首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tufB gene, encoding elongation factor Tu (EF-Tu), from the myxobacterium Stigmatella aurantiaca was cloned and sequenced. It is preceded by four tRNA genes, the first ever described in myxobacteria. The tRNA synthesized from these genes and the general organization of the locus seem identical to that of Escherichia coli, but differences of potential importance were found in the tRNA sequences and in the intergenic regions. The primary structure of EF-Tu was deduced from the tufB DNA sequence. The factor is composed of 396 amino acids, with a predicted molecular mass of 43.4 kDa, which was confirmed by expression of tufB in maxicells. Sequence comparisons between S.aurantiaca EF-Tu and other bacterial homologues from E.coli, Salmonella typhimurium and Thermus thermophilus displayed extensive homologies (75.9%). Among the variable positions, two Cys residues probably involved in the temperature sensitivity of E.coli and S.typhimurium EF-Tu are replaced in T.thermophilus and S.aurantiaca EF-Tu. Since two or even three tuf genes have been described in other bacterial species, the presence of multiple tuf genes was sought for. Southern and Northern analysis are consistent with two tuf genes in the genome of S.aurantiaca. Primer extension experiments indicate that the four tRNA genes and tufB are organized in a single operon.  相似文献   

2.
There is a close connection between modern-day biosynthesis of particular triterpenoid biomarkers and presence of molecular oxygen in the environment. Thus, the detection of steroid and triterpenoid hydrocarbons far back in Earth history has been used to infer the antiquity of oxygenic photosynthesis. This prompts the question: were these compounds produced similarly in the past? In this paper, we address this question with a review of the current state of knowledge surrounding the oxygen requirement for steroid biosynthesis and phylogenetic patterns in the distribution of steroid and triterpenoid biosynthetic pathways. The hopanoid and steroid biosynthetic pathways are very highly conserved within the bacterial and eukaryotic domains, respectively. Bacteriohopanepolyols are produced by a wide range of bacteria, and are methylated in significant abundance at the C2 position by oxygen-producing cyanobacteria. On the other hand, sterol biosynthesis is sparsely distributed in distantly related bacterial taxa and the pathways do not produce the wide range of products that characterize eukaryotes. In particular, evidence for sterol biosynthesis by cyanobacteria appears flawed. Our experiments show that cyanobacterial cultures are easily contaminated by sterol-producing rust fungi, which can be eliminated by treatment with cycloheximide affording sterol-free samples. Sterols are ubiquitous features of eukaryotic membranes, and it appears likely that the initial steps in sterol biosynthesis were present in their modern form in the last common ancestor of eukaryotes. Eleven molecules of O2 are required by four enzymes to produce one molecule of cholesterol. Thermodynamic arguments, optimization of function and parsimony all indicate that an ancestral anaerobic pathway is highly unlikely. The known geological record of molecular fossils, especially steranes and triterpanes, is notable for the limited number of structural motifs that have been observed. With a few exceptions, the carbon skeletons are the same as those found in the lipids of extant organisms and no demonstrably extinct structures have been reported. Furthermore, their patterns of occurrence over billion year time-scales correlate strongly with environments of deposition. Accordingly, biomarkers are excellent indicators of environmental conditions even though the taxonomic affinities of all biomarkers cannot be precisely specified. Biomarkers are ultimately tied to biochemicals with very specific functional properties, and interpretations of the biomarker record will benefit from increased understanding of the biological roles of geologically durable molecules.  相似文献   

3.
Phosphoglycerolipids are abundant membrane constituents in prokaryotic and eukaryotic cells. However, glycoglycerolipids are the predominant lipids in chloroplasts of plants and eukaryotic algae and in cyanobacteria. Membrane composition in chloroplasts and cyanobacteria is highly conserved, with monogalactosyldiacylglycerol (MGD) and digalactosyldiacylglycerol (DGD) representing the most abundant lipids. The genes encoding enzymes of galactolipid biosynthesis have been isolated from Arabidopsis. Galactolipids are crucial for growth under normal and phosphate limiting conditions. Furthermore, they are indispensable for maximal efficiency of photosynthesis. A wide variety of glycoglycerolipids is found in different bacteria. These lipids contain glucose or galactose, in some cases also mannose or other sugars with different glycosidic linkages in their head group. Some bacterial species produce unusual glycoglycerolipids, such as glycophospholipids or glycoglycerolipids carrying sugar head groups esterified with acyl residues. A number of genes coding for bacterial glycoglycerolipid synthases have been cloned and the enzymes characterized. In contrast to the breadth of information available on their structural diversity, much less is known about functional aspects of bacterial glycoglycerolipids. In some bacteria, glycoglycerolipids are required for membrane bilayer stability, they serve as precursors for the formation of complex membrane components, or they are crucial to support anoxygenic photosynthesis or growth during phosphate deficiency.  相似文献   

4.
Dinoflagellates (Eukaryota; Alveolata; Dinophyceae) are single-cell eukaryotic microorganisms implicated in many toxic outbreaks in the marine and estuarine environment. Co-existing with dinoflagellate communities are bacterial assemblages that undergo changes in species composition, compete for nutrients and produce bioactive compounds, including toxins. As part of an investigation to understand the role of the bacteria in dinoflagellate physiology and toxigenesis, we have characterized the bacterial community associated with laboratory cultures of four ' Pfiesteria -like' dinoflagellates isolated from 1997 fish killing events in Chesapeake Bay. A polymerase chain reaction with oligonucleotide primers specific to prokaryotic 16S rDNA gene sequences was used to characterize the total bacterial population, including culturable and non-culturable species, as well as possible endosymbiotic bacteria. The results indicate a diverse group of over 30 bacteria species co-existing in the dinoflagellate cultures. The broad phylogenetic types of dinoflagellate-associated bacteria were generally similar, although not identical, to those bacterial types found in association with other harmful algal species. Dinoflagellates were made axenic, and the culturable bacteria were added back to determine the contribution of the bacteria to dinoflagellate growth. Confocal scanning laser fluorescence microscopy with 16S rDNA probes was used to demonstrate a physical association of a subset of the bacteria and the dinoflagellate cells. These data point to a key component in the bacterial community being species in the marine alpha-proteobacteria group, most closely associated with the α-3 or SAR83 cluster.  相似文献   

5.
3-Deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) synthases catalyse the first step of the shikimate pathway. Two unrelated DAHP synthase types have been described in plants and bacteria. Two type II (aroA(A2) and aroA(A5)) and one type I DAHP synthase gene (aroA001) were identified from the myxobacterium Stigmatella aurantiaca Sg a15. Inactivation of aroA(A5) leads to a mutant that is impaired in the biosynthesis of aurachins, which are electron transport inhibitors and contain an anthranilate moiety. Feeding of anthranilic acid to the mutant culture restores production of aurachins. Inactivation of aroA(A2) and aroA001 does not impair production of aurachins or other known secondary metabolites of S. aurantiaca Sg a15.  相似文献   

6.
7.
Since its first appearance, CRISPR–Cas9 has been developed extensively as a programmable genome-editing tool, opening a new era in plant genome engineering. However, CRISPR–Cas9 still has some drawbacks, such as limitations of the protospacer-adjacent motif (PAM) sequence, target specificity, and the large size of the cas9 gene. To combat invading bacterial phages and plasmid DNAs, bacteria and archaea have diverse and unexplored CRISPR–Cas systems, which have the potential to be developed as a useful genome editing tools. Recently, discovery and characterization of additional CRISPR–Cas systems have been reported. Among them, several CRISPR–Cas systems have been applied successfully to plant and human genome editing. For example, several groups have achieved genome editing using CRISPR–Cas type I-D and type I-E systems, which had never been applied for genome editing previously. In addition to higher specificity and recognition of different PAM sequences, recently developed CRISPR–Cas systems often provide unique characteristics that differ from well-known Cas proteins such as Cas9 and Cas12a. For example, type I CRISPR–Cas10 induces small indels and bi-directional long-range deletions ranging up to 7.2 kb in tomatoes (Solanum lycopersicum L.). Type IV CRISPR–Cas13 targets RNA, not double-strand DNA, enabling highly specific knockdown of target genes. In this article, we review the development of CRISPR–Cas systems, focusing especially on their application to plant genome engineering. Recent CRISPR–Cas tools are helping expand our plant genome engineering toolbox.

Recently discovered and characterized clustered regularly interspaced short palindromic repeats-CRISPR associated (CRISPR–Cas) systems allow additional applications to plant genome editing.  相似文献   

8.
The clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR-Cas) system is a prokaryotic defense mechanism against foreign genetic elements. A plethora of CRISPR-Cas versions exist, with more than 40 different Cas protein families and several different molecular approaches to fight the invading DNA. One of the key players in the system is the CRISPR-derived RNA (crRNA), which directs the invader-degrading Cas protein complex to the invader. The CRISPR-Cas types I and III use the Cas6 protein to generate mature crRNAs. Here, we show that the Cas6 protein is necessary for crRNA production but that additional Cas proteins that form a CRISPR-associated complex for antiviral defense (Cascade)-like complex are needed for crRNA stability in the CRISPR-Cas type I-B system in Haloferax volcanii in vivo. Deletion of the cas6 gene results in the loss of mature crRNAs and interference. However, cells that have the complete cas gene cluster (cas1–8b) removed and are transformed with the cas6 gene are not able to produce and stably maintain mature crRNAs. crRNA production and stability is rescued only if cas5, -6, and -7 are present. Mutational analysis of the cas6 gene reveals three amino acids (His-41, Gly-256, and Gly-258) that are essential for pre-crRNA cleavage, whereas the mutation of two amino acids (Ser-115 and Ser-224) leads to an increase of crRNA amounts. This is the first systematic in vivo analysis of Cas6 protein variants. In addition, we show that the H. volcanii I-B system contains a Cascade-like complex with a Cas7, Cas5, and Cas6 core that protects the crRNA.  相似文献   

9.
10.
11.
12.
The structure-function relationship in RNA molecules is a key to understanding of the expression of genetic information. Various types of RNA play crucial roles at almost every step of protein biosynthesis. In recent years, it has been shown that one of the most important structural elements in RNA is a wobble pair G-U. In this paper, we present for the first time an analysis of the distribution of G-U pairs in eukaryotic 5S ribosomal RNAs. Interestingly, the G-U pair in 5S rRNA species is predominantly found in two intrahelical regions of the stems I and V and at the junction of helix IV and loop A. The distribution of G-U pairs and the nature of adjacent bases suggests their possible role as a recognition site in interactions with other components of protein biosynthesis machinery.  相似文献   

13.
Indole-3-acetic acid in microbial and microorganism-plant signaling   总被引:14,自引:0,他引:14  
Diverse bacterial species possess the ability to produce the auxin phytohormone indole-3-acetic acid (IAA). Different biosynthesis pathways have been identified and redundancy for IAA biosynthesis is widespread among plant-associated bacteria. Interactions between IAA-producing bacteria and plants lead to diverse outcomes on the plant side, varying from pathogenesis to phyto-stimulation. Reviewing the role of bacterial IAA in different microorganism-plant interactions highlights the fact that bacteria use this phytohormone to interact with plants as part of their colonization strategy, including phyto-stimulation and circumvention of basal plant defense mechanisms. Moreover, several recent reports indicate that IAA can also be a signaling molecule in bacteria and therefore can have a direct effect on bacterial physiology. This review discusses past and recent data, and emerging views on IAA, a well-known phytohormone, as a microbial metabolic and signaling molecule.  相似文献   

14.
The complete nucleotide sequence including the novel telomere sequence of Streptomyces linear plasmid pSHK1 consists of 187,263-bp, 158 genes, in which 51 genes resemble those of the linear plasmid SCP1 of Streptomyces coelicolor A3(2), and 20 genes encode transposases. Strikingly, the repetitive CRISPRs (clustered regularly interspaced short palindromic repeats) and cas (CRISPR-associated) genes were found, including a cluster of eight cas genes, in the order cas2B-cas1B-cas3B-cas5-cas4-cas2A-cas1A-cas3A, bracketed by a pair of divergent CRISPRs, and five other dispersed CRISPRs. The cas2B-cas1B-cas3B-cas5 or cas4-cas2A-cas1A genes were co-transcribed. Protein-protein interactions between Cas5 and Cas1A, 2A, 2B, 3B were detected by yeast two-hybrids, indicating a critical role of Cas5 for the formation of protein complexes. By polymerase chain reaction and Southern hybridization, 12 cas4 genes including three on linear plasmids were found among 75 newly isolated Streptomyces strains. The paired-CRISPRs and bracketed cas were also conserved in several other Streptomyces or actinomycete species. However, unlike other bacteria, the CRISPRs-cas in pSHK1 could not provide immunity against introduction of phage ΦC31 and plasmid containing the particular spacers in Streptomyces.  相似文献   

15.
Isolation and Identification of a Pathogen of Silkworm Bombyx mori   总被引:1,自引:0,他引:1  
Tao HP  Shen ZY  Zhu F  Xu XF  Tang XD  Xu L 《Current microbiology》2011,62(3):876-883
A pathogenic bacterial strain, ST-1, was isolated from a naturally infected silkworm. The strain was identified on the basis of its physiological and biochemical properties and the results of sequence analysis of its 16S rRNA gene. The results of the 16S rRNA gene sequence analysis revealed that ST-1 shared the highest sequence identity (more than 99%) with Pseudomonas chlororaphis subsp. aurantiaca. ST-1 bacteria were gram-negative and 0.7-0.9 × 1.3-1.5 μm long, short rods with rounded ends. The strain could utilize sodium citrate, malonate, D-glucose, sucrose, D-fructose, D-mannose, and L-arabinose. Pathogenicity of ST-1 for silkworm could be depicted as a linear regression of the logarithm (y) of ST-1 concentration against probability (x) (y = 0.4040 + 0.0600x). The median lethal concentration (LC(50)) was 2.12 × 10(4) cfu/ml. In conclusion, ST-1 was identified as Ps. chlororaphis subsp. aurantiaca. This is the first report that Ps. aurantiaca is a pathogen for silkworm Bombyx mori.  相似文献   

16.
Evidence for the involvement of a bacterial nitric oxide synthase (NOS) in the biosynthesis of a phytotoxin is presented. Several species of Streptomyces bacteria produce secondary metabolites with unusual nitrogen groups, such as thaxtomin A (ThxA), which contains a nitroindole moiety. ThxA is a phytotoxin made by three pathogenic Streptomyces species that cause common scab of potato. All three species possess a gene homologous to the oxygenase domain of murine inducible NOS, and this gene, nos, is essential for normal levels of ThxA production. We grew Streptomyces turgidiscabies in the presence of several known NOS inhibitors and a nitric oxide (NO) scavenger to determine their effect on ThxA production. The NO scavenger (CPTIO) and four NOS inhibitors (NAME, NMMA, AG, and 7-NI) reduced ThxA production without affecting bacterial growth. A strain of S. turgidiscabies from which the nos gene had been deleted was grown in the presence of three NO donors (DEANO, SIN, and SNAP), and all three partially restored ThxA production. Our data suggest that bacterial nitric oxide synthases may, at least in part, produce NO for biosynthetic purposes, rather than for cellular signaling, as they do in mammals.  相似文献   

17.
Silakowski B  Kunze B  Müller R 《Gene》2001,275(2):233-240
Many bacterial and fungal secondary metabolites are produced by polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS). Recently, it has been discovered that these modular enzymatic systems can also closely cooperate to form natural products. The analysis of the corresponding biosynthetic machineries, in the form of hybrid systems, is of special interest for combinatorial biosynthesis, because the combination of PKS and NRPS can lead to an immense variety of structures that might be produced. During our screening for hybrid PKS/NRPS systems from myxobacteria, we scanned the genome of Stigmatella aurantiaca DW4/3-1 for the presence of gene loci that encode both the PKS and NRPS genes. In addition to the previously characterized myxothiazol system, we identified three further hybrid loci, three additional PKS and one further NRPS gene locus. These were analyzed by hybridization, physical mapping, PCR with degenerate oligonucleotides and sequencing of fragments of the gene clusters. The function of these genes was not known but it had already been speculated that one compound produced by the strain and detected via HPLC was a secondary metabolite. This was based on the observation that its production is dependent on an active copy of the phosphopantetheinyl transferase gene mtaA. We show here that one of the identified hybrid gene loci is responsible for the formation of this secondary metabolite. In agreement with the genetic data, the chemical structure resembles a cyclic polypeptide with a PKS sidechain. Our data show that S. aurantiaca has a broader genetic capacity to produce natural products than the number of compounds isolated from the strain so far suggests.  相似文献   

18.
CRISPR (clustered regularly interspaced short palindromic repeat)/Cas (CRISPR-associated) is a nucleic acid processing system in bacteria and archaea that interacts with mobile genetic elements. CRISPR DNA and RNA sequences are processed by Cas proteins: in Escherichia coli K-12, one CRISPR locus links to eight cas genes (cas1, 2, 3 and casABCDE), whose protein products promote protection against phage. In the present paper, we report that purified E. coli Cas3 catalyses ATP-independent annealing of RNA with DNA forming R-loops, hybrids of RNA base-paired into duplex DNA. ATP abolishes Cas3 R-loop formation and instead powers Cas3 helicase unwinding of the invading RNA strand of a model R-loop substrate. R-loop formation by Cas3 requires magnesium as a co-factor and is inactivated by mutagenesis of a conserved amino acid motif. Cells expressing the mutant Cas3 protein are more sensitive to plaque formation by the phage λvir. A complex of CasABCDE ('Cascade') also promotes R-loop formation and we discuss possible overlapping roles of Cas3 and Cascade in E. coli, and the apparently antagonistic roles of Cas3 catalysing RNA-DNA annealing and ATP-dependent helicase unwinding.  相似文献   

19.
Clustered regularly interspaced palindromic repeats (CRISPRs) and the CRISPR-associated (Cas) nuclease protect bacteria and archeae from foreign DNA by site-specific cleavage of incoming DNA. Type-II CRISPR–Cas systems, such as the Streptococcus pyogenes CRISPR–Cas9 system, can be adapted such that Cas9 can be guided to a user-defined site in the chromosome to introduce double-stranded breaks. Here we have developed and optimized CRISPR–Cas9 function in the lactic acid bacterium Lactobacillus reuteri ATCC PTA 6475. We established proof-of-concept showing that CRISPR–Cas9 selection combined with single-stranded DNA (ssDNA) recombineering is a realistic approach to identify at high efficiencies edited cells in a lactic acid bacterium. We show for three independent targets that subtle changes in the bacterial genome can be recovered at efficiencies ranging from 90 to 100%. By combining CRISPR–Cas9 and recombineering, we successfully applied codon saturation mutagenesis in the L. reuteri chromosome. Also, CRISPR–Cas9 selection is critical to identify low-efficiency events such as oligonucleotide-mediated chromosome deletions. This also means that CRISPR–Cas9 selection will allow identification of recombinant cells in bacteria with low recombineering efficiencies, eliminating the need for ssDNA recombineering optimization procedures. We envision that CRISPR–Cas genome editing has the potential to change the landscape of genome editing in lactic acid bacteria, and other Gram-positive bacteria.  相似文献   

20.
The multisubunit acetyl-CoA carboxylase, which catalyzes the first committed step in fatty acid biosynthesis, is broadly conserved among bacteria. Its rate-limiting role in formation of fatty acids makes this enzyme an attractive target for the design of novel broad-spectrum antibacterials. However, no potent inhibitors have been discovered so far. This report describes the identification and characterization of highly potent bacterial acetyl-CoA carboxylase inhibitors with antibacterial activity for the first time. We demonstrate that pseudopeptide pyrrolidine dione antibiotics such as moiramide B inhibit the Escherichia coli enzyme at nanomolar concentrations. Moiramide B targets the carboxyltransferase reaction of this enzyme with a competitive inhibition pattern versus malonyl-CoA (K(i) value = 5 nm). Inhibition at nanomolar concentrations of the pyrrolidine diones is also demonstrated using recombinantly expressed carboxyltransferases from other bacterial species (Staphylococcus aureus, Streptococcus pneumoniae, and Pseudomonas aeruginosa). We isolated pyrrolidine dione-resistant strains of E. coli, S. aureus, and Bacillus subtilis, which contain mutations within the carboxyltransferase subunits AccA or AccD. We demonstrate that such mutations confer resistance to pyrrolidine diones. Inhibition values (IC(50)) of >100 microm regarding an eukaryotic acetyl-CoA carboxylase from rat liver indicate high selectivity of pyrrolidine diones for the bacterial multisubunit enzyme. The natural product moiramide B and synthetic analogues show broad-spectrum antibacterial activity. The knowledge of the target and the availability of facile assays using carboxyltransferases from different pathogens will enable evaluation of the antibacterial potential of the pyrrolidine diones as a promising antibacterial compound class acting via a novel mode of action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号