首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The current methods of production of conditionally immortal cells in vivo and in vitro have been considered, including the method based on transgenesis of animals. Examples are given for utilization of conditionally immortal cells obtained in vivo from tissues of transgenic mice and rats carrying the gene of mutant T-antigen tsA58 SV40. The recent studies were analyzed, which concern the investigation and utilization of embryonic and regional stem cells, as well as immortal cells obtained through transfection of the recombinant construct of telomerase gene into human cells. The main problems of cell biotechnology are discussed.  相似文献   

2.
The tendency of the ovarian surface epithelium (OSE) to undergo metaplastic and morphogenetic changes during the life cycle, at variance with the adjacent peritoneal mesothelial cells, suggests that its biology may be regulated by underlying ovarian stromal cues. However, little is known about the role that the ovarian stroma plays in the pathobiology of the OSE, largely because of the lack of a suitable in vitro model. Here, we describe the establishment and characterization of conditionally immortalized ovarian stromal and surface epithelial cell lines from H-2K(b)-tsA58 transgenic mice that carry the thermolabile mutant of SV-40 large T antigen under the control of an interferon-gamma (IFN-gamma)-inducible promoter. These cells express functional T antigens, grow continuously under permissive conditions at 33 degrees C in the presence of IFN-gamma, and stop dividing when the activity and expression of the tumor antigen is suppressed by restrictive conditions without IFN-gamma at 39 degrees C. Morphological, immunohistochemical, and ultrastructural analyses show that conditionally immortal OSE cells form cobblestone-like monolayers, express cytokeratin and vimentin, contain several microvilli, and develop tight junctions, whereas stromal cells are spindle-like, express vimentin but not cytokeratin, and contain rare microvilli, thus exhibiting epithelial and stromal phenotypes, respectively. At variance with the reported behavior of rat epithelial cells, conditionally immortal mouse epithelial cells are not spontaneously transformed after continuous culture in vitro. More importantly, conditioned media from stromal cells cultured under permissive conditions increase the specific activity of the endogenous estrogen receptor in BG-1 human ovarian epithelial cancer cells and promote these cells' anchorage-independent growth, suggesting the paracrine influence of a stromal factor. In addition, stromal cells cultured under restrictive conditions retain this growth-stimulatory activity, which, therefore, appears to be independent of T antigen expression. These established cell lines should provide a useful in vitro model system for studying the role of cellular interactions in OSE cell growth and tumorigenesis.  相似文献   

3.
Thein vitrolife span of human cells is under genetic control and limited. Immortalized cells, however, can be obtained at a low frequency following expression of the SV40 T antigen gene though the steps that lead to immortality are not well understood. p53 has been implicated in cell cycle regulation and evidence suggests it may have a role in controlling life span in rodent and human cells. In this study, we investigated whether allelic loss or mutation ofp53was an essential step during SV40 immortalization leading to the appearance of immortal cell lines. The gross structure of thep53gene was examined in a primary fibroblast cell strain (1BR.3) and two SV40-immortalized derivatives, 1BRMT1 and 1BRgn2. There was no evidence for allelic loss of thep53gene during immortalization. The primary cells and the immortal derivatives all expressed authenticp53mRNAs, though the immortal cell lines had higher levels of expression. Sequence analysis of exons 5–8 did not detect mutations associated with the immortal phenotype. These data are consistent with SV40 immortalization being independent of genetic changes inp53.  相似文献   

4.
Normal cells in culture exhibit limited division potential, which is used as a model for cellular aging. In contrast, tumor-derived, carcinogen- or virus-transformed cells are capable of dividing indefinitely (immortal). Fusion of normal with immortal human cells yielded hybrids having limited life span, indicating that cellular senescence is a dominant phenotype and that immortality is recessive. Fusions of various immortal human cell lines with each other led to the identification of four complementation groups for indefinite division. In order to identify the chromosomes and genes involved in growth regulation, that had been modified in immortal cells, we used the technique of microcell fusion to introduce either a normal human chromosome 11 or 4 into cell lines representative of the different complementation groups. Chromosome 11 had no effect on the in vitro life span of the different immortal human tumor lines. However, when a normal human chromosome 4 was introduced into cell lines assigned to complementation group B, the cells lost the immortal phenotype. No effect on the proliferation potential of cell lines representative of the other complementation groups was observed. These results suggest that a gene(s) on human chromosome 4 has been modified in immortal cell lines assigned to complementation group B, to allow escape from senescence. They also provide evidence for a genetic basis for cellular aging.  相似文献   

5.
6.
Studies on estrogen receptor (ER)-positive human breast cancer cell lines have shown that estrogen treatment positively modulates the expression of the genes encoding transforming growth factor-alpha (TGF alpha), 52-kDa cathepsin-D, and pS2. To determine whether these genes would be similarly regulated by estrogens in normal human mammary epithelial cells, we stably transfected immortal nontumorigenic human mammary epithelial cells with an ER-encoding expression vector. ER-negative tumor cells were also transfected for comparison. Levels of TGF alpha and 52-kDa cathepsin-D mRNA were enhanced by estrogen treatment of both ER-transfected immortal and tumorigenic cells, demonstrating that the ER by itself is sufficient to elicit estrogenic regulation of the expression of these genes. In contrast, expression of the pS2 gene was detected only in the ER-transfected tumor cells. The ER in both cell lines is capable of recognizing the pS2 promoter, however, since estrogen enhanced the activity of an introduced pS2-CAT reporter plasmid in transient expression analyses. These and other experiments with somatic cell hybrids between the immortal cells and ER+/pS2+ MCF-7 tumor cells, where pS2 gene expression is extinguished, support the conclusion that the immortal nontumorigenic cells encode gene products that block endogenous pS2 expression. These results also imply that such repressors are not active in the tumor cells.  相似文献   

7.
The reactive oxygen species are known as endogenous toxic oxidant damaging factors in a variety of cell types, and in response, the antioxidant genes have been implicated in cell proliferation, senescence, immortalization, and tumorigenesis. The expression of manganese superoxide dismutase mRNA was shown to increase in most of the immortal chicken embryo fibroblast (CEF) cells tested, while expression of catalase mRNA appeared to be dramatically decreased in all immortal CEF cells compared to their primary counterparts. The expression of copper-zinc superoxide dismutase mRNA was shown to increase slightly in some immortal CEF cells. The glutathione peroxidase expressed relatively similar levels in both primary and immortal CEF cells. As primary and immortal DF-1 CEF cells were treated with 10-100 microM of hydrogen peroxide (concentrations known to be sublethal in human diploid fibroblasts), immortal DF-1 CEF cells were shown to be more sensitive to hydrogen peroxide, and total cell numbers were dramatically reduced when compared with primary cell counterparts. This increased sensitivity to hydrogen peroxide in immortal DF-1 cells occurred without evident changes in either antioxidant gene expression, mitochondrial membrane potential, cell cycle distribution or chromatin condensation. However, the total number of dead cells without chromatin condensation was dramatically elevated in immortal DF-1 CEFs treated with hydrogen peroxide, indicating that the inhibition of immortal DF-1 cell growth by low concentrations of hydrogen peroxide is due to increased necrotic cell death, but not apoptosis. Taken together, our observation suggests that the balanced antioxidant function might be important for cell proliferation in response to toxic oxidative damage by hydrogen peroxide.  相似文献   

8.
9.
10.
11.
Applications of immortalized cells in basic and clinical neurology   总被引:1,自引:0,他引:1  
Immortalized cell lines can serve as model systems for studies of neuronal development and restoration of function in models of neurological disease. Cell lines which result from spontaneous or experimentally-induced tumors have been used for these purposes. More recently, the techniques of genetic engineering have resulted in the production of cell lines with specific desired characteristics. This has been accomplished by insertion of a desired gene into a pre-existing immortal cell or by immortalizing primary cells. The production of immortal cell lines using temperature-sensitive immortalizing genes offers an additional method of controlling gene expression, and thereby controlling cell proliferation and differentiation. In the nervous system, these techniques have produced immortal cell lines with neuronal and glial properties.  相似文献   

12.
Bacterial denitrification reverses nitrogen fixation in the global N-cycle by transforming nitrate or nitrite to dinitrogen. Both nitrite and nitric oxide (NO) are considered as the chemical species within the denitrification pathway, that precede nitrous oxide (N2O), the first recognized intermediate with N,N-bonds antecedent to N2. Molecular cloning of the structural genes for NO reductase from Pseudomonas stutzeri has allowed us to generate the first mutants defective in NO utilization (Nor- phenotype) by marker exchange of the norCB genes with a gene cassette for gentamicin resistance. Nitric oxide reductase was found to be an indispensable component for denitrification; its loss constituted a conditionally lethal mutation. NO as the sole product accumulated from nitrite by mutant cells induced for nitrite respiration (denitrification). The Nor- mutant lost the capability to reduce NO and did not grow anymore anaerobically on nitrate. A Nir-Nor- double mutation, that inactivated also the respiratory nitrite reductase cytochrome cd1 rendered the bacterium again viable under anaerobiosis. Our observations provide evidence for a denitrification pathway in vivo of NO2(-)----NO----N2O, and N,N-bond formation catalyzed by NO reductase and not by cytochrome cd1.  相似文献   

13.
Several recent experiments have shown that immortal neural and muscle cells retain the specific temporal and spatial properties of their precursor cells in the animal. In addition, the immortal cells retain the ability to differentiate in vitro and, after transplantation, in vivo. The results of these experiments suggest that the use of precursor cell lines may lead to powerful approaches for understanding the mechanisms that generate the ordered distribution of cell types in mammals.  相似文献   

14.
15.
陈琳  薛绪潮 《生物技术》2007,17(5):89-91
增殖型腺病毒能在肿瘤细胞中复制并裂解肿瘤细胞,释放出的子代病毒再感染邻近肿瘤细胞直至完全杀灭肿瘤,却不影响正常细胞的功能。同时,增殖型腺病毒还是一种有效的基因治疗载体,可通过病毒自身增殖提高目的基因的拷贝数,从而更高效率地表达外源性治疗基因,增强抗肿瘤效应。本文着重介绍增殖型腺病毒载体改良和应用的最新进展,并对其研究前景进行展望,以期对增殖型腺病毒的发展有所帮助。  相似文献   

16.
Two lines of immortal human fibroblasts were isolated following transfection of TIG-3 cells with plasmid DNA, pMT-1ODtsA, that contained SV40 early gene with a deletion in replication origin and ts mutation in coding sequence for T-antigen. These cells continued proliferation at 34 degrees C, over 565 population doubling level (PDL) which is far over the limited division potential of untransformed normal TIG-3 of 70-80 PDL. When the culture temperature was shifted to 40 degrees C after 70 PDL, they ceased proliferation immediately. One of these immortal clones, SVts8, lost its ts phenotype after retransformation with wtT-antigen gene. These results indicated that the function of intact T-antigen is required for maintenance of immortal proliferation, at least in one of the SV40 transformed immortal clones.  相似文献   

17.
Neural crest cells (NCCs) are a transient embryonic structure that gives rise to a variety of cells including peripheral nervous system, melanocytes, and Schwann cells. To understand the molecular mechanisms underlying NCC development, a gene manipulation of NCCs by in ovo electroporation technique is a powerful tool, particularly in chicken embryos, the model animal that has long been used for the NCC research. However, since expression of introduced genes by the conventional electroporation method is transient, the mechanisms of late development of NCCs remain unexplored. We here report novel methods by which late-developing NCCs are successfully manipulated with electroporated genes. Introduced genes can be stably and/or conditionally expressed in a NCC-specific manner by combining 4 different techniques: Tol2 transposon-mediated genomic integration (Sato et al., 2007), a NCC-specific enhancer of the Sox10 gene (identified in this study), Cre/loxP system, and tet-on inducible expression (Watanabe et al., 2007). This is the first demonstration that late-developing NCCs in chickens are gene-manipulated specifically and conditionally. These methods have further allowed us to obtain ex vivo live-images of individual Schwann cells that are associated in axon bundles in peripheral tissues. Cellular activity and morphology dynamically change as development proceeds. This study has opened a new way to understand at the molecular and cellular levels how late NCCs develop in association with other tissues during embryogenesis.  相似文献   

18.
Normal human diploid fibroblasts (HF) have a limited life span, undergo senescence, and rarely, if ever, spontaneously immortalize in culture. Introduction of the gene for T antigen encoded by the DNA virus SV40 extends the life span of HF and increases the frequency of immortalization; however, immortalization requires both T-dependent and T-independent functions. We previously generated independent SV40-transformed non-immortal (pre-immortal) HF cell lines from which we then obtained immortal sublines as part of a multifaceted approach to identify functions responsible for immortalization. In this study we undertook a search for cellular mRNAs which are differentially expressed upon immortalization. A λcDNA library was prepared from a pre-immortal SV40-transformed HF (HF-C). We screened the library with a subtracted probe enriched for sequences present in HF-C and reduced in immortal AR5 cells. A more limited screen was also employed for sequences overexpressed in AR5 using a different strategy. Alterations in the level of mRNAs in AR5 encoding functions relevant to signal transduction pathways were identified; however, most cDNAs encoded novel sequences. In an effort to clarify which of the altered mRNAs are most relevant to immortalization, we performed Northern analysis with RNA prepared from three paired sets of independent pre-immortal and immortal (4 cell lines) SV40-transformants using eight cloned cDNAs which show reduced expression in AR5. Three of these were reduced in additional immortal cell lines as well; one, J4-4 (unknown function) is reduced in all the immortal cell lines tested; a second, J4-3 (possible PP2C type phosphatase) is reduced in 2 of the 3 matched sets; and a third, J2-2 (unknown function) is redu ced in 2 unrelated immortal cell lines. Although the roles of these genes are as yet unclear, their further analysis should extend our understanding of the molecular bases for immortalization. In particular, the patterns of expression of J4-4 and J4-3 strongly suggest that they are involved in the process of immortalization and/or can serve as target genes for assessing regulators of gene expression in this process. J. Cell. Physiol. 171:325–335, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

19.
Abstract Two conditionally expressed lacZU131 gene fusions were constructed in vivo to the ompC gene which encodes a major outer membrane protein in Escherichia coli . The resulting hybrid molecules contained approximately 25% and 50% of the mature OmpC protein fused to the LacZ. Export analysis showed that under nonoverproducing conditions essentially all synthesized OmpC-LacZ hybrid protein was effectively processed in vivo unless the signal peptide cleavage was inhibited by ethanol addition. Also, the hybrid proteins were highly accessible to solid phase iodination of whole cells under conditions where cytoplasmic proteins remained unlabelled. Thus, hybrids containing large portions of the OmpC protein were clearly recognized by the cellular export machinery, and probably all synthesized hybrid protein was partially translocated through the cytoplasmic membrane.  相似文献   

20.
V Band  S Dalal  L Delmolino    E J Androphy 《The EMBO journal》1993,12(5):1847-1852
Normal mammary epithelial cells are efficiently immortalized by the E6 gene of human papillomavirus (HPV)-16, a virus commonly associated with cervical cancers. Surprisingly, introduction of the E6 gene from HPV-6, which is rarely found in cervical cancer, or bovine papillomavirus (BPV)-1, into normal mammary cells resulted in the generation of immortal cell lines. The establishment of HPV-6 and BPV-1 E6-immortalized cells was less efficient and required a longer period in comparison to HPV-16 E6. These HPV-6- and BPV-1 E6-immortalized cells demonstrated dramatically reduced levels of p53 protein by immunoprecipitation. While the half-life of p53 protein in normal mammary epithelial cells was approximately 3 h, it was reduced to approximately 15 min in all the E6-immortalized cells. These results demonstrate that the E6 genes of both high-risk and low-risk papilloma viruses immortalize human mammary epithelial cells and induce a marked degradation of p53 protein in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号