MMP-1. This response is abrogated by the blockade of α5 integrin. siRNA and inhibitor studies indicate possible involvement of phosphatidyl-inositol-3-kinase (PI-3K), focal adhesion kinase (FAK) and nuclear factor-kappaB (NF-κB) in FN-induced upregulation of MMPs. FN treatment also enhanced phosphorylation of FAK, PI3K, protein kinase B (PKB or Akt), nuclear translocation of NF-κB, surface expression of CD-44, and cell migration. Our findings indicate that, binding of PC-3 cells to FN, possibly via α5β1 integrin, induces signaling involving FAK, PI-3K, Akt, NF-κB followed by upregulation of MMP-9 and MMP-1. CD-44 may have role in modulating MMP-9 activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号