首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although local epithelial-mesenchymal tissue interactions which are presumably mediated by extracellular matrix molecules are important regulators of tooth morphogenesis and differentiation, our studies have indicated that these developmental processes also depend on circulating molecules. The iron-carrying serum protein transferrin is necessary for the early morphogenesis of mouse tooth in organ culture (A-M. Partanen, I. Thesleff, and P. Ekblom, 1984, Differentiation 27, 59-66). In the present study we have examined the effects of other growth factors on mouse tooth germs grown in a chemically defined medium containing transferrin. Fibroblast growth factor and platelet derived growth factor had no detectable effects but epidermal growth factor (EGF) inhibited dramatically the morphogenesis of teeth, and prevented odontoblast and ameloblast cell differentiation. EGF stimulated cell proliferation in the explants measured as [3H]thymidine incorporation in DNA. However, when the distribution of dividing cells was visualized in autoradiographs, it was observed that cell proliferation was stimulated in the dental epithelium but was inhibited in the dental mesenchyme. The inhibition of cell proliferation in the dental mesenchyme apparently caused the inhibition of morphogenesis. We do not know whether the dental epithelium or mesenchyme was the primary target for the action of EGF in the inhibition of morphogenesis. It is, however, apparent that the response of the dental mesenchymal cells to EGF (inhibition of proliferation) is regulated by their local environment, since EGF enhanced proliferation when these cells were disaggregated and cultured as monolayers. This indicates that the organ culture system where the various embryonic cell lineages are maintained in their original environment corresponds better to the in vivo situation when the roles of exogenous growth factors during development are examined.  相似文献   

2.
Transferrin is the only serum protein that is required for the early morphogenesis of mouse embryonic teeth in organ culture. Transferrin is able to support tooth morphogenesis and dental cell differentiation by stimulating cell proliferation. Its role in this process is restricted exclusively to iron transport, which takes place by receptor-mediated endocytosis of iron-loaded transferrin. A lipophilic iron chelator, pyridoxal isonicotinoyl hydrazone (PIH), can replace transferrin and support tooth morphogenesis in organ culture. We studied the effects of these two iron transporters on cell proliferation in tooth germs during culture. We found that Fe-PIH and transferrin stimulate proliferation to a similar extent in early cap-stage teeth of 14-day mouse embryos, but have no effect on cell proliferation in bell-stage teeth of 16-day mouse embryos. Day-16 teeth undergo morphogenesis in unsupplemented chemically defined medium, whereas transferrin or Fe-PIH is needed for the morphogenesis of day-14 teeth. Although the need for exogenous iron-transport molecules is lost with advancing development, the level of mitotic activity is still fairly high in bell-stage teeth. The abundant binding of transferrin in areas of active cell proliferation in bell-stage teeth also suggests that transferrin is still needed and used for the transport of iron into proliferating cells. Transferrin is not degraded by the process of receptor-mediated endocytosis. After releasing iron into a cell, transferrin is returned to the extracellular space and is reused. We therefore studied whether the transferrin needed by bell-stage teeth could be adequately supplied by endogenous transferrin synthesized or stored in tissue explants.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Transferrin is required for early tooth morphogenesis   总被引:4,自引:0,他引:4  
Abstract. The role of circulating molecules during early tooth morphogenesis was studied in organ cultures of mouse embryonic molar-tooth germs. Special attention was focused on the effect of transferrin and insulin, which are necessary for the growth of most cells in culture. The requirement of serum factors for tooth morphogenesis was shown to diminish as the developmental stage advances from the bud stage in day-13 embryos to the cap stage at day 15. The day-15 teeth underwent morphogenesis and cell differentiation in unsupplemented basal culture medium, but the addition of transferrin (50 μg/ml) was necessary for the morphogenesis of day-14 tooth germs. We demonstrated, by using transferrin-depleted serum, that transferrin is also necessary for the morphogenesis of day-13 tooth germs. However, some still-unidentified serum components are also required for the morphogenesis of the bud-stage day-13 teeth. These factors apparently do not include insulin, since it was shown to inhibit tooth development. Analysis of the DNA content of tooth germs cultured in various culture media showed that the ability of transferrin to sup port tooth morphogenesis correlated with a stimulation of growth. The results support our earlier suggestions that transferrin functions as a fetal growth factor. The availability of the transferrin-containing chemically defined medium facilitates studies on the roles of other growth factors during tooth development.  相似文献   

4.
We have shown earlier that epidermal growth factor (EGF) inhibits morphogenesis and cell differentiation in mouse embryonic teeth in organ culture. This inhibition depends on the stage of tooth development so that only teeth at early developmental stages respond to EGF (A-M. Partanen, P. Ekblom, and I. Thesleff (1985) Dev. Biol. 111, 84-94). We have now studied the quantity and pattern of EGF binding in teeth at various stages of development by incubating the dissected tooth germs with 125I-labeled EGF. Although the quantity of 125I-EGF binding per microgram DNA stays at the same level, localization of 125I-EGF binding by autoradiography reveals that the distribution of binding sites changes dramatically. In bud stage the epithelial tooth bud that is intruding into the underlying mesenchyme has binding sites for EGF, but the condensation of dental mesenchymal cells around the bud does not bind EGF. At the cap stage of development the dental mesenchyme binds EGF, but the dental epithelium shows no binding. This indicates that the dental mesenchyme is the primary target tissue for the inhibitory effect of EGF on tooth morphogenesis during early cap stage. During advanced morphogenesis the binding sites of EGF disappear also from the dental papilla mesenchyme, but the dental follicle which consists of condensed mesenchymal cells surrounding the tooth germ, binds EGF abundantly. We have also studied EGF binding during the development of other embryonic organs, kidney, salivary gland, lung, and skin, which are all formed by mesenchymal and epithelial components. The patterns of EGF binding in various tissues suggest that EGF may have a role in the organogenesis of epitheliomesenchymal organs as a stimulator of epithelial proliferation during initial epithelial bud formation and branching morphogenesis. The results of this study indicate that EGF stimulates or maintains proliferation of undifferentiated cells during embryonic development and that the expression of EGF receptors in different organs is not related to the age of the embryo, but is specific to the developmental stage of each organ.  相似文献   

5.
The first embryonic lower mouse molar was used as a model system to investigate the effects of two retinoids, retinoic acid (RA) and a synthetic analogue, Ch55, on morphogenesis and cytodifferentiations in vitro. Exogenous retinoids were indispensable for morphogenesis of bud, cap and bell-stage molars in serum-free, chemically-defined, culture media. Transferrin and RA or transferrin and Ch55 acted synergistically in promoting morphogenesis from bud and cap-stage explants. Transferrin, per se, had no morphogenetic effect. Epithelial histogenesis, odontoblast functional differentiation and ameloblast polarization always occurred in RA-depleted explants. Comparison of the distributions of bromodeoxyuridine (BrdU) incorporation between explants cultured in the absence or presence of RA revealed that RA could modify the patterns of cell proliferation in the inner dental epithelium and dental mesenchyme. Inner dental epithelium cell proliferation is regulated by the dental mesenchyme through basement membrane-mediated interactions, and tooth morphogenesis is controlled by the dental mesenchyme. Laminin is a target molecule of retinoid action. Using a monospecific antibody, we immunolocalized laminin and/or structurally-related molecules sharing the laminin B chain in the embryonic dental mesenchyme and in the dental basement membrane and showed that RA could promote the synthesis or secretion of these molecules. Based on previous in situ hybridization data, it was speculated that CRABPs might regulate the effects of RA on embryonic dental cell proliferation. The fact that Ch55, a retinoid which does not bind to CRABPs, is 100 times more potent than RA in promoting tooth morphogenesis in vitro seems to rule out this hypothesis. On the other hand, the stage-specific inhibition of tooth morphogenesis by excess RA is consistent with the hypothesis that CRABPs might protect embryonic tissues against potentially teratogenic concentrations of free retinoids.  相似文献   

6.
The iron-transporting serum glycoprotein, transferrin, is necessary for the cell proliferation, morphogenesis, and differentiation of mouse embryonic teeth and kidneys in organ culture. The stimulatory effect of transferrin is mediated by the binding of transferrin to its specific cell-surface receptor and by receptor-mediated endocytosis. Since, in both teeth and kidneys, the requirement for and responsiveness to transferrin depend on the developmental stage of the organ, we studied the binding of transferrin at various stages of tooth and kidney development by incubating tissues with 125I-labeled transferrin. The amount of bound transferrin was determined by measuring the tissue-incorporated radioactivity, and the binding sites were localized by autoradiography. During tooth development in vitro, the requirement for exogenous transferrin is lost as the teeth proceed from the early cap stage to the bell stage. The level of transferrin binding was found to decrease simultaneously, and in bell-stage teeth, the transferrin receptors were concentrated in the areas of most active cell proliferation. In kidneys, the number of transferrin receptors was highest at the stage during which the undifferentiated kidney mesenchyme becomes responsive to transferrin. These receptors were located in both the ureter epithelium and the metanephric mesenchyme, and they dramatically decreased in number with advancing kidney differentiation. The results of the present study indicate that, during the embryonic development of teeth and kidneys, the amount and localization of transferrin binding are correlated with cell proliferation. The number of transferrin receptors is highest during the developmental stages when cell proliferation is most active, and decreases with advancing differentiation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
In order to investigate tooth development, several cell lines of the dental epithelium and ectomesenchyme have been established. However, no attempt has been reported to regenerate teeth with cell lines. Here, we have established several clonal cell lines of the dental epithelium from a p53-deficient fetal mouse. They expressed specific markers of the dental epithelium such as ameloblastin and amelogenin. A new method has been developed to bioengineer tooth germs with dental epithelial and mesenchymal cells. Reconstructed tooth germs with cell lines and fetal mesenchymal cells were implanted under kidney capsule. The germs regenerated teeth with well-calcified structures as seen in natural tooth. Germs without the cell lines developed bone. This is the first success to regenerate teeth with dental epithelial cell lines. They are useful models in vitro for investigation of mechanisms in morphogenesis and of cell lineage in differentiation, and for clinical application for tooth regeneration.  相似文献   

8.
In tooth morphogenesis, the dental epithelium and mesenchyme interact reciprocally for growth and differentiation to form the proper number and shapes of teeth. We previously identified epiprofin (Epfn), a gene preferentially expressed in dental epithelia, differentiated ameloblasts, and certain ectodermal organs. To identify the role of Epfn in tooth development, we created Epfn-deficient mice (Epfn-/-). Epfn-/- mice developed an excess number of teeth, enamel deficiency, defects in cusp and root formation, and abnormal dentin structure. Mutant tooth germs formed multiple dental epithelial buds into the mesenchyme. In Epfn-/- molars, rapid proliferation and differentiation of the inner dental epithelium were inhibited, and the dental epithelium retained the progenitor phenotype. Formation of the enamel knot, a signaling center for cusps, whose cells differentiate from the dental epithelium, was also inhibited. However, multiple premature nonproliferating enamel knot-like structures were formed ectopically. These dental epithelial abnormalities were accompanied by dysregulation of Lef-1, which is required for the normal transition from the bud to cap stage. Transfection of an Epfn vector promoted dental epithelial cell differentiation into ameloblasts and activated promoter activity of the enamel matrix ameloblastin gene. Our results suggest that in Epfn-deficient teeth, ectopic nonproliferating regions likely bud off from the self-renewable dental epithelium, form multiple branches, and eventually develop into supernumerary teeth. Thus, Epfn has multiple functions for cell fate determination of the dental epithelium by regulating both proliferation and differentiation, preventing continuous tooth budding and generation.  相似文献   

9.
The in vitro evolution of interspecific associations between pulps and enamel organs of embryonic Mouse and Rabbit tooth germs was studied. It was shown that young pulps controlled the three-dimensional structure of tooth germs. It was also shown that dental papillae cells and dental epithelial cells, after monolayer culture, did not loose their respective ability to direct the histogenesis of teeth.  相似文献   

10.
The usefulness of the tooth germ in culture arises from the fact that it exemplifies those fundamental attributes of development, cell proliferation, cytodifferentiation, and morphogenesis, which we expect to find in the development of any metazoan organism. In culture, as in the organism, such development takes place in 3 dimensions. This study was undertaken to determine if it is possible to uncouple, by using 2 dimensions, cytodifferentiation from morphogenesis. Under the conditions used, cytodifferentiation in culture was not apparent (at the light microscope level). However, the following interesting observations were made: Cell populations arising from the same types of explants (enamel organ/enamel organ or dental papilla/dental papilla) readily flow together. Cell populations arising from dissimilar types of explants (enamel organ/dental papilla) form sharp boundaries at their interfaces. Additionally, cell populations arising from intact tooth germs differ from those arising from either enamel organs or dental papillae.  相似文献   

11.
人表皮干细胞可以作为牙齿再生中上皮源性的种子细胞,但是其成釉分化的效率低下. 本研究分离培养了人牙胚上皮细胞,利用E13.5的小鼠牙间充质与其重组,构建重组牙胚,对其成釉分化的潜能和机制进行研究. 研究结果发现,体外培养的P1代人牙胚上皮细胞成釉率高达50%. 随着传代次数的增加,成釉率明显下降. 通过对牙上皮发育分化相关基因的表达检测和分析表明,重组牙胚成牙分化能力和成釉潜能的下降与牙上皮发育相关基因的表达状态密切相关. 特别是FGF8表达水平的下调以及PITX2不同亚型在人牙胚细胞中表达量的不均衡,可能是导致人牙胚细胞成釉潜能下降并丧失的主要原因. 本研究结果为理解牙齿再生过程中上皮源性的种子细胞的成釉机制提供了新的实验数据,对进一步提高表皮干细胞在牙齿再生过程中的成釉率有指导意义.  相似文献   

12.
Glucose is an essential source of energy for body metabolism and is transported into cells by glucose transporters (GLUTs). Well-characterized class I GLUT is subdivided into GLUTs1-4, which are selectively expressed depending on tissue glucose requirements. However, there is no available data on the role of GLUTs during tooth development. This study aims to clarify the functional significance of class I GLUT during murine tooth development using immunohistochemistry and an in vitro organ culture experiment with an inhibitor of GLUTs1/2, phloretin, and Glut1 and Glut2 short interfering RNA (siRNA). An intense GLUT1-immunoreaction was localized in the enamel organ of bud-stage molar tooth germs, where the active cell proliferation occurred. By the bell stage, the expression of GLUT1 in the dental epithelium was dramatically decreased in intensity, and subsequently began to appear in the stratum intermedium at the late bell stage. On the other hand, GLUT2-immunoreactivity was weakly observed in the whole tooth germs throughout all stages. The inhibition of GLUTs1/2 by phloretin in the bud-stage tooth germs induced the disturbance of primary enamel knot formation, resulting in the developmental arrest of the explants and the squamous metaplasia of dental epithelial cells. Furthermore, the inhibition of GLUTs1/2 in cap-to-bell-stage tooth germs reduced tooth size in a dose dependent manner. These findings suggest that the expression of GLUT1 and GLUT2 in the dental epithelial and mesenchymal cells seems to be precisely and spatiotemporally controlled, and the glucose uptake mediated by GLUT1 plays a crucial role in the early tooth morphogenesis and tooth size determination.  相似文献   

13.
The iron-carrying serum protein transferrin is required for the proliferation and differentiation of embryonic tissues in culture. We studied the expression and role of transferrin receptors in two model systems using a monoclonal antibody against the transferrin receptor of mice. The addition of 20-100 micrograms/ml antibody to a chemically defined culture medium containing transferrin (10 micrograms/ml) inhibited morphogenesis and cell proliferation in kidneys and teeth. However, the antibody did not inhibit development when iron was delivered to the cells by a lipophilic iron chelator i.e., by-passing the receptor-mediated pathway. Hence, the binding of the receptor antibody to the receptor apparently did not affect cell proliferation, and the antibody was not toxic to the tissues. Our results suggest that the antibody to the transferrin receptor inhibits development by blocking the normal endocytotic route of iron delivery. Cells derived from embryonic kidneys and teeth expressed the transferrin receptor when cultured as monolayers. However, using immunofluorescent techniques, we were unable to detect the receptor in frozen tissue sections. It is possible that the seeding of cells in monolayer cultures affects the expression of the transferrin receptor, since it is known that all types of cells require transferrin for continued proliferation in culture. Organ-cultured kidney mesenchymal cells are not initially responsive to transferrin, but they acquire responsiveness as a consequence of an inductive tissue interaction. Although it remains unknown as to whether the acquisition of transferrin responsiveness is directly related to the expression of transferrin receptors, our results suggest that transferrin and its receptors play a role in embryonic morphogenesis.  相似文献   

14.
. Target-derived neurotrophins support and sustain peripheral sensory neurons during development. In addition, it has been suggested that these growth factors could have developmental functions in non-neuronal tissues. To further elucidate the possible roles of neurotrophins in tooth morphogenesis and innervation, we have used in-situ hybridization to determine the specific sites of neurotrophin gene activity in pre- and postnatal rat jaws from E16 to P7. All four neurotrophins were expressed during tooth development with specific temporospatial patterns. Nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) mRNAs were mainly detected in the dental papilla/pulp in postnatal animals, and the pattern of expression correlated with the onset of dental innervation. In contrast, neurotrophin 3 (NT3) and neurotrophin 4 (NT4) mRNA expression patterns were predominantly epithelial and were strongest during early developmental stages when teeth are not yet innervated. Dental papilla NGF-mRNA expression was first seen in both epithelium and mesenchyme and later shifted to the odontoblast layer and the subodontoblast zone. BDNF-mRNA labeling was present in low levels in the early dental organ, but increased in the pulp and in the odontoblast cell layer of the developing teeth at later developmental stages. Both NT3 and NT4 mRNA were observed in the prenatal oral epithelium and the inner dental epithelium. NT3-mRNA labeling was seen mainly in the cervical loop region, fissure system depressions and cuspal tops, while NT4 mRNA was more evenly distributed in the dental epithelium. At P7, NT3-mRNA labeling was below detection level and NT4 mRNA expression was lower than at prior stages. Complementary to reports on the presence of low-affinity neurotrophin receptor (LANR), trkB and trkC mRNA in the developing teeth, our results suggest that neurotrophins may have multiple functions during tooth morphogenesis. Neurotrophins might participate in epithelial-mesenchymal interactions in early tooth morphogenetic events such as proliferation and differentiation of epithelial and mesenchymal cells. In addition, based on mRNA localization in postnatal animals, we also suggest that NGF and BDNF (beside glial cell line-derived neurotrophic factor) might participate in establishing and maintaining the innervation of the teeth, thus acting as classical neurotrophic factors.  相似文献   

15.
Embryonic testis development requires the morphogenesis of cords and growth of all cell populations to allow organ formation. It is anticipated that coordination of the growth and differentiation of various cell types involves locally produced growth factors. The current study was an investigation of the hypothesis that transforming growth factor-alpha (TGF-alpha) is involved in regulating embryonic testis growth. TGF-alpha has previously been shown to function in the postnatal testis. TGF-alpha and other members of the epidermal growth factor (EGF) family act through the epidermal growth factor receptor (EGFR) to stimulate cell proliferation and tissue morphogenesis. To understand the potential actions of TGF-alpha in the embryonic testis, general cell proliferation was investigated. Characterization of cell proliferation in the rat testis throughout embryonic and postnatal development indicated that each cell type has a distinct pattern of proliferation. Germ cell growth was transiently suppressed around birth. Interstitial cell growth was high embryonically and decreased to low levels around birth. A low level of Sertoli cell proliferation was observed at the onset of testis cord formation. Sertoli cell proliferation in early embryonic development was low; the levels were high later in embryonic development and remained high until the onset of puberty. Both TGF-alpha and the EGFR were shown to be expressed in the embryonic and postnatal rat and mouse testis. Perturbation of TGF-alpha function using neutralizing antibodies to TGF-alpha on testis organ cultures dramatically inhibited the growth of both embryonic and neonatal testis. TGF-alpha antibodies had no effect on cord formation. The TGF-alpha antibody was found to be specific for TGF-alpha in Western blots when compared to EGF and heregulin. Testis growth was also inhibited by perturbation of EGFR signaling using an EGFR kinase inhibitor. Therefore, TGF-alpha appears to influence embryonic testis growth but not morphogenesis (i.e., cord formation). Treatment of embryonic testis organ cultures with exogenous TGF-alpha also perturbed development, leading to an increased proliferation of unorganized cells. Testis from EGFR and TGF-alpha knockout mice were analyzed for testis morphology. TGF-alpha knockout mice had no alterations in testis phenotype, while EGFR knockout mice had a transient decrease in the relative amount of interstitial cells before birth. Observations suggest that there may be alternate or compensatory factors that allow testis growth to occur in the apparent absence of TGF-alpha actions in the mutant mice. In summary, the results obtained suggest that TGF-alpha is an important factor in the regulation of embryonic testis growth, but other factors will also be involved in the process.  相似文献   

16.
Tooth morphogenesis is initiated by reciprocal interactions between the ectoderm and neural crest-derived mesenchyme, and the Wnt signaling pathway is involved in this process. We found that Plakophilin (PKP)1, which is associated with diseases such as ectodermal dysplasia/skin fragility syndrome, was highly expressed in teeth and skin, and was upregulated during tooth development. We hypothesized that PKP1 regulates Wnt signaling via its armadillo repeat domain in a manner similar to β-catenin. To determine its role in tooth development, we performed Pkp1 knockdown experiments using ex vivo organ cultures and cell cultures. Loss of Pkp1 reduced the size of tooth germs and inhibited dental epithelial cell proliferation, which was stimulated by Wnt3a. Furthermore, transfected PKP1-emerald green fluorescent protein was translocated from the plasma membrane to the nucleus upon stimulation with Wnt3a and LiCl, which required the PKP1 N terminus (amino acids 161 to 270). Localization of PKP1, which is known as an adhesion-related desmosome component, shifted to the plasma membrane during ameloblast differentiation. In addition, Pkp1 knockdown disrupted the localization of Zona occludens 1 in tight junctions and inhibited ameloblast differentiation; the two proteins were shown to directly interact by immunoprecipitation. These results implicate the participation of PKP1 in early tooth morphogenesis as an effector of canonical Wnt signaling that controls ameloblast differentiation via regulation of the cell adhesion complex.  相似文献   

17.
Midkine (MK) is the first cloned gene in a new family of heparin- binding growth/differentiation factors involved in the regulation of growth and differentiation. We have analyzed the expression of MK mRNA and protein during tooth development in mouse embryos and studied the regulation of MK expression and the biological effects of MK protein in organ cultures. MK expression was restricted and preferential in the tooth area as compared to the rest of the developing maxillary and mandibular processes suggesting specific functions for MK during tooth morphogenesis. MK mRNA and protein were expressed during all stages of tooth formation (initiation, morphogenesis, and cell differentiation), and shifts of expression were observed between the epithelial and mesenchymal tissue components. However, the expression of mRNA and protein showed marked differences at some stages suggesting paracrine functions for MK. Tissue recombination experiments showed that MK gene and protein expression are regulated by epithelial-mesenchymal interactions, and, moreover, that dental tissue induces the ectopic expression of MK protein in non-dental tissue. The expression of MK gene and protein in the mandibular arch mesenchyme from the tooth region were stimulated by local application of retinoic acid in beads. Cell proliferation was inhibited in dental mesenchyme around the beads releasing MK, but this effect was modulated by simultaneous application of FGF-2. Morphogenesis and cell differentiation were inhibited in tooth germs cultured in the presence of neutralizing antibodies for MK, whereas the development of other organs (e.g., salivary gland, kidney) was unaffected. These results suggest important roles for MK in the molecular cascade that regulates tooth development.  相似文献   

18.
BACKGROUND INFORMATION: Previous studies have indicated that over-activation of the wingless interaction site (Wnt)/β-catenin signalling pathway has important implications for tooth development, at the level of cell differentiation and morphology, as well as for the production of supernumerary teeth. Here, we provide evidence for a crucial role of this signalling pathway during the stage of tooth morphogenesis. We have developed an in vitro model consisting of 14.5-day-old mouse embryo first molars, in which the Wnt pathway is overactivated by the glycogen synthase kinase-3 inhibitor 6-bromoindirubin-3'-oxime (BIO; 20 μM). RESULTS: We found that over-activation of the Wnt/β-catenin pathway delayed the differentiation and growth of the inner dental epithelium. In addition, in contrast to controls in which Nestin protein expression was restricted to differentiated odontoblasts, in BIO-treated molars, Nestin expression spread through sub-odontoblastic cellular layers. This alteration appears to be related to: (i) the over-expression of Bmp4 in the same region, (ii) the delay in odontoblast precursor cell differentiation and (iii) increased proliferation of mesenchymal cells. Furthermore, treatments longer than 6 days induced the malformation of typical dental structures and led to a total lack of cell differentiation. Finally, over-activation of the Wnt route during odontogenesis resulted in adult teeth which presented altered size, morphology and mineralisation. CONCLUSIONS: Our results indicate that Wnt/β-catenin over-activation during tooth morphogenesis is sufficient to cause dramatic alterations in the adult tooth, by delaying cellular differentiation and stimulating proliferation of the dental mesenchyme of developing teeth.  相似文献   

19.
目的 为探索一种组织工程化牙齿异位培养的理想环境,检测全牙胚、牙乳头及成釉器在肾被膜环境下的发育能力.方法 利用剖腹产取出胚龄18 d的大鼠胎儿,显微外科分离牙胚,并将之进一步分为牙乳头和成釉器两部分.使用特制玻璃移植管分别将获得的全牙胚、牙乳头及成釉器植入异体大鼠肾被膜下.2周后取出培养物,HE染色观察其发育情况.结果 在肾被膜微环境下,全牙胚在肾被膜下发育良好,形成较为完整的牙齿形态和结构,单独的牙乳头可以形成牙本质,而单独的成釉器无法形成特定形态的牙冠,也无法分化成釉质.结论 证明肾被膜下是牙齿异位生长的适宜环境,ED18后成釉器发育仍然受到牙乳头调控,与此相反,牙乳头发育不再依赖成釉器的信号.  相似文献   

20.
A serum-free, hormonally defined medium was developed which supports growth and differentiation in primary culture of epithelial cells from prefusion embryonic mouse palatal shelves. Using this culture system, medial epithelial programmed cell death was investigated. In the absence of EGF, medial epithelial cells undergo cell death and detach from the substratum by 24 hr of culture. The addition of EGF alone or in combination with various agents which increase intracellular cyclic AMP levels prevented medial epithelial cell death in both cell and organ culture. EGF appeared to exert its most dramatic effect in cell culture on growth and differentiation of the squamous oral epithelial cells. In addition, EGF and agents such as 8-bromo-cyclic AMP, dibutyryl cyclic AMP, or cholera toxin synergistically stimulated the appearance of a long-lived, rapidly proliferating cell type by Day 4 of culture. Our results suggest that both EGF and cyclic AMP together may be important in regulating proliferation of embryonic palatal epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号