共查询到20条相似文献,搜索用时 15 毫秒
1.
A soluble protein isolated from mitochondria has been found to modulate the voltage-dependent properties of the mitochondrial outer membrane channel, VDAC. This protein, called the VDAC modulator, was first found inNeurospora crassa and then discovered in species from other eukaryotic kingdoms. The modulator-containing fraction (at a crude protein concentration of 20 µg/ml) increases the voltage dependence of VDAC channels over 2–3-fold. At higher protein concentrations (50–100 µg/ml), some channels seem to remain in a closed state or be blocked while others display the higher voltage dependence and are able to close at low membrane potentials. By increasing the steepness of the voltage-dependent properties of VDAC channels, this modulator may serve as an amplifierin vivo to increase the sensitivity of the channels in response to changes in the cell's microenvironment, and consequently, regulate the metabolic flux across the outer mitochondrial membrane by controlling the gating of VDAC channels. 相似文献
2.
Elizabeth Blachly-Dyson Song Zhi Peng Marco Colombini Michael Forte 《Journal of bioenergetics and biomembranes》1989,21(4):471-483
The voltage-dependent anion-selective channel (VDAC) of the mitochondrial outer membrane is formed by a small ( 30 kDa) polypeptide, but shares with more complex channels the properties of voltage-dependent gating and ion selectivity. Thus, it is a useful model for studying these properties. The molecular biology techniques available in yeast allow us to construct mutant versions of the cloned yeast VDAC genein vitro, using oligonucleotide-directed mutagenesis, and to express the mutant genes in yeast cells in the absence of wild-type VDAC. We find that one substitution mutation (lys 61 to glu) alters the selectivity of VDAC. 相似文献
3.
Jean-Pierre Henry Philipspe Juin FranÇois Vallette Michel Thieffry 《Journal of bioenergetics and biomembranes》1996,28(2):101-108
The PSC (peptide-sensitive Channel), a cationic channel of large conductance, has been characterized in yeast and mammalian mitochondria by three different methods, tip-dip, patch clamp of giant liposomes, and planar bilayers. The yeast and mammalian PSC share the common property to be blocked by basic peptides such as pCyt OX IV (1–12)Y which contains the first 12 residues of the presequence of cytochromec oxidase subunit IV. The electrophysiological data are consistent with a translocation of the peptide through the pore. Analysis of the frequency of observation of the PSC in different fractions indicates that the channel is located in the outer mitochondrial membrane. Uptake measurements of iodinated peptides by intact mitochondria from a porin-less mutant show that the peptides are translocated through the outer membrane, presumably at the level of PSC. Among the peptides active on PSC, several, such as pCyt OX IV (1–22) and the reduced form of the mast cell degranulating peptide, induce an alteration of the voltage dependence or of the inactivation rate subsisting after washing and which is eliminated only by proteolysis of the interacting peptide. These irreversible effects may account for the variability of the properties of the PSC which would interact with cytosolic or intermembrane cations, peptides, or proteins, thus modulating the channel permeability. Finally, several lines of evidence suggest the participation of the PSC in protein translocation and some interaction with the general insertion pore of the outer membrane translocation machinery. 相似文献
4.
Voltage gating in the mitochondrial channel,VDAC 总被引:1,自引:0,他引:1
Marco Colombini 《The Journal of membrane biology》1989,111(2):103-111
5.
Summary The mitochondrial protein VDAC forms voltage-dependent anion-selective channels in planar phospholipid membranes. When succinic anhydride was added to these membranes, it virtually eliminated VDAC's voltage-dependence and changed its selectivity from anion to cation. These results were obtained without large changes in open-channel conductance or in energy difference between the open and closed states in the absence of a field. Since succinic anhydride converts amino groups into carboxyl groups, we propose that amino groups are responsible for VDAC's voltage-dependence and anion selectivity. Perhaps the same charges are responsible for both functions. 相似文献
6.
Michael Forte Dawn Adelsberger-Mangan Marco Colombini 《The Journal of membrane biology》1987,99(1):65-72
Summary The outer mitochondrial membranes of all organisms so far examined contain a protein which forms voltage-dependent anion selective channels (VDAC) when incorporated into planar phospholipid membranes. Previous reports have suggested that the yeast (Saccharomyces cerevisiae) outer mitochondrial membrane component responsible for channel formation is a protein of 29,000 daltons which is also the major component of this membrane. In this report, we describe the purification of this 29,000-dalton protein to virtual homogeneity from yeast outer mitochondrial membranes. The purified protein readily incorporates into planar phospholipid membranes to produce ionic channels. Electrophysiological characterization of these channels has demonstrated they have a size, selectivity and voltage dependence similar to VDAC from other organisms. Biochemically, the purified protein has been characterized by determining its amino acid composition and isoelectric point (pI). In addition, we have shown that the purified protein, when reconstituted into liposomes, can bind hexokinase in a glucose-6-phosphate dependent manner, as has been shown for VDAC purified from other sources. Since physiological characterization suggests that the functional parameters of this protein have been conserved, antibodies specific to yeast VDAC have been used to assess antigenic conservation among mitochondrial proteins from a wide number of species. These experiments have shown that yeast VDAC antibodies will recognize single mitochondrial proteins fromDrosophila, Dictyostelium andNeurospora of the appropriate molecular weight to be VDAC from these organisms. No reaction was seen to any mitochondrial protein from rat liver, rainbow trout,Paramecium, or mung bean. In addition, yeast VDAC antibodies will recognize a 50-kDa mol wt protein present in tobacco chloroplasts. These results suggest that there is some antigenic as well as functional conservation among different VDACs. 相似文献
7.
Mitochondrial hexokinase (HK) and creatine kinase (CK) known to form complexes with a voltage dependent anion channel (VDAC) have been reported to increase cell death resistance under hypoxia/anoxia. In this work we propose a new, non-Mitchell mechanism of generation of the inner and outer membrane potentials at anaerobic conditions. The driving force is provided by the Gibbs free energy of the HK and CK reactions associated with the VDAC–HK and the ANT (adenine nucleotide translocator)–CK–VDAC complexes, respectively, both functioning as voltage generators. In the absence of oxygen, the cytosolic creatine phosphate can be directly used by the ANT–CK–VDAC contact sites to produce ATP from ADP in the mitochondrial matrix. After that, ATP released through the fraction of unbound ANTs in exchange for ADP is used in the mitochondrial intermembrane space by the outer membrane VDAC–HK electrogenic complexes to convert cytosolic glucose into glucose-6-phosphate. A simple computational model based on the application of Ohm's law to an equivalent electrical circuit showed a possibility of generation of the inner membrane potential up to − 160 mV, under certain conditions, and of relatively high outer membrane potential without wasting of ATP that normally leads to cell death. The calculated membrane potentials depended on the restriction of ATP/ADP diffusion in narrow cristae and through the cristae junctions. We suggest that high inner membrane potential and calcium extrusion from the mitochondrial intermembrane space by generated positive outer membrane potential prevent mitochondrial permeability transition, thus allowing the maintenance of mitochondrial integrity and cell survival in the absence of oxygen. 相似文献
8.
Kathleen W. Kinnally Yuri N. Antonenko Dmitry B. Zorov 《Journal of bioenergetics and biomembranes》1992,24(1):99-110
Three classes of inner mitochondrial membrane (IMM) channel activities have been defined by direct measurement of conductance levels in membranes with patch clamp techniques in 150 mM K Cl. The 107 pS activity is slightly anion selective and voltage dependent (open with matrix positive potentials). Multiple conductance channel (MCC) activity includes several levels from about 40 to over 1000 pS and can be activated by voltage or Ca2+. MCC may be responsible for the Ca2+-induced permeability transition observed with mitochondrial suspensions. A low conductance channel (LCC) is activated by alkaline pH and inhibited by Mg2+. LCC has a unit conductance of about 15 pS and may correspond to the inner membrane anion channel, IMAC, which was proposed from results obtained from suspension studies. All of the IMM channels defined thus far appear to be highly regulated and have a low open probability under physiological conditions. A summary of what is known about IMM channel regulation and pharmacology is presented and possible physiological roles of these channels are discussed. 相似文献
9.
Tajib Mirzabekov Cristina Ballarin Marino Nicolini Paolo Zatta M. Catia Sorgato 《The Journal of membrane biology》1993,133(2):129-143
Summary Detergent-free rat brain outer mitochondrial membranes were incorporated in planar lipid bilayers in the presence of an osmotic gradient, and studied at high (1 m KCl) and low (150 mm KCl) ionic strength solutions. By comparison, the main outer mitochondrial membrane protein, VDAC, extracted from rat liver with Triton X-100, was also studied in 150 mm KCl. In 1 m KCl, brain outer membranes gave rise to electrical patterns which resembled very closely those widely described for detergent-extracted VDAC, with transitions to several subconducting states upon increase of the potential difference, and sensitivity to polyanion. The potential dependence of the conductance of the outer membrane, however, was steeper and the extent of closure higher than that observed previously for rat brain VDAC. In 150 mm KCl, bilayers containing only one channel had a conductance of 700 ± 23 pS for rat brain outer membranes, and 890 ± 29 pS for rat liver VDAC. Use of a fast time resolution setup allowed demonstration of open-close transitions in the millisecond range, which were independent of the salt concentration and of the protein origin. We also found that a potential difference higher than approx. ± 60 mV induced an almost irreversible decrease of the single channel conductance to few percentages of the full open state and a change in the ionic selectivity. These results show that the behavior of the outer mitochondrial membrane in planar bilayers is close to that detected with the patch clamp (Moran et al., 1992, Eur. Biophys. J.
20:311–319).The neurotoxicological action of aluminum was studied in single outer membrane channels from rat brain mitochondria. We found that m concentrations of Al Cl3 and aluminum lactate decreased the conductance by about 50%, when the applied potential difference was positive relative to the side of the metal addition.The authors thank Dr. O. Moran for helpful discussions, Dr. M. Colombini for a sample of polyanion, and the Sharing Company for financial support to Dr. T. M. This work was partly supported by funds from the Ministero dell' Universitá e della Ricerca Scientifica e Tecnologica of Italy. 相似文献
10.
《Critical reviews in biochemistry and molecular biology》2013,48(2):127-171
AbstractRapid diffusion of hydrophilic molecules across the outer membrane of mitochondria has been related to the presence of a protein of 29 to 37 kDa, called voltage-dependent anion channel (VDAC), able to generate large aqueous pores when integrated in planar lipid bilayers. Functional properties of VDAC from different origins appear highly conserved in artificial membranes: at low transmembrane potentials, the channel is in a highly conducting state, but a raise of the potential (both positive and negative) reduces drastically the current and changes the ionic selectivity from slightly anionic to cationic. It has thus been suggested that VDAC is not a mere molecular sieve but that it may control mitochondrial physiology by restricting the access of metabolites of different valence in response to voltage and/or by interacting with a soluble protein of the intermembrane space. The latest application of the patch clamp and tip-dip techniques, however, has indicated both a different electric behavior of the outer membrane and that other proteins may play a role in the permeation of molecules. Biochemical studies, use of site-directed mutants, and electron microscopy of two-dimensional crystal arrays of VDAC have contributed to propose a monomelic β barrel as the structural model of the channel. An important insight into the physiology of the inner membrane of mammalian mitochondria has come from the direct observation of the membrane with the patch clamp. A slightly anionic., voltage-dependent conductance of 107 pS and one of 9.7 pS, K+-selective and ATP-sensitive, are the best characterized at the single channel level. Under certain conditions, however, the inner membrane can also show unselective nS peak transitions, possibly arising from a cooperative assembly of multiple substates. 相似文献
11.
The movement of water accompanying solutes between the cytoplasm and the mitochondrial spaces is central for mitochondrial volume homeostasis, an important function for mitochondrial activities and for preventing the deleterious effects of excess matrix swelling or contraction. While the discovery of aquaporin water channels in the inner mitochondrial membrane provided valuable insights into the basis of mitochondrial plasticity, questions regarding the identity of mitochondrial water permeability and its regulatory mechanism remain open. Here, we use a stopped flow light scattering approach to define the water permeability and Arrhenius activation energy of the rat liver whole intact mitochondrion and its membrane subcompartments. The water permeabilities of whole brain and testis mitochondria as well as liposome models of the lipid bilayer composing the liver inner mitochondrial membrane are also characterized. Besides finding remarkably high water permeabilities for both mitochondria and their membrane subcompartments, the existence of additional pathways of water movement other than aquaporins are suggested. 相似文献
12.
Gonçalves RP Buzhynskyy N Prima V Sturgis JN Scheuring S 《Journal of molecular biology》2007,369(2):413-418
The voltage-dependent anion channel (VDAC) is the most abundant protein in the mitochondrial outer membrane (MOM). Due to its localization, VDAC is involved in a wide range of processes, such as passage of ATP out of mitochondria, and particularly plays a central role in apoptosis. Importantly, the assembly of VDAC provides interaction with a wide range of proteins, some implying oligomerization. However, many questions remain as to the VDAC structure, its supramolecular assembly, packing density, and oligomerization in the MOM is unknown. Here we report the so far highest resolution view of VDAC and its native supramolecular assembly. We have studied yeast MOM by high-resolution atomic force microscopy (AFM) in physiological buffer and found VDAC in two distinct types of membrane domains. We found regions where VDAC was packed at high density (approximately 80%), rendering the membrane a voltage-dependent molecular sieve. In other domains, VDAC has a low surface density (approximately 20%) and the pore assembly ranges from single molecules to groups of up to 20. We assume that these groups are mobile in the lipid bilayer and allow association and dissociation with the large assemblies. VDAC has no preferred oligomeric state and no long-range order was observed in densely packed domains. High-resolution topographs show an eye-shaped VDAC with 3.8 nm x 2.7 nm pore dimensions. Based on the observed VDAC structure and the pair correlation function (PCF) analysis of the domain architectures, we propose a simple model that could explain the phase behavior of VDAC, and illustrates the sensitivity of the molecular organization to conditions in the cell, and the possibility for modulation of its assembly. The implication of VDAC in cytochrome c release from the mitochondria during cell apoptosis has made it a target in cancer research. 相似文献
13.
Summary This report details preliminary findings for ion channels in the plasma membrane of protoplasts derived from the cotyledons ofAmaranthus seedlings. The conductance properties of the membrane can be described almost entirely by the behavior of two types of ion channel observed as single channels in attached and detached patches. The first is a cation-selective outward rectifier, and the second a multistate anion-selective channel which, under physiological conditions, acts as an inward rectifier.The cation channel has unit conductance of approx. 30 pS (symmetrical 100 K+) and relative permeability sequence K+>Na+>Cl– (10.160.03); whole-cell currents activate in a time-dependent manner, and both activation and deactivation kinetics are voltage dependent. The anion channel opens for hyperpolarized membrane potentials, has a full-level conductance of approx. 200 pS and multiple subconductance states. The number of sub-conductances does not appear to be fixed. When activated the channel is open for long periods, though shuts if the membrane potential (V
m
) is depolarized; at millimolar levels of [Ca2+]cyt this voltage dependency disappears. Inward current attributable to the anion channel is not observed in whole-cell recordings when MgATP (2mm) is present in the intracellular solution. By contrast the channel is active in most detached patches, whether MgATP is present or not on the cytoplasmic face of the membrane. The anion channel has a significant permeability to cations, the sequence being NO
3
–
>Cl–>K+>Aspartate (2.0410.18 to 0.090.04). The relative permeability for K+ decreased at progressively lower conductance states. In the absence of permeant anions this channel could be mistaken for a cation inward rectifier. The anion and cation channels could serve to clampV
m
at a preferred value in the face of events which would otherwise perturbV
m
. 相似文献
14.
Edward R. B. McCabe 《Journal of bioenergetics and biomembranes》1994,26(3):317-325
Complexes made up of the kinases, hexokinase and glycerol kinase, together with the outer mitochondrial membrane voltage-dependent anion channel (VDAC) protein, porin, and the inner mitochondrial membrane protein, the adenine nucleotide translocator, are involved in tumorigenesis, diabetes mellitus, and central nervous system function. Identification of these two mitochondrial membrane proteins, along with an 18 kD protein, as components of the peripheral benzodiazepine receptor, provides independent confirmation of the interaction of porin and the adenine nucleotide translocator to form functional contact sites between the inner and outer mitochondrial membranes. We suggest that these are dynamic structures, with channel conductances altered by the presence of ATP, and that ligand-mediated conformational changes in the porin-adenine nucleotide translocator complexes may be a general mechanism in signal transduction. 相似文献
15.
Martin Heiden Katja Kroll Friedrich P. Thinnes Norbert Hilschmann 《Journal of bioenergetics and biomembranes》1996,28(2):171-180
Heat-stable proteins from human and porcine cytosol and human amniotic fluid were found to increase the voltage dependence of human type-1 porin reconstituted in planar phospholipid bilayers. Purification processes revealed that these regulatory molecules were characterized by anionic charge and apparent molecular weights of between 23 and 64 kDa. The human cytosol proteins exerted inhibitory activity only when added to the compartment with applied negative potential. The observed increase in voltage dependence of porin was due to the presence of specific proteins in cytosol and amniotic fluid, since human cerebral spinal fluid in comparable amounts had no significant effect on the channel properties. Furthermore, other anionic proteins and polypeptides investigated demonstrated no inhibitory activity, indicating that anionic charge alone could not mimic the molecular properties of the regulatory proteins. With respect to the well-documented expression of porin in the plasma membrane of various cells and species, the presented data give first clues for a biochemical regulation of the channel in this compartment.Studies on Human Porin, Part XV. 相似文献
16.
Comparison of the TIM and TOM channel activities of the mitochondrial protein import complexes
下载免费PDF全文

Water-filled channels are central to the process of translocating proteins since they provide aqueous pathways through the hydrophobic environment of membranes. The Tom and Tim complexes translocate precursors across the mitochondrial outer and inner membranes, respectively, and contain channels referred to as TOM and TIM (previously called PSC and MCC). In this study, little differences were revealed from a direct comparison of the single channel properties of the TOM and TIM channels of yeast mitochondria. As they perform similar functions in translocating proteins across membranes, it is not surprising that both channels are high conductance, voltage-dependent channels that are slightly cation selective. Reconstituted TIM and TOM channel activities are not modified by deletion of the outer membrane channel VDAC, but are similarly affected by signal sequence peptides. 相似文献
17.
Distinct Mg(2+)-dependent steps rate limit opening and closing of a single CFTR Cl(-) channel
下载免费PDF全文

The roles played by ATP binding and hydrolysis in the complex mechanisms that open and close cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channels remain controversial. In this work, the contributions made by ATP and Mg(2+) ions to the gating of phosphorylated cardiac CFTR channels were evaluated separately by measuring the rates of opening and closing of single channels in excised patches exposed to solutions in which [ATP] and [Mg(2+)] were varied independently. Channel opening was found to be rate-limited not by the binding of ATP alone, but by a Mg(2+)-dependent step that followed binding of both ATP and Mg(2+). Once a channel had opened, sudden withdrawal of all Mg(2+) and ATP could prevent it from closing for tens of seconds. But subsequent exposure of such an open channel to Mg(2+) ions alone could close it, and the closing rate increased with [Mg(2+)] over the micromolar range (half maximal at approximately 50 microM [Mg(2+)]). A simple interpretation is that channel closing is stoichiometrically coupled to hydrolysis of an ATP molecule that remains tightly associated with the open CFTR channel despite continuous washing. If correct, that ATP molecule appears able to reside for over a minute in the catalytic site that controls channel closing, implying that the site must entrap, or have an intrinsically high apparent affinity for, ATP, even without a Mg(2+) ion. Such stabilization of the open-channel conformation of CFTR by tight binding, or occlusion, of an ATP molecule echoes the stabilization of the active conformation of a G protein by GTP. 相似文献
18.
The supramolecular assemblies of voltage-dependent anion channels in the native membrane 总被引:8,自引:0,他引:8
Voltage-dependent anion channels (VDACs) are major constituents of the outer mitochondrial membrane (OMM). These primary transporters of nucleotides, ions and metabolites mediate a substantial portion of the OMM molecular traffic. To study the native supramolecular organization of the VDAC, we have isolated, characterized and imaged OMMs from potato tubers. SDS-PAGE and mass spectrometry of OMMs revealed the presence of the VDAC isoforms POM34 and POM36, as well as the translocase of the OMM complex. Tubular two-dimensional crystals of the VDAC spontaneously formed after incubation of OMMs for two to three months at 4 degrees C. Transmission electron microscopy revealed an oblique lattice and unit cells housing six circular depressions arranged in a hexagon. Atomic force microscopy of freshly isolated OMMs demonstrated (i) the existence of monomers to tetramers, hexamers and higher oligomers of the VDAC and (ii) its spatial arrangement within the oligomers in the native membrane. We discuss the importance of the observed oligomerization for modulation of the VDAC function, for the binding of hexokinase and creatine kinase to the OMM and for mitochondria-mediated apoptosis. 相似文献
19.
Om P. Choudhary 《Journal of molecular biology》2010,396(3):580-592
The voltage-dependent anion channel (VDAC) is the major pathway mediating the transfer of metabolites and ions across the mitochondrial outer membrane. Two hallmarks of the channel in the open state are high metabolite flux and anion selectivity, while the partially closed state blocks metabolites and is cation selective. Here we report the results from electrostatics calculations carried out on the recently determined high-resolution structure of murine VDAC1 (mVDAC1). Poisson-Boltzmann calculations show that the ion transfer free energy through the channel is favorable for anions, suggesting that mVDAC1 represents the open state. This claim is buttressed by Poisson-Nernst-Planck calculations that predict a high single-channel conductance indicative of the open state and an anion selectivity of 1.75—nearly a twofold selectivity for anions over cations. These calculations were repeated on mutant channels and gave selectivity changes in accord with experimental observations. We were then able to engineer an in silico mutant channel with three point mutations that converted mVDAC1 into a channel with a preference for cations. Finally, we investigated two proposals for how the channel gates between the open and the closed state. Both models involve the movement of the N-terminal helix, but neither motion produced the observed voltage sensitivity, nor did either model result in a cation-selective channel, which is observed experimentally. Thus, we were able to rule out certain models for channel gating, but the true motion has yet to be determined. 相似文献
20.
It was recently asserted that the voltage-dependent anion channel (VDAC) serves as a global regulator, or governor, of mitochondrial
function (Lemasters and Holmuhamedov, Biochim Biophys Acta 1762:181–190, 2006). Indeed, VDAC, positioned on the interface between mitochondria and the cytosol (Colombini, Mol Cell Biochem 256:107–115, 2004), is at the control point of mitochondria life and death. This large channel plays the role of a “switch” that defines in
which direction mitochondria will go: to normal respiration or to suppression of mitochondria metabolism that leads to apoptosis
and cell death. As the most abundant protein in the mitochondrial outer membrane (MOM), VDAC is known to be responsible for
ATP/ADP exchange and for the fluxes of other metabolites across MOM. It controls them by switching between the open and “closed”
states that are virtually impermeable to ATP and ADP. This control has dual importance: in maintaining normal mitochondria
respiration and in triggering apoptosis when cytochrome c and other apoptogenic factors are released from the intermembrane
space into the cytosol. Emerging evidence indicates that VDAC closure promotes apoptotic signals without direct involvement
of VDAC in the permeability transition pore or hypothetical Bax-containing cytochrome c permeable pores. VDAC gating has been
studied extensively for the last 30 years on reconstituted VDAC channels. In this review we focus exclusively on physiologically
relevant regulators of VDAC gating such as endogenous cytosolic proteins and mitochondrial lipids. Closure of VDAC induced
by such dissimilar cytosolic proteins as pro-apoptotic tBid and dimeric tubulin is compared to show that the involved mechanisms
are rather distinct. While tBid mostly modulates VDAC voltage gating, tubulin blocks the channel with the efficiency of blockage
controlled by voltage. We also discuss how characteristic mitochondrial lipids, phospatidylethanolamine and cardiolipin, could
regulate VDAC gating. Overall, we demonstrate that VDAC gating is not just an observation made under artificial conditions
of channel reconstitution but is a major mechanism of MOM permeability control. 相似文献