首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
谷氨酸脱氢酶 (GDH)是谷氨酸生物合成的关键酶 ,谷氨酸棒杆菌S91 1 4是目前我国味精工业应用最广泛的生产菌种 ,其谷氨酸脱氢酶的研究尚未见报道。分离纯化该菌中的谷氨酸脱氢酶 ,研究其辅酶组成 ,对揭示谷氨酸脱氢酶的分子结构和性质 ,提高谷氨酸产率很有必要。将培养至对数期中期的细胞离心收集并用含适量DTT、ED TA的Tris_HCl缓冲液 (pH 7 5 )洗涤 ,用Frenchpressurecellpress破碎 ,离心去除菌体碎片得无细胞抽提液。然后使用 KTA_10 0快速纯化系统经DEAE_纤维素柱、疏水柱 (HIC)、G_2 0 0凝胶过滤柱层析得到纯化大约 70倍的以NAD PH为辅酶的GDH和部分纯化的以NADH辅酶的GDH。这两个酶分别对NADPH、NADH高度专一 ,不能相互代替。经HPLC和SDS_PAGE测得前一种酶的分子量和亚基分子量分别为 188kD和 32kD ,表明该酶为具有相同亚基的六聚体。酶活性测定使用HITACHIU_30 0 0分光光度计利用NAD(P)H在 340nm氧化的初速度进行。蛋白质含量测定利用Bradford方法进行 ,并以牛血清白蛋白为标准蛋白。纯化结果表明S91 1 4中确实存在两种GDH ,其中以NADH为辅酶的GDH尚未见报道。和某些具有两种GDH的微生物一样 ,S91 1 4可能也是以NADPH为辅酶的GDH参与谷氨酸的合成代谢 ,以NADH为辅酶的GDH参与谷氨酸的分解代谢。  相似文献   

2.
黄国存  田波 《植物学报》2001,18(4):396-401
谷氨酸脱氢酶普遍存在于植物体内,它虽然不是植物吸收利用氮素的主要成员,但在植物氮代谢中起着重要作用。高等植物的谷氨酸脱氢酶主要存在于线粒体中,以烟酰胺腺嘌呤二核苷酸(NADH)为辅酶。该酶分子量为255-258kD,由六个亚基组成,亚基包括a和b两种类型,存在七种同工酶形式。又能氧化脱铵从而为三羧酸循环提供碳骨架。  相似文献   

3.
天津短杆菌T6-13谷氨酸脱氢酶的研究   总被引:1,自引:0,他引:1  
本文研究了天津短杆菌(Brevibacterium tianjinese)T6-13谷氨酸脱氢酶(GDH)[EC1.4.1.4]的纯化和性质。该酶以辅酶11(NADP)为其专一性辅酶,正、逆反应酶活力最适pH分别为7.5和8.9—9 9,对热较敏感。 该酶对还原型辅酶11(NADPH)、α-酮戊二酸(α-KG)、NH,、NADP和L-谷氨酸(GA)的Km值分别为0.076、3.23、4.0、0.02和120.48 mmol/L。该酶受反应产物的抑制,逆反应受NADPH、α-KG和NH+4的抑制,正反应受NADP和谷氨酸的抑制,但该酶所催化的逆反应既不受三羧酸循环代谢中间产物的抑制,也不受氨基酸的抑制和氨基酸的积累抑制。对发酵过程中谷氨酸脱氢酶活力变化的研究表明,前期酶活力逐渐上升,当发酵至16小时左右酶活力最高,其后酶活力逐渐下降;二级种子的酶活力与发酵过程中酶活力最高时相当。  相似文献   

4.
高等植物中的谷氨酸脱氢酶及其生理作用   总被引:7,自引:0,他引:7  
黄国存  田波 《植物学通报》2001,18(4):396-401
谷氨酸脱氢酶普遍存在于植物体内,它虽然不是植物吸收利用氮的主要成员,但在植物氮代谢中起着重要作用,高等植物的谷氨酶主要存在于线粒体中,以烟酰胺腺嘌呤二核苷酸(NADH)为辅酶,该酶分子量为255-258kD,由六个亚基组成,亚基包括α和β两种类型,存在七种同工酶形式,它在植物的衰老过程及逆境如高温和水份胁迫等状况下行使其铵同化功能,但在黑暗或碳胁迫条件下又能氧化脱铵从而为三羧酸循环提供骨架。  相似文献   

5.
林生山黧豆谷氨酸脱羧酶的分离纯化及部分性质的研究   总被引:1,自引:0,他引:1  
以林生山黧豆为材料,利用硫酸按分段盐析,丙酮沉淀,DEAE-SepharoseFF离子交换柱层析,SephacrylS300凝胶过滤柱层析及FPLC-MonoQ柱层析技术,以聚酰胺薄膜层析荧光定量法为酶活力检测手段,分离纯化了谷氨酸脱羧酶,达到电泳银染纯.纯化后的林生山黧豆谷氨酸脱羧酶活力达375.09U·mp-1,纯化倍数38.2倍,经SDS-PAGE测定,其亚基分子量为70kD,经梯度PAGE确定,天然分子量为140kD,表明该酶是由两个亚基组成的二聚体.酶学研究表明,纯化的林生山黧豆谷氨酸脱羧酶的最适pH值为5.4,对谷氨酸的Km值为1.62×10-3mol·L-1,酶的最适温度为40℃,酶特异性地使谷氨酸脱羧,不能使天门冬氨酸等其它氨基酸脱羧.  相似文献   

6.
采用硫酸铵分级沉淀、离子交换层析、凝胶过滤和吸附层析等方法 ,分离纯化了林肯链霉菌谷氨酸合酶 ,电泳鉴定为单一组分 .这是链霉菌中的第 1例 .谷氨酸合酶很不稳定 ,向酶缓冲液中加入α -KG ,PMSF ,EDTA ,β 巯基乙醇和甘油可以大大提高其稳定性 .测得全酶分子量为 1 38ku ,亚基分子量为 81和 5 7ku ,表明该酶由2个不相同的亚基构成 .吸收光谱在 380和 440nm附近没有吸收峰 ,表明该酶是不含铁的非黄素蛋白质 .该酶反应的最适 pH为 7 .2 ,最适温度为 30℃ .该酶对NADH ,α KG和L -Gln的表观Km 值分别为 5. 2 1× 1 0 -5 ,4. 1 7× 1 0 -4 和 4. 35× 1 0 -4 mol/L .以NADPH代替NADH作电子供体 ,该酶仍表现出部分活力 .反应产物Glu和NAD+,部分金属离子、氨基酸及三羧酸循环中间物对该酶活力有不同程度的抑制作用 .  相似文献   

7.
采用基因组改组的方法选育获得的一株耐温谷氨酸棒杆菌F343,并比较了F343与其出发菌株S9114在39℃发酵谷氨酸时的发酵特性和代谢流量。结果表明:耐温菌F343的比生长速率、比谷氨酸积累速率可维持在较高的水平;通过发酵中后期代谢流量分析发现耐温菌F343在磷酸烯醇式丙酮酸(PEP)节点处,磷酸烯醇式丙酮酸羧化酶(PEPc)催化的CO_2回补支路反应代谢流增加;α-酮戊二酸(KG)节点处,谷氨酸氢酶(GDH)催化的产生谷氨酸的支路代谢通量增加。此外,高温发酵谷氨酸时,耐温菌F343高温发酵谷氨酸过程产生的乳酸等副产物较出发菌株S9114少。通过改善种子质量,F343在高温发酵30 h产酸达到10.1%,较出发菌株提高67%。  相似文献   

8.
利用PCR技术从黄色短杆菌GDK-9的基因组DNA中扩增出谷氨酸脱氢酶基因(gdh)片段(EC.1.4.1.4), 连到pUCm-T载体上测序。核酸序列分析结果表明, 该片段全长1927 bp, 包含一个ORF, 推测此ORF区编码一条448个氨基酸的多肽, 分子量约为48 kD。与已报道的gdh序列相似性为99.55%, 其中1190位碱基(C→A)突变导致了编码氨基酸的变化(Thr→Asn), 其它的碱基变化不影响编码的氨基酸。将gdh基因克隆入穿梭质粒pXMJ19中, 并转化E. coli XL-Blue和Brevibacterium flavum GDK-9, 经IPTG诱导后, SDS-PAGE电泳结果显示, 在预计位置出现明显的诱导蛋白条带, 分子量约为48.7 kD。谷氨酸发酵实验表明, 尽管谷氨酸脱氢酶GDH能明显提高胞内的谷氨酸含量, 但其不影响谷氨酸的分泌。  相似文献   

9.
【背景】醇脱氢酶AdhS能催化不对称还原反应制备(R)-2-氯-1-苯乙醇,但由于自身再生辅酶NADH的能力不足,需要辅酶再生酶协助其再生NADH。谷氨酸脱氢酶能以谷氨酸为底物,再生辅酶NAD(P)H,具有辅酶再生酶的潜力。【目的】克隆表达谷氨酸脱氢酶基因gdhA,构建谷氨酸脱氢酶GdhA与醇脱氢酶AdhS的大肠杆菌共表达体系,提高AdhS制备(R)-2-氯-1-苯乙醇的转化效率。【方法】从枯草芽孢杆菌(Bacillus subtilis) 168中克隆基因gdhA,并在大肠杆菌(Escherichia coli) BL21(DE3)中表达,分析辅酶再生活力;再与醇脱氢酶AdhS共表达,优化表达条件;分析不同辅酶再生方案对制备(R)-2-氯-1-苯乙醇的转化效率的影响。【结果】谷氨酸脱氢酶GdhA再生NADH的比活力为694 U/g。经GdhA与AdhS的共表达及表达条件优化后,制备(R)-2-氯-1-苯乙醇的转化效率达465 U/L。经比较,GdhA协助再生辅酶NADH,可使AdhS制备(R)-2-氯-1-苯乙醇的转化效率提高到约3倍。【结论】谷氨酸脱氢酶GdhA为NADH高效再生酶,与醇脱氢酶AdhS共表达可显著提高AdhS制备(R)-2-氯-1-苯乙醇的转化效率。  相似文献   

10.
浑球红假单胞菌菌株601经超声击碎,粗提液通过Triton处理,硫酸铵沉淀,DE—52和DEAE—sephadex A—50柱层析及 Seqhadex G—200凝胶过滤等步骤,将谷氨酸合酶(GOGAT)分离纯化,在聚丙烯酰胺凝胶电泳上呈现一条带。GOGAT表观分子量约为138 kD。该酶最大光吸收在278,375,450 nm和475 nm处,表明GOGAT可能是一种黄素蛋白。纯化的GOGAT对其底物 Gln,α—酮戊二酸和NADPH的表观K_m值分别为830,150和6μmol/L。反应产物Gln和NADP,几种氨基酸对GOGAT活力有不同程度的抑制作用,Gln类似物DON对GOGAT活力有强烈的抑制作用。  相似文献   

11.
L-谷氨酸脱羧酶是γ-氨基丁酸合成的关键限速酶,广泛的存在于脊椎动物神经细胞以及β-胰腺细胞,是胰岛素依赖型糖尿病(IDDM)病人以及僵硬综合症(SMS)病人血清的关键抗原。运用sephamryl S-200以及DEAEsepharose可以从猪脑中分离纯化出谷氨酸脱羧酶。纯化的GAD在变性条件下电泳,经考马斯亮蓝R250染色以及Western-Blot鉴定主要有两条带,分子量分别为67kD和44kD。根据L-谷氨酸脱羧酶能够分解谷氨酸产生γ-氨基丁酸和CO2的特性,通过测定产物γ-氨基丁酸推断酶活。以上实验结果表明从猪脑中分离纯化到的是具有生物学活性以及免疫原性的谷氨酸脱羧酶,可进一步改良为IDDM检测试剂盒,用于IDDM的预防和预测。  相似文献   

12.
目的:建立谷氨酸依赖型氨基转移酶-谷氨酸脱氢酶偶联反应的96孔板高通量筛选方法,并用于大肠杆菌氨基转移酶Wec E突变库的筛选。方法:通过优化偶联指示酶-谷氨酸脱氢酶、信号分子NADH浓度及双酶偶联反应时间,建立了光学法测定氨基转移酶活性的氨基转移酶-谷氨酸脱氢酶偶联反应方法;通过定点饱和突变技术构建了大肠杆菌氨基转移酶WecE的突变库;采用96孔板高通量初筛、摇瓶复筛获得了高活性的转氨酶突变体,并对纯化的突变体进行催化活力分析。结果:建立了谷氨酸依赖型氨基转移酶目标反应与0.5 U/ml L-谷氨酸脱氢酶和0.4 mmol/L NADH信号指示反应相偶联的筛选方法;构建了氨基转移酶WecE Tyr 321饱和突变库,通过96孔板高通量筛选,获得了催化活性比野生型提高3.4倍的突变体Y321F。结论:所建立高通量筛选方法背景干扰小,准确性高,为谷氨酸依赖型氨基转移酶分子进化提供了可行性方案。  相似文献   

13.
本文报道了用海藻酸钙凝胶包埋法制备固定化谷氨酸捧杆菌T6—13原生质体及其用于生产谷氨酸脱氢酶(GDH,E.C.1.4.1.4)的研究。在一定条件下游离细胞和固定化细胞胞内可积累谷氨酸脱氢酶,但并不分泌到胞外。对数生长前期的细胞经蛋清溶菌酶处理14h后分离得到原生质体,游离原生质体和固定化原生质体可产胞外GDH。用3%海藻酸钙凝胶包埋10%的原生质体制备的固定化原生质体具有较高的产酶性,分批培养72h后发酵液中GDH活力可达到1.64×10-2u/ml,为游离细胞胞内产酶的205%。固定化原生质体可用溶菌酶处理固定化细胞而制得,与直接固定化原生质体制备的固定化原生质体具有同样的产酶能力,且制备方便。固定化原生质体可重复使用6批次(约18天),且具有良好的贮藏稳定性。  相似文献   

14.
在硝态氮存在或缺乏的条件下,测定了黄瓜(Cucumis sativus L.)种子萌发和子叶发育过程中子叶可溶性蛋白质含量以及谷氨酰胺合成酶(GS)和谷氨酸脱氢酶(NAD(H)-GDH)活性的变化。在子叶发育初期,无论外源氮存在与否,每对子叶可溶性蛋白质含量和GS、NADH—GDH、NAD^ -GDH活性随发育上升。在外源氮存在下,第4d后,可溶性蛋白质含量虽有所下降,但基本保持恒定;第6d后,GS和NADH—GDH活性逐渐降低,NAD^ -GDH却相反增高。但在无外源氮条件下,于第4d后,可溶性蛋白质水平以及GS、NADH—GDH和NAD^ -GDH活性都逐渐降低。在子叶发育的整个过程中,外源氮对GS和NAD^ -GDH活性有促进作用,尤其是在子叶发育的后期对NAD^ -GDH活性的促进更为明显。  相似文献   

15.
大多数生物体中都含有谷氨酸脱氢酶(Glutamate dehydrogenase, GDH)(E.C. 1.4.1.2–1.4.1.4)。在真核生物中,该酶主要存在于线粒体中,并在氮和碳的代谢以及信号通路中起着至关重要的作用。研究发现谷氨酸脱氢酶与肿瘤发生及发展有一定的关系,对于肿瘤研究具有一定意义,但是关于其与人类肿瘤的关系方面的综述很少见。文中对谷氨酸脱氢酶与乳腺癌、胶质瘤、结直肠癌以及卵巢癌等的关系进行了归纳和总结,希望可以为相关研究提供帮助。  相似文献   

16.
低等生物谷氨酸脱氢酶基因用于作物遗传改良的研究进展   总被引:1,自引:0,他引:1  
谷氨酸脱氢酶(glutamate dehydrogenase,GDH)是生物体中普遍存在的氮代谢相关酶.高等植物GDH因对NH4+的亲和力较低而在氨同化过程中仅起辅助作用,但在碳氮代谢、光呼吸和逆境响应中起着重要作用.低等生物GDH对NH4+的亲和力高,氨同化能力强,可异源表达于作物中以提高其氮素利用效率.本文对低等生...  相似文献   

17.
从类产碱假单胞菌纯化出电泳纯的谷氨酸脱氢酶,用聚丙烯酰胺梯度凝胶电泳和SDS-聚丙烯酰胺凝胶电泳测得分子量为290 kD,亚基分子量为47 kD,提示该酶为六聚体.该酶对NADP(H)和底物均具有高度专一性,对谷氨酸、α-酮戊二酸及NADP+ 的Km 值分别为:28 m m ol/L、1.2m m ol/L及0.063 m m ol/L.用Hill作图法求得酶对NH+4 和NADPH 的[S]0.5分别为24 m m ol/L和0.037 m m ol/L.最适反应温度为50℃,催化氨化反应和脱氨反应的最适pH 分别为8.0和8.8,在热稳定性方面不及嗜热细菌的谷氨酸脱氢酶稳定.提纯的谷氨酸脱氢酶在低温(4℃)条件下,可在Tris-HCl缓冲液中贮存半年以上,活力无明显下降,冷冻则可导致纯酶液迅速失活.氮源对菌体谷氨酸脱氢酶水平有显著影响.  相似文献   

18.
克隆了地衣芽孢杆菌(Bacillus licheniformis)谷氨酸脱氢酶基因(gdhA), 并研究其表达和功能. 发现野生型IRC-3 GDH-菌株和突变型IRC-8 GDH+菌株的gdhA基因都能互补大肠杆菌谷氨酸缺陷型菌Q100 GDH-的缺陷性状, 但突变型IRC-8 GDH+菌株的gdhA基因不能互补野生型IRC-3 GDH-菌株的谷氨酸缺陷性状. 经测序发现两者的核苷酸序列完全一致. gdhA基因在野生型IRC-3和突变型IRC-8中都能正常表达, 在野生型IRC-3细胞中未发现有抑制GDH活性的物质存在. 推测由于GDH翻译后调节的差异导致GDH表型的不同. 根据序列分析, 地衣芽孢杆菌GDH属于六聚体GDH中的家族Ⅰ, 而枯草芽孢杆菌GDH则属于家族Ⅱ, 两者间亲缘关系相距甚远.  相似文献   

19.
目的:在大肠杆菌宿主中过量表达丁二酮还原酶(DAR),同时构建辅酶NADH原位再生系统,利用全细胞高效催化丁二酮不对称还原合成(S)-乙偶姻。方法:PCR克隆多黏芽孢杆菌(Paenibacillus polymyxa) dar基因连到质粒pETDuet-1,转化至大肠杆菌(Escherichia coli) BL21(DE3),构建重组菌E. coli BL21(DE3)-DAR;通过Hi Trap TALON柱亲和层析纯化表达产物DAR酶蛋白,测定DAR的比酶活和分子动力学参数。在重组菌E. coli BL21(DE3)-DAR中构建辅酶NADH原位再生系统,协同表达枯草芽孢杆菌(Bacillus subtilis)的葡萄糖脱氢酶(GDH),构建重组菌E. coli BL21(DE3)-DAR/GDH,并以此重组菌为全细胞生物催化剂,优化催化条件,提高(S)-乙偶姻的产量和产率。结果:获得重组工程菌E. coli BL21(DE3)-DAR和E. coli BL21(DE3)-DAR/GDH。DAR以NADH为辅酶还原丁二酮的米氏常数Km、最大催化速率Vmax、催化常数Kcat分别为2. 59mmol/L、1. 64μmol/(L·min·mg)、12. 3/s,还原丁二酮生成(S)-乙偶姻光学的纯度为95. 86%,具有较好的催化效率和立体异构体选择性。构建辅酶NADH原位再生系统后,重组菌E. coli BL21(DE3)-DAR/GDH可高效催化丁二酮合成乙偶姻。在最优催化条件下分批补料,乙偶姻产量达51. 26g/L,转化率为81. 37%,生产速率为5. 13g/(L·h)。结论:使用非手性化合物原料丁二酮生产高附加值的手性化合物(S)-乙偶姻,以重组菌为全细胞生物催化剂合成(S)-乙偶姻,不需额外添加昂贵的辅酶,具有较高的生产应用价值。  相似文献   

20.
酵母3-脱氧葡糖醛酮代谢酶的分离纯化及部分性质   总被引:1,自引:0,他引:1  
3-脱氧葡糖醛酮 ( 3- deoxyglucosone)是美拉德反应的主要中间产物 ,对生物体具有毒性作用 .用硫酸铵分部沉淀、DEAE- cellulose52、Hydroxyapatite、DEAE- Sepharose CL- 6B柱层析从酿酒酵母 YBr-M( S.cerevisiae YBr-M)抽提液中分离纯化了 3-脱氧葡糖醛酮代谢酶 (以 NADPH为辅酶 ) .该酶是单一的分子 ,分子量为 44k D,反应最适 p H为 7.0 ,p H6.0~ 8.0之间酶活性相对稳定 ,以 3-脱氧葡糖醛酮为底物的米氏常数 Km 为 2 .2 5mmol/ L.在 35℃以下保温 30 min酶活不变 ,50℃保温 30 min后酶活损失 50 % .该酶对二羰基化合物的活性较高 ,对单羰基化合物则较低 ,其催化作用受碘乙酸、N-乙基顺丁烯二酰亚胺的抑制 ,而被β-巯基乙醇、二硫苏糖醇激活 ,催化作用必须以 NADPH为专一辅酶 ,当用 NADH代替 NADPH时 ,活力只有 5.3% .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号