首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
知母雌雄配子体发生及胼胝质动态的研究   总被引:5,自引:0,他引:5  
知母(Anemarrhena asphodeloides)小孢子母细胞在减数分裂早期前期开始合成胼胝质,其在母细胞壁上的沉积无方向性且不均匀。小孢子四分体时胼胝质壁达最厚,小孢子四分体晚期衰减,单核小孢子在四分体时期即开始合成胼胝质壁,至收缩期胼胝质衰减,小孢子核有丝分裂前消失,生殖细胞具有胼胝质性质的细胞壁。大孢了母细胞在减数分裂早期前期开始合成胼胝质壁,其在母细胞壁上的沉积上有较明显的方向性,  相似文献   

2.
刺五加大、小孢子发生和雌、雄配子体发育的观察   总被引:11,自引:0,他引:11  
刺五加Eleutherococcus senticosus(Rupr.et Maxim.)Maxim.雄株的小孢子发生和雄配子体发育过 程正常,大孢子发生和雌配子体发育过程多不正常。雄花具5个花药,花药4室,药壁发育属双子叶型, 腺质绒毡层,绒毡层细胞多具2核。小孢子母细胞经减数分裂形成四面体形四分体,其胞质分裂为同时 型。成熟花粉为3细胞型。子房下位,5室;每室有上胚珠和下胚珠,上胚珠退化,下胚珠倒生、具单珠 被、厚珠心;大孢子母细胞经减数分裂形成线形或“T”形四分体,偶尔有2个并列或串联的四分体或在 四分体之上又出现孢原细胞。其功能大孢子位置不确定。雌配子体发育中异常现象较多。开花时,雌 配子体主要为反足细胞退化后的四细胞胚囊。刺五加雌株的小孢子母细胞不能进行减数分裂或减数分 裂不正常,不能形成四分体。开花时,药室空瘪,无花粉形成。其大孢子发生和雌配子体发育过程正常, 大孢子母细胞减数分裂形成线形或“T”形四分体,合点端大孢子为功能大孢子,胚囊发育属蓼型。开花 时,雌配子体主要为七细胞八核或七细胞七核胚囊,其卵器尚未发育成熟。刺五加两性株的小孢子发生 过程无异常,但雄配子体发育过程有部分异常;开花时,药室内有或多或少的空花粉,且花粉粒大小悬 殊,大的直径达35μm,小的仅15~18 μm。两性株的雌蕊发育大部分正常,也有一些异常胚囊形成。开 花时,雌配子体主要是七细胞八核胚囊、七细胞七核胚囊和反足细胞退化后的四细胞胚囊,其卵器也未发育成熟。  相似文献   

3.
观察了掌叶大黄花药的发育过程及异常现象,主要结果为:花药四室,药壁发育属单子叶型,腺质绒毡层。小抱子母细胞的减数分裂为同时型,四分体为正四面体型。从小孢子母细胞减数分裂开始到四分体时期,规律性沉积胼胝质。成熟花粉为三细胞。减数分裂过程中还见到单个或多数染色体游散于赤道板外,落后染色体、染色体桥和微核等异常,平均变异率6.29%。  相似文献   

4.
利用常规石蜡切片和超薄切片技术研究蓝猪耳(Torenia fournien)小孢子发生和雄配子体发育过程.蓝猪耳雄蕊4枚,花药具4个花粉囊.小孢子母细胞经减数分裂成四分体,其排列方式为四面体形或左右对称形.成熟花粉属2细胞型,具3个萌发孔.花药壁发育为双子叶型,腺质绒毡层.小孢子母细胞在四分体时期频繁出现细胞质降解的异常现象,其它发育阶段均正常;小孢子母细胞不正常的减数分裂可能导致花粉败育,这可能是蓝猪耳结实率低的原因之一.  相似文献   

5.
运用压片-透明法对短葶飞蓬(Erigeron breviscapus)小孢子母细胞减数分裂、雄配子体的发育过程进行了观察,并探讨了它们与花部形态特征的关系。结果表明,短葶飞蓬小孢子母细胞减数分裂的胞质分裂为同时型,四分体主要为四面体型,成熟花粉为3-细胞型;花序和花蕾形态变化与减数分裂、雄配子体的发育时期具有一定相关性,其中花蕾的长度可有效确定该花蕾中减数分裂与雄配子体发育时期。  相似文献   

6.
运用压片-透明法对短葶飞蓬(Erigeron breviscapus)小孢子母细胞减数分裂、雄配子体的发育过程进行了观察,并探讨了它们与花部形态特征的关系。结果表明,短葶飞蓬小孢子母细胞减数分裂的胞质分裂为同时型,四分体主要为四面体型,成熟花粉为3-细胞型;花序和花蕾形态变化与减数分裂、雄配子体的发育时期具有一定相关性,其中花蕾的长度可有效确定该花蕾中减数分裂与雄配子体发育时期。  相似文献   

7.
百合花粉母细胞减数分裂异常现象观测分析   总被引:3,自引:0,他引:3  
张彩霞  明军  刘春  李博生 《生物学通报》2010,45(5):45-47,F0002
对“Siberia”百合小孢子母细胞减数分裂异常进行了系统的细胞学观察,发现“Siberia”百合小孢母细胞减数分裂中存在不等二价体、倒位环、染色体桥、滞后染色体、微核、不均等分离、染色体显著减少的核、游离核、异常四分体、无核花粉等异常现象。研究表明:“Siberia”百合长期进行无性繁殖引起染色体结构变异,导致减数分裂异常,小孢子母细胞减数分裂异常是导致花粉败育的主要原因。  相似文献   

8.
用光镜和电镜观察羽叶薰衣草(Lavandula pinnata L.)雄性不育小孢子发育过程的细胞形态学特征.结果表明:羽叶薰衣草花药4枚,每枚花药通常具4个小孢子囊.花药壁发育为双子叶型,从外向内分为表皮、药室内壁、中层和绒毡层4层细胞.减数分裂形成的四分体为四面体及十字交叉型.小孢子的发育过程可分为造孢细胞期、减数分裂时期、小孢子发育早期、小孢子发育晚期.未观察到二胞花粉期和成熟花粉期.羽叶薰衣草花粉败育主要发生在单核花粉时期,细胞内物质解体并逐渐消失变成空壳花粉或花粉皱缩变形成为各种畸形的败育花粉.在此之前小孢子的发育正常.羽叶薰衣草小孢子不育机制体现在绒毡层过早解体、四分体时期以后各细胞中线粒体结构不正常、胼胝质壁与小孢子母细胞脱离、花药壁细胞中淀粉出现时间异常等. 壁发育为双子叶型,从外向内分为表皮、药室内壁、中层和绒毡层4层细胞.减数分裂形成的四分体为四面体及十字交叉型.小孢子的发育过程可分为造孢细胞期、减数分裂时期、小孢子发育早期、小孢子发育晚期.未观察到二胞花粉期和成熟花粉期.羽叶薰衣草花粉败育主要发生在单核花粉时期,细胞内物质解体并逐渐消失变成空壳花粉或花粉皱缩变形成为各种畸形的败育花粉.在此 前小孢子的发育正常.羽叶薰衣草小孢子不育机制体现在绒毡层过早解体、四分体时期以后各细胞中线粒体结构不正常、胼胝质壁与小孢子母细胞脱离、花药壁细胞中淀粉出现时间异常等. 壁发育为双子叶型,从外向内分为表皮、药室内壁、中层和绒毡层4层细胞.减数分裂形成的四分体为四  相似文献   

9.
枣属植物经过染色体鉴定的5个种,未发现奇数倍性;中国枣为二倍体,未见自然多倍体类型。1978年通过胚乳培养,已首次诱导出三倍体植株。1983年三倍体始花结果,其细胞学特点如下: 1.胚乳二倍体胚乳二倍体的染色体数2n=24。小孢子母细胞减数分裂染色体行为正常。前期Ⅰ和中期Ⅰ,形成12个二阶体。减数分裂结束,形成正常的四分体,小孢子大小整齐。花粉粒属于正常的三孔沟型。2.胚乳三倍体胚乳三倍体的染色体数2n=36。小孢子母细胞较二倍体大。减数分裂染色体行为不正常。前期Ⅰ和中期Ⅰ有数目不等的单价体、二价体和多价体,染色体群数变动于14—20之间。后期Ⅰ、Ⅱ染色体分离不规则,数目不均衡,有落后染色体,多极分裂,并带有微核。减数分裂结束时,部分小孢子母细胞形成一分体、二分体、不等四分体、五分体和六分体等,小孢子大小不一致。正常花粉比二倍体大,有三孔沟和四孔沟两种类型,还有部分小花粉粒和败育花粉。  相似文献   

10.
利用压片法及石蜡切片法观察冬季低温下香石竹小孢子发育过程,以明确低温导致香石竹小孢子败育的因素,为杂交育种奠定基础。结果表明:(1)冬季低温下香石竹只有部分小孢子发育正常,经过小孢子母细胞、减数分裂和四分体等时期,最后发育成花粉。(2)石蜡切片法观察到冬季低温下香石竹1.5~1.6cm长花蕾中有61%的花粉母细胞发生败育,1.7~1.8cm长花蕾中有71%的花粉母细胞发生败育。(3)部分已经进入四分体时期的小孢子胼胝质未能及时溶解,妨碍了小孢子释放而导致败育。研究认为,花粉母细胞和四分体的发育异常是冬季低温下香石竹小孢子败育的主要原因。  相似文献   

11.
生殖细胞的发生、增殖和分化是生命科学领域研究的重要课题之一. 生殖是所有动物赖以生存的基础,精子发生是完成繁殖所必须经历的过程,其最终目的是源源不断地产生单倍体精子.精子发生过程本身是一个复杂特殊的细胞增殖与分化过程,其中减数分裂是精子发生最重要的步骤,但关于减数分裂如何精确起始的分子机制仍知之甚少.已有报道发现,维甲酸(RA)调控Stra8可能是哺乳动物减数分裂起始的机制之一,Nanos2、Boule对RA-Stra8通路具有重要的调控作用. 本文对哺乳动物精子发生中减数分裂起始的相关研究进展进行综述.  相似文献   

12.
Karyotypes and meiosis patterns in three obligatory thelytokous Psocoptera species have been studied for the first time. Females of Aaroniella badonneli (Danks) display 9 chiasmatic bivalents in oocyte metaphase I (2n = 18), hence meiosis is of the automictic type. Females of Ectopsocus meridionalis Ribaga and Valenzuela sp. display 3n = 27, and 27 univalent chromosomes are present in oocyte metaphase I. Thus, meiosis in these species is of the apomictic type.  相似文献   

13.
萍乡显性核不育水稻花粉败育的细胞形态学观察   总被引:11,自引:1,他引:11  
利用光学显微镜技术对萍乡显性不育水稻(PXDGMSR)可育株和不育株花粉形成及发育过程,药壁组织的基本结构及其发育进行了研究,导致其不育株花粉败育的主要原因有:(1)绒毡层细胞解体延迟;(2)花粉母细胞减数分裂方式为“连续型”,但分裂期细胞液泡化严重,染色体粘连,纺缍体形成不规则,核中出现囊泡化现象,(3)花粉母细胞减数分裂方式为“同时型”,母细胞形成多核现象。  相似文献   

14.
Bogdanov IuF 《Genetika》2003,39(4):453-473
Meiosis arose in the evolution of primitive unicellular organisms as a part of sexual process. One type of meiosis, the so-called classical type, predominates in all kingdoms of eukaryotes. Meiosis is controlled by hundreds of genes, both shared with mitosis and specifically meiotic ones. In a wide range of taxa, which in some cases include kingdoms, meiotic genes and features obey Vavilov's law of homologous variation series. Synaptonemal complexes (SCs) temporarily binding homologous chromosomes at prophase I, ensure precise and equal crossing over and interference. SC proteins have 60-80% homology within the class of mammals but differ from the corresponding proteins in fungi and plants. Thus, nonhomologous SC proteins perform similar functions in different taxa. Some recombination enzymes in fungi and insects have common epitopes. The molecular mechanism of recombination is inherited by eukaryotes from prokaryotes and operates in special compartments: SC recombination nodules. Chiasmata, i.e., physical crossovers of nonsister chromatids, are preserved in bivalents until metaphase I due to local cohesion of sister chromatids in the remaining SC fragments. Owing to chiasmata, homologous chromosomes participate in meiosis I in pairs rather than individually, which, along with unipolarity of kinetochores (only in meiosis 1), ensures segregation of homologous chromosomes. The appearance of SC and chiasmata played a key role in the evolution of unicellular organisms since it promoted the development of a progressive type of meiosis. Some lower eukaryotes retain primitive meiosis types. These primitive modes of meiosis also occur in the sex of some insects that is heterozygous for sex chromosomes. I suggest an explanation for these cases. Mutations at meiotic genes impair meiosis; however, due to the preservation of archaic meiotic genes in the genotype, bypass metabolic pathways arise, which provide partial rescue of the traits damaged by mutations. Individual blocks of genetic program of meiotic regulation have probably evolved independently.  相似文献   

15.
Variation and Evolution of Meiosis   总被引:1,自引:0,他引:1  
Meiosis arose in the evolution of primitive unicellular organisms as a part of sexual process. One type of meiosis, the so-called classical type, predominates in all kingdoms of eukaryotes. Meiosis is controlled by hundreds of genes, both shared with mitosis and specifically meiotic ones. In a wide range of taxa, which in some cases include kingdoms, meiotic genes and features obey Vavilov's law of homologous variation series. Synaptonemal complexes (SCs) temporarily binding homologous chromosomes at prophase I, ensure precise and equal crossing over and interference. SC proteins have 60–80% homology within the class of mammals but differ from the corresponding proteins in fungi and insects. Thus, nonhomologous SC proteins perform similar functions in different taxa. Some recombination enzymes in fungi and plants have common epitopes. The molecular mechanism of recombination is inherited by eukaryotes from prokaryotes and operates in special compartments: SC recombination nodules. Chiasmata, i.e., physical crossovers of nonsister chromatids, are preserved in bivalents until metaphase I due to local cohesion of sister chromatids in the remaining SC fragments. Owing to chiasmata, homologous chromosomes participate in meiosis I in pairs rather than individually, which, along with unipolarity of kinetochores (only in meiosis 1), ensures segregation of homologous chromosomes. The appearance of SC and chiasmata played a key role in the evolution of unicellular organisms since it promoted the development of a progressive type of meiosis. Some lower eukaryotes retain primitive meiosis types. These primitive modes of meiosis also occur in the sex of some insects that is heterozygous for sex chromosomes. I suggest an explanation for these cases. Mutations at meiotic genes impair meiosis; however, due to the preservation of archaic meiotic genes in the genotype, bypass metabolic pathways arise, which provide partial rescue of the traits damaged by mutations. Individual blocks of genetic program of meiotic regulation have probably evolved independently.  相似文献   

16.
The karyotype of the Ararat cochineal has been studied. The cochineal chromosomes are holokinetic, i.e. they have a diffuse centromeric activity; however, in some of them constrictions are detected. The constrictions are seen only in early stages of spiralization and are not detected in late metaphase. Sex determination in the cochineal takes place according to formula XX-X0. The female have two sex chromosomes being the longest pair in the set. The males are heterogametic having the X0-constitution. The meiosis is of a chiasmatic type. In the diakinesis bivalents are detected in the form of crosses or rings. Of different types of meiosis, the coccids possess a so called the Puto type, which s, according to preliminary evidences, very similar to the cochineal meiosis.  相似文献   

17.
栽培甜菜大孢子发生的超微结构   总被引:2,自引:0,他引:2  
栽培甜菜(Beta vulgaris)的大孢子发生为蓼型。减数分裂时,大孢子母细胞核中出现核液泡,形成联会复合体,细胞壁上有胼胝质加厚,并存在细胞质改组现象。大孢子母细胞减数第1次分裂形成二分体,2个细胞均被较厚的胼胝质壁包裹。合点端的二分体细胞中细胞器丰富,线粒体和质体的形态正常,表明完成了再分化。在大多数情况下,珠孔端的二分体细胞在减数第2次分裂前(或分裂的过程中)退化,合点端的细胞分裂产生大小不等的2个细胞,形成三分体。三分体合点端的大孢子体积较大,发育成单倍体的功能大孢子。  相似文献   

18.
栽培甜菜大孢子发生的超微结构   总被引:1,自引:0,他引:1  
栽培甜菜(Beta vulgaris)的大孢子发生为蓼型。减数分裂时, 大孢子母细胞核中出现核液泡, 形成联会复合体, 细胞壁上有胼胝质加厚, 并存在细胞质改组现象。大孢子母细胞减数第1次分裂形成二分体, 2个细胞均被较厚的胼胝质壁包裹。合点端的二分体细胞中细胞器丰富, 线粒体和质体的形态正常, 表明完成了再分化。在大多数情况下, 珠孔端的二分体细胞在减数第2次分裂前(或分裂的过程中)退化, 合点端的细胞分裂产生大小不等的2个细胞, 形成三分体。三分体合点端的大孢子体积较大, 发育成单倍体的功能大孢子。  相似文献   

19.
Induction of meiosis in Rana pipiens oocytes in vitro was studied using intracellular electrophysiological recordings and a morphological count of nuclear dissolution. In type III (i.e., defolliculated theca-free, with follicle cells) and type IV (i.e., denuded lacking follicle cells) Rana oocytes (Schuetz and Lessman, '82), Na+-insulin evoked nuclear or germinal vesicle dissolution (GVD), apparent reinitiation of meiosis, and marked reductions in cellular membrane potential and membrane current. Electrophysiological indications of the reinitiation of oocyte meiosis were most strongly apparent in the marked reduction (ca.98%) of membrane current. The overall GVD activity of insulin was reduced but not totally absent in type IV oocytes compared to type III cells that received similar hormone treatment, confirming previously published findings that the follicle wall enhances insulin-induced GVD. Results confirm insulin GVD activity in this system and demonstrate that insulin-induced reinitiation of meiosis is associated with changes in membrane-associated parameters that are indistinguishable from those induced by progesterone. These results raise interesting questions concerning the cellular mechanism by which two chemically dissimilar hormones (i.e., steroid vs. protein) have similar or even identical effects on a cell such as the oocyte. The findings presented are consistent with the concept that more than one hormone may be involved in meiotic maturation of the oocyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号