首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The regulatory proteins of Ascaris suum striated skeletal muscle were partially purified and characterized. A tropomyosin isoform (Mr 41K) and three troponin subunits identified as troponin T (Mr 37.5K), troponin I (Mr 25.5K) and troponin C (Mr 18.5K) were purified. Three myosin light chains (Mr 25K, 19K, and 17K) were isolated from washed Ascaris actomyosin; the 19K subunit was phosphorylated in vitro. A calcium/calmodulin-dependent myosin light chain kinase activity was identified in the muscle. In contrast to previously reported data suggesting that Ascaris obliquely striated muscle contraction is regulated by a myosin-mediated mechanism, these data indicate that all of the proteins required for actin-mediated, calcium-dependent muscle contraction are present in this tissue.  相似文献   

2.
1. A purified preparation of Ascaris myosin was obtained from the muscle layer of Ascaris lumbricoides suum, using gel filtration and ion-exchange chromatography. 2. Ascaris myosin whether purified or unpurified, had almost the same ability for ATP-splitting and superprecipitation. 3. Ascaris myosin and rabbit skeletal myosin were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A significant difference in the number of light chains between both myosins was found. Ascaris myosin was found to have one heavy chain and two distinct light chain components (LC1-A and LC2-A), having molecular weights of 18000 and 16000, respectively. These light chains correspond in molecular weight to the light chain 2 (LC2-S) and light chain 3 (LC3-S) in rabbit skeletal myosin. 4. LC1-A could be liberated from the Ascaris myosin molecule reacted with 5,5'-dithio-bis(2-nirobenzoic acid( Nbs2) with recovery of ATPase activity by addition of dithiothreitol. These properties are equivalent to those of the LC2-S in rabbit skeletal myosin, although Ascaris myosin when treated with Nbs2-urea lost its ATPase activity.  相似文献   

3.
In contrast to porcine heart muscle in which cAMP effectively activated the phosphorylation of cytosolic proteins, cAMP exerted a minor effect on the phosphorylation of proteins from the soluble fraction of Ascaris suum muscle. Similarly, cAMP did not enhance the kinase activity in the mitochondrial membranes from porcine heart and A. suum, although major differences in protein phosphorylation were observed between both fractions. However, cAMP-dependent protein kinases (PKA) were evidenced in the parasitic soluble mitochondrial fraction, since the phosphorylation of histone IIA and kemptide was augmented in this fraction, in the presence of cAMP. An increase in the phosphorylation of exogenously added A. suum phosphofructokinase was also obtained when cAMP was added to the parasite soluble mitochondrial fraction. The phosphorylation of phosphofructokinase by this fraction was inhibited when kemptide and cAMP were included in the reaction mixture, suggesting substrate competition for the same PKA. Although PKI (6-22), a reported inhibitor of the catalytic subunit of mammalian cAMP-dependent PKAs, did not affect the endogenous phosphorylation of proteins in the various A. suum fractions, an inhibition on the phosphorylation of exogenously added kemptide and phosphofructokinase was observed when PKI (6-22) was incubated with the parasite mitochondrial soluble fraction.  相似文献   

4.
The Ca(2+)-independent acceleration of dephosphorylation of the regulatory light chain of smooth muscle myosin and relaxation of smooth muscle by telokin are enhanced by cyclic nucleotide-activated protein kinase(s) [Wu et al. (1998) J. Biol. Chem. 273, 11362-113691. The purpose of this study was to determine the in vivo site(s) and in vitro rates of telokin phosphorylation and to evaluate the possible effects of sequential phosphorylation by different kinases. The in vivo site(s) of phosphorylation of telokin were determined in rabbit smooth muscles of longitudinal ileum and portal vein. Following stimulation of ileum with forskolin (20 microM) the serine at position 13 was the only amino acid to exhibit increased phosphorylation. Rabbit portal vein telokin was phosphorylated on both Ser-13 and -19 as a result of forskolin and GTPgammaS stimulation in vivo. Point mutation of Ser-13 (to Ala or Asp) abolished in vitro phosphorylation by cyclic nucleotide-dependent protein kinases.  相似文献   

5.
The amino acid structure of regulatory light chain which is essential to express the phosphorylation-mediated regulation of smooth muscle actomyosin ATPase was studied. Regulatory light chain of smooth muscle heavy meromyosin (HMM) was truncated by either lysylendopeptidase or trypsin. Lysylendopeptidase cleaved the regulatory light chain initially at the C-terminal side of lysine 6 (Lys C(1)-HMM) and subsequently at the C-terminal side of lysine 12 (Lys C(2)-HMM). On the other hand, trypsin cleaved at the C-terminal side of arginine 16 (tryp-HMM). While the actin activated ATPase activity of Lys C(1)-HMM and Lys C(2)-HMM was markedly activated by phosphorylation, that of tryp-HMM was not activated by phosphorylation. The exchange of cleaved regulatory light chain of tryp-HMM with undigested regulatory light chain restored the phosphorylation-mediated regulation on the actin activated ATPase activity. The regulatory light chain of the undigested HMM was also exchanged with the trypsin-digested regulatory light chain and this abolished the phosphorylation dependence of acto-HMM ATPase activity. These results show that the amino acid sequence arginine 13-arginine 16 is essential to express the regulation of actin activated ATPase of smooth muscle myosin which is mediated by the phosphorylation at serine 19 of the regulatory light chain.  相似文献   

6.
The effects of vanadate were examined on Ca2+-activated force and phosphorylation of 20-kDa myosin light chain in membrane-permeabilized rabbit aortic smooth muscle strips. Addition of vanadate during maximum contraction reduced the force in a dose-dependent manner, and inhibited it almost completely at 1 mM. Two-dimensional polyacrylamide gel electrophoretic analyses revealed that vanadate also reduced the phosphorylation of 20- kDa myosin light chain in a dose-dependent manner from approximately 50% in the absence of vanadate to approximately 20% in the presence of 1 mM vanadate. The effects of 1 mM vanadate on purified myosin light chain kinase and phosphatase were then examined using purified myosin as substrate, and it was found that vanadate neither inhibited myosin light chain kinase nor activated myosin light chain phosphatase. These results indicate that the reduction in the 20-kDa myosin light chain phosphorylation level by vanadate may be effected through its inhibition of the force generation in skinned smooth muscle strip, as evidenced by the finding that vanadate eliminated the enhancement of myosin light chain kinase activity brought about by the interaction between purified myosin and actin.  相似文献   

7.
Phosphorylation of the regulatory light chain of myosin by the Ca2+/calmodulin-dependent myosin light chain kinase plays an important role in smooth muscle contraction, nonmuscle cell shape changes, platelet contraction, secretion, and other cellular processes. Smooth muscle myosin light chain kinase is also phosphorylated, and recent results from experiments designed to satisfy the criteria of Krebs and Beavo for establishing the physiological significance of enzyme phosphorylation have provided insights into the cellular regulation and function of this phosphorylation in smooth muscle. The multifunctional Ca2+/calmodulin-dependent protein kinase II phosphorylates myosin light chain kinase at a regulatory site near the calmodulin-binding domain. This phosphorylation increases the concentration of Ca2+/calmodulin required for activation and hence increases the Ca2+ concentrations required for myosin light chain kinase activity in cells. However, the concentration of cytosolic Ca2+ required to effect myosin light chain kinase phosphorylation is greater than that required for myosin light chain phosphorylation. Phosphorylation of myosin light chain kinase is only one of a number of mechanisms used by the cell to down regulate the Ca2+ signal in smooth muscle. Since both smooth and nonmuscle cells express the same form of myosin light chain kinase, this phosphorylation may play a regulatory role in cellular processes that are dependent on myosin light chain phosphorylation.  相似文献   

8.
Tryptic digestion of the fully phosphorylated Ascaris suum pyruvate dehydrogenase complex yielded a single tetradecapeptide containing 2 phosphorylated serine residues. Its amino acid sequence was Tyr-Ser-Gly-His-Ser(P)-Met-Ser-Asp-Pro-Gly-Thr-Ser(P)-Tyr-Arg and was very similar to one of the tryptic phosphopeptides isolated from mammalian and yeast pyruvate dehydrogenases. At partial phosphorylation, three peptides were isolated which corresponded to the monophosphorylated (sites 1 and 2) and diphosphorylated tetradecapeptides. In contrast to results reported from mammalian complexes, phosphorylation of the ascarid complex paralleled inactivation, and no additional phosphorylation occurred after inactivation was complete. Complete inactivation of the complex was associated with the incorporation of 1.7-1.9 mol of phosphoryl groups/mol of alpha-pyruvate dehydrogenase subunit, and the strict preference of the pyruvate dehydrogenase kinase for site 1 was not observed. Whereas site 1 was initially phosphorylated more rapidly than site 2, at 50% inactivation, 41% of the incorporated phosphoryl groups were incorporated into site 2. In addition, substantial amounts of peptide monophosphorylated at site 2 also accumulated, suggesting that prior phosphorylation at site 1 was not necessary for phosphorylation at site 2. Phosphorylation also caused a marked decrease in the mobility of the alpha-pyruvate dehydrogenase subunit on sodium dodecyl sulfate-polyacrylamide gels and the apparent separation of mono- and diphosphorylated forms of the enzyme. The significance of these observations in the regulation of the unique anaerobic mitochondrial metabolism of A. suum is discussed.  相似文献   

9.
Stretching arteries from resting length to 1.7 times the resting length increased myosin light chain phosphorylation from 40 to 70% in a graded fashion, reaching a plateau at 1.6 times the resting length. When the fully stretched arteries were released, active tension developed without any exogenous stimulating agent. This stretch-release-induced tension approached the same magnitude as that of the control K+-induced tension. Stretch-induced phosphorylation and the subsequent tension development upon release of stretch were prevented by incubating the arteries in physiological salt solutions containing ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) or chlorpromazine. The inhibition produced by EGTA was reversible. Stretch-induced phosphorylation decreased as a function of time, regardless of whether stretch was maintained, or slackened slowly, or released quickly. While tension developed upon release of stretch, light chain phosphorylation simultaneously decreased. As tension reached and maintained its maximal value, phosphorylation continued to decrease. Thus, light chain phosphorylation is necessary for activation of arterial muscle contraction, but it need not be maintained during tension development or maintenance.  相似文献   

10.
Smooth muscle contraction is initiated by a rise in intracellular calcium, leading to activation of smooth muscle myosin light chain kinase (MLCK) via calcium/calmodulin (CaM). Activated MLCK then phosphorylates the regulatory myosin light chains, triggering cross-bridge cycling and contraction. Here, we show that MLCK is a substrate of AMP-activated protein kinase (AMPK). The phosphorylation site in chicken MLCK was identified by mass spectrometry to be located in the CaM-binding domain at Ser(815). Phosphorylation by AMPK desensitized MLCK by increasing the concentration of CaM required for half-maximal activation. In primary cultures of rat aortic smooth muscle cells, vasoconstrictors activated AMPK in a calcium-dependent manner via CaM-dependent protein kinase kinase-beta, a known upstream kinase of AMPK. Indeed, vasoconstrictor-induced AMPK activation was abrogated by the STO-609 CaM-dependent protein kinase kinase-beta inhibitor. Myosin light chain phosphorylation was increased under these conditions, suggesting that contraction would be potentiated by ablation of AMPK. Indeed, in aortic rings from mice in which alpha1, the major catalytic subunit isoform in arterial smooth muscle, had been deleted, KCl- or phenylephrine-induced contraction was increased. The findings suggest that AMPK attenuates contraction by phosphorylating and inactivating MLCK. This might contribute to reduced ATP turnover in the tonic phase of smooth muscle contraction.  相似文献   

11.
Amino acid sequences of peptides containing the phosphorylation site of bovine cardiac myosin light chain (L2) were determined. The site was localized to a serine residue in the tentative amino terminus of the light chain and is homologous to phosphorylation sites in other myosin light chains. Phosphorylation of bovine cardiac light chain by chicken gizzard myosin light chain kinase was Ca2+-calmodulin dependent. Kinetic data gave a Km of 107; microM and a Vmax of 23.6 mumol min-1 mg-1. In contrast to what has been observed with smooth muscle light chains, neither the phosphorylation site fragment of the cardiac light chain nor a synthetic tetradecapeptide containing the phosphorylation site were effectively phosphorylated by the chicken gizzard kinase. Phosphorylation of cardiac myosin light chains by chicken gizzard myosin light chain kinase, therefore, requires other regions of the light chain in addition to a phosphate acceptor site.  相似文献   

12.
Myosin light chain kinase phosphorylation in tracheal smooth muscle   总被引:6,自引:0,他引:6  
Purified myosin light chain kinase from smooth muscle is phosphorylated by cyclic AMP-dependent protein kinase, protein kinase C, and the multifunctional calmodulin-dependent protein kinase II. Because phosphorylation in a specific site (site A) by any one of these kinases desensitizes myosin light chain kinase to activation by Ca2+/calmodulin, kinase phosphorylation could play an important role in regulating smooth muscle contractility. This possibility was investigated in 32P-labeled bovine tracheal smooth muscle. Treatment of tissues with carbachol, KCl, isoproterenol, or phorbol 12,13-dibutyrate increased the extent of kinase phosphorylation. Six primary phosphopeptides (A-F) of myosin light chain kinase were identified. Site A was phosphorylated to an appreciable extent only with carbachol or KCl, agents which contract tracheal smooth muscle. The extent of site A phosphorylation correlated to increases in the concentration of Ca2+/calmodulin required for activation. These results show that cyclic AMP-dependent protein kinase and protein kinase C do not affect smooth muscle contractility by phosphorylating site A in myosin light chain kinase. It is proposed that phosphorylation of myosin light chain kinase in site A in contracting tracheal smooth muscle may play a role in the reported desensitization of contractile elements to activation by Ca2+.  相似文献   

13.
Activation of myosin light chain kinase is a prerequisite for smooth muscle activation. In this study, short peptide analogs of the phosphorylation site of the myosin light chain were studied for their effects on several contractile protein systems. The peptides inhibited phosphorylation of isolated ventricular and smooth muscle myosin light chains by smooth muscle myosin light chain kinase, but they were only weak inhibitors of phosphorylation of intact myosin and actomyosin. The peptides were also unable to block force development or myosin light chain phosphorylation in glycerol permeabilized fibers of swine carotid media. Apparently, the association of the myosin light chain with myosin changes its conformation such that substrate analogs which are potent inhibitors of the phosphorylation of isolated myosin light chains by myosin light chain kinase are ineffective at blocking phosphorylation of the intact molecule.  相似文献   

14.
The vasoactive peptide angiotensin II stimulates phosphorylation of myosin light chain in 32P-labeled confluent cultures of vascular smooth muscle cells derived from rat mesenteric arteries. Myosin light chain was identified and its 32P-phosphorylation level quantitated following selective immunoprecipitation with an antiserum raised against purified human uterine smooth muscle myosin. Following exposure to 0.1 nM angiotensin II, phosphorylation of the light chain peaked at 4 min and then slowly decreased. The stimulation of light chain phosphorylation at 4 min is half-maximal at approximately 0.2 mM angiotensin II; the maximal response is approximately 210% of the unstimulated level. Basal myosin light chain phosphorylation was markedly reduced by incubation of cells with dibutyryl cyclic AMP or the calmodulin-inhibitor chlorpromazine. These data suggest that angiotensin II-mediated contraction in intact blood vessels involves phosphorylation of the myosin light chain, and that phosphorylation is inhibited by a cAMP-mediated process and may be calmodulin-dependent.  相似文献   

15.
1. The 5-hydroxytryptamine (5-HT, serotonin) turnover was examined in the tissues of adult female Ascaris suum. The 5-HT turnover was highest in the intestine at 34.7 ng 5-HT produced/mg protein/hr and 13.8 ng 5-HT produced/mg protein/hr in muscle tissue. 2. The levels of 5-HT metabolites namely tryptophan, 5-hydroxytryptophan, 5-hydroxytryptamine, 5-hydroxyindole acetic acid and 5-hydroxytryptophol were measured in muscle and intestinal tissue of adult A. suum. 3. Parachlorophenylalanine inhibited 5-HT production in muscle and intestinal tissue providing in situ evidence for the presence of tryptophan hydroxylase in this tissue. 4. Pargyline increased 5-HT production in muscle and intestinal tissue providing in situ evidence for the presence of monoamine oxidase in this tissue.  相似文献   

16.
Cross-sections of muscle, intestine, and genital tract fluoresced in defined locations when live Ascaris suum adults were incubated in medium containing chymotrypsin liganded with fluorescein-5-isothiocyanate. This suggests that the protease, or portions of it, are assimilated by A. suum. A. suum chymotrypsin/elastase isoinhibitors were found in muscle sarcolemma, eggs, sperm, and intestine, and host chymotrypsin was localized in the same regions of these tissues by immunofluorescence and immunoperoxidase techniques. These experiments demonstrate that host chymotrypsin enters the parasite, that it is present in specific regions of Ascaris, and that it probably exists as an enzyme-inhibitor complex.  相似文献   

17.
Stimulation of tracheal smooth muscle cells in culture with ionomycin resulted in a rapid increase in cytosolic free Ca2+ concentration ([Ca2+]i) and an increase in both myosin light chain kinase and myosin light chain phosphorylation. These responses were markedly inhibited in the absence of extracellular Ca2+. Pretreatment of cells with 1-[N-O-bis(5-isoquinolinesulfonyl)-N- methyl-L-tyrosyl]-4-phenylpiperazine (KN-62), a specific inhibitor of the multifunctional calmodulin-dependent protein kinase II (CaM kinase II), did not affect the increase in [Ca2+]i but inhibited ionomycin-induced phosphorylation of myosin light chain kinase at the regulatory site near the calmodulin-binding domain. KN-62 inhibited CaM kinase II activity toward purified myosin light chain kinase. Phosphorylation of myosin light chain kinase decreased its sensitivity to activation by Ca2+ in cell lysates. Pretreatment of cells with KN-62 prevented this desensitization to Ca2+ and potentiated myosin light chain phosphorylation. We propose that the Ca(2+)-dependent phosphorylation of myosin light chain kinase by CaM kinase II decreases the Ca2+ sensitivity of myosin light chain phosphorylation in smooth muscle.  相似文献   

18.
The contraction of smooth muscle is regulated primarily by intracellular Ca2+ signal. It is well established that the elevation of the cytosolic Ca2+ level activates myosin light chain kinase, which phosphorylates 20 kDa regulatory myosin light chain and activates myosin ATPase. The simultaneous measurement of cytosolic Ca2+ concentration and force development revealed that the alteration of the Ca2+-sensitivity of the contractile apparatus as well as the Ca2+ signal plays a critical role in the regulation of smooth muscle contraction. The fluctuation of an extent of myosin phosphorylation for a given change in Ca2+ concentration is considered to contribute to the major mechanisms regulating the Ca2+-sensitivity. The level of myosin phosphorylation is determined by the balance between phosphorylation and dephosphorylation. The phosphorylation level for a given Ca2+ elevation is increased either by Ca2+-independent activation of phosphorylation process or inhibition of dephosphorylation. In the last decade, the isolation and cloning of myosin phosphatase facilitated the understanding of regulatory mechanism of dephosphorylation process at the molecular level. The inhibition of myosin phosphatase can be achieved by (1) alteration of hetrotrimeric structure, (2) phosphorylation of 110 kDa regulatory subunit MYPT1 at the specific site and (3) inhibitory protein CPI-17 upon its phosphorylation. Rho-kinase was first identified to phosphorylate MYPT1, and later many kinases were found to phosphorylate MYPT1 and inhibit dephosphorylation of myosin. Similarly, the phosphorylation of CPI-17 can be catalysed by multiple kinases. Moreover, the myosin light chain can be phosphorylated by not only authentic myosin light chain kinase in a Ca2+-dependent manner but also by multiple kinases in a Ca2+-independent manner, thus adding a novel mechanism to the regulation of the Ca2+-sensitivity by regulating the phosphorylation process. It is now clarified that the protein kinase network is involved in the regulation of myosin phosphorylation and dephosphorylation. However, the physiological role of each component remains to be determined. One approach to accomplish this purpose is to investigate the effects of the dominant negative mutants of the signalling molecule on the smooth muscle contraction. In this regards, a protein transduction technique utilizing the cell-penetrating peptides would provide a useful tool. In the preliminary study, we succeeded in introducing a fragment of MYPT1 into the arterial strips, and found enhancement of contraction.  相似文献   

19.
在有Ca2+和钙调蛋白存在时,肌球蛋白轻链激酶催化肌球蛋白磷酸化,促使肌动蛋白激活的肌球蛋白(肌动球蛋白)Mg2+-ATP酶活性显著增加.然而,肌球蛋白磷酸化水平与Mg2+-ATP酶之间的关系是非线性的,原肌球蛋白可以进一步增加Mg2+-ATP酶的活性,但仍不改变它们之间的非线性关系.肌球蛋白轻链激酶的合成肽抑制剂抑制了肌球蛋白磷酸化和Mg2+-ATP酶活性,并导致平滑肌去膜肌纤维的等长收缩张力与速度的降低.结果提示肌球蛋白轻链激酶参与脊椎动物平滑肌收缩的调节过程,肌球蛋白轻链磷酸化作用会引起平滑肌收缩  相似文献   

20.
M G Tansey  M Hori  H Karaki  K E Kamm  J T Stull 《FEBS letters》1990,270(1-2):219-221
Tracheal smooth muscle precontracted with carbachol relaxes upon the addition of 3 μM okadaic add. Although cytosolic Ca2+ concentrations decrease, myosin light chain remains highly phosphorylated (50%). In smooth muscle treated with carbachol alone or carbachol plus okadaic acid 32P is incorporated into a single peptide on myosin light chain which corresponds to the site phosphorylated by myosin light chain kinase. Treatment with okadaic acid alone does not result in myosin light chain phosphorylation or tension development. These results suggest that a cellular mechanism other than myosin light chain phosphorylation can regulate contractile tension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号