首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The purpose of this study was to evaluate photobleaching of the genetically encoded photosensitizer KillerRed in tumor spheroids upon pulsed and continuous wave (CW) laser irradiation and to analyze the mechanisms of cancer cell death after the treatment. We observed the light‐dose dependent mechanism of KillerRed photobleaching over a wide range of fluence rates. Loss of fluorescence was limited to 80% at light doses of 150 J/cm2 and more. Based on the bleaching curves, six PDT regimes were applied for irradiation using CW and pulsed regimes at a power density of 160 mW/cm2 and light doses of 140 J/cm2, 170 J/cm2 and 200 J/cm2. Irradiation of KillerRed‐expressing spheroids in the pulsed mode (pulse duration 15 ns, pulse repetition rate 10 Hz) induced predominantly apoptotic cell death, while in the case of CW mode the cancer cells underwent necrosis. In general, these results improve our understanding of photobleaching mechanisms in GFP‐like proteins and show the importance of appropriate selection of treatment mode for PDT with KillerRed.

Representative fluorescence image of two KillerRed‐expressing spheroids before and immediately after CW irradiation.  相似文献   


2.
We present the synthesis and biological evaluation of a collection of s-triazine derivatives as a novel scaffold of compounds with the capability to inhibit the PGE2 production in LPS-induced RAW 264.7 macrophage cells. A total of 12 derivatives were synthesized and assayed for PGE2 reduction at 10 μM concentration. Two compounds (7b and 7i) exhibiting >90% inhibition of PGE2 production were found to have IC50 values of 5.76 and 5.52 μM, respectively. They were counter screened for inhibition on COX-2 activity in a cell free assay. Specifically, compound 7i (R1 = 4-Bn-Ph, R2 = Cl, R3 = Ph, R5 = CO2Me) was highly active in cells while maintaining little COX-2 inhibition (∼0% at 10 μM). Molecular docking study provides the possibility that compound 7i could inhibit PGE2 production by blocking the PGH2 binding site of mPGES-1 instead of COX-2 enzyme. Based on this result, our synthetic efforts will focus on intensive structure–activity relationship (SAR) study of s-triazine scaffold to discovery a potential PGE2 synthesis inhibitor.  相似文献   

3.
Light activation of photosensitizing dyes in presence of molecular oxygen generates highly cytotoxic reactive oxygen species leading to cell inactivation. Nucleic acids are molecular targets of this photodynamic action but not considered the main cause of cell death. The in vivo effect of the photodynamic process on the intracellular nucleic acid content of Escherichia coli and Staphylococcus warneri was evaluated herein.Two cationic porphyrins (Tetra-Py+-Me and Tri-Py+-Me-PF) were used to photoinactivate E. coli (5.0 μM; 108 cells mL?1) and S. warneri (0.5 μM; 108 cells mL?1) upon white light irradiation at 4.0 mW cm?2 for 270 min and 40 min, respectively. Total nucleic acids were extracted from photosensitized bacteria after different times of irradiation and analyzed by agarose gel electrophoresis. The double-stranded DNA was quantified by fluorimetry and the porphyrin binding to bacteria was determined by spectrofluorimetry.E. coli was completely photoinactivated with both porphyrins (5.0 μM), whereas S. warneri was only completely inactivated by Tri-Py+-Me-PF (0.5 μM). The hierarchy of nucleic acid changes in E. coli was in the order: 23S rRNA > 16S rRNA > genomic DNA. The nucleic acids of S. warneri were extensively reduced after 5 min with Tri-Py+-Me-PF but almost unchanged with Tetra-Py+-Me after 40 min of irradiation. The amount of Tri-Py+-Me-PF bound to E. coli after washing the cells is higher than Tetra-Py+-Me and the opposite was observed for S. warneri. The binding capacity of the photosensitizers is not directly related to the PDI efficiency or nucleic acid reduction and this reduction occurs in parallel with the decrease of surviving cells.  相似文献   

4.
5.
《FEBS letters》2014,588(9):1571-1579
Membrane androgen receptors (mAR) are expressed in several tumors. mAR activation by testosterone albumin conjugates (TAC) suppresses tumor growth and migration. mAR signaling involves phosphoinositide-3-kinase (PI3K) and Rho-associated protein kinase (ROCK). PI3K stimulates serum- and glucocorticoid-inducible kinase SGK1, which in turn activates Na+/H+-exchangers (NHE). In prostate cancer cells cytosolic pH (pHi) was determined utilizing 2′,7′-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein-fluorescence and NHE-activity utilizing Na+-dependent cytosolic realkalinization following an ammonium pulse. TAC (100 nM) significantly increased pHi and NHE-activity, effects abrogated by NHE1-inhibitor cariporide (10 μM), SGK1-inhibitors EMD638683 (50 μM) and GSK650349 (10 μM) and ROCK-inhibitors Y-27632 (10 μM) and fasudil (100 μM). TAC treatment rapidly and significantly increased cell volume and actin polymerization, effects abolished in the presence of cariporide. Thus, mAR-activation activates cariporide-sensitive Na+/H+-exchangers, an effect requiring SGK1 and ROCK activity.  相似文献   

6.
It previously has been suggested that prostaglandin E1 (PGE1) relaxes the ductus arteriosus in a low but not in an elevated oxygen environment. However, in the experiments reported here PGE1 relaxed rings on fetal lamb ductus arteriosus at both low (14 to 20 torr) and high (680 to 720 torr) oxygen tensions. The threshold concentration for PGE1 was 10−10 M in either PO2 and the ED50's of PGE1 relaxation in high and low oxygen were 8.5 ± 3.4 × 10−10 M and 5.5 ± 0.7 × 10−10 M respectively. The magnitude of the relaxation was greater for the oxygen contracted ductus arteriosus than for that exposed to low oxygen. It is suggested that earlier reports of the lack of response of the ductus arteriosus to PGE1 in a high oxygen environment following relaxation in a low oxygen environment may be related to loss of response of the ductus arteriosus to repeated doses of PGE1 rather than to differences in PO2. Prostaglandin E1 therefore may play a significant role in the regulation of ductus arteriosus tone in the elevated oxygen environment of the newborn as well as the low oxygen environment of the fetus.  相似文献   

7.
Duckweed is recognized as a phytoremediation aquatic plant due to the production of large biomass and a high level of tolerance in stressed conditions. A laboratory experiment was conducted to investigate antioxidant response and mechanism of copper and mercury tolerance of S. polyrhiza (L.) Schleid. To understand the changes in chlorophyll content, MDA, proline, and activities of ROS-scavenging enzymes (SOD, CAT, GPOD) during the accumulation of Cu+2 and Hg+2, S. polyrhiza were exposed to various concentrations of Cu+2 (0.0–40 μM) and Hg+2 (0.0–0.4 μM). antioxidant activity initially indicated enhancing trend with application of 10 μM Cu+2; 0.2 μM Hg+2 (SOD), of 20 μM Cu+2; 0.2 μM Hg+2 (CAT) and of 10 μM Cu+2;0.2 μM Hg+2 (GPOD) and then decreased consistently up to 40 μM Cu+2 and 0.4 μM Hg+2. In the experiment chlorophyll and frond multiplication initially showed increasing tendency and decreased gradually with the application of increased metal concentration. Application of heavy metal has constantly enhanced proline and MDA content while the maximum increase was observed with the application of 40 μM Cu; 0.4 μM Hg for proline and MDA respectively. The upregulation of antioxidant enzymes and proline reveals that S. polyrhiza has strong biochemical strategies to deal with the heavy metal toxicity induced by the accumulation of Cu+2 and Hg+2.  相似文献   

8.
Prostaglandin E2 (PGE2) is quantitatively one of the major prostaglandins synthesized in mammalian brain, and there is evidence that it facilitates seizures and neuronal death. However, little is known about the molecular mechanisms involved in such excitatory effects. Na+,K+‐ATPase is a membrane protein which plays a key role in electrolyte homeostasis maintenance and, therefore, regulates neuronal excitability. In this study, we tested the hypothesis that PGE2 decreases Na+,K+‐ATPase activity, in order to shed some light on the mechanisms underlying the excitatory action of PGE2. Na+,K+‐ATPase activity was determined by assessing ouabain‐sensitive ATP hydrolysis. We found that incubation of adult rat hippocampal slices with PGE2 (0.1–10 μM) for 30 min decreased Na+,K+‐ATPase activity in a concentration‐dependent manner. However, PGE2 did not alter Na+,K+‐ATPase activity if added to hippocampal homogenates. The inhibitory effect of PGE2 on Na+,K+‐ATPase activity was not related to a decrease in the total or plasma membrane immunocontent of the catalytic α subunit of Na+,K+‐ATPase. We found that the inhibitory effect of PGE2 (1 μM) on Na+,K+‐ATPase activity was receptor‐mediated, as incubation with selective antagonists for EP1 (SC‐19220, 10 μM), EP3 (L‐826266, 1 μM) or EP4 (L‐161982, 1 μM) receptors prevented the PGE2‐induced decrease of Na+,K+‐ATPase activity. On the other hand, incubation with the selective EP2 agonist (butaprost, 0.1–10 μM) increased enzyme activity per se in a concentration‐dependent manner, but did not prevent the inhibitory effect of PGE2. Incubation with a protein kinase A (PKA) inhibitor (H‐89, 1 μM) and a protein kinase C (PKC) inhibitor (GF‐109203X, 300 nM) also prevented PGE2‐induced decrease of Na+,K+‐ATPase activity. Accordingly, PGE2 increased phosphorylation of Ser943 at the α subunit, a critical residue for regulation of enzyme activity. Importantly, we also found that PGE2 decreases Na+,K+‐ATPase activity in vivo. The results presented here imply Na+,K+‐ATPase as a target for PGE2‐mediated signaling, which may underlie PGE2‐induced increase of brain excitability.  相似文献   

9.
To investigate the effects of iontophoresis–ultraviolet A (UVA) cross-linking (CXL) with hypotonic riboflavin solution on the ultrastructural changes in the lamellae, collagen fibrils (CFs), and proteoglycans (PGs) in the central and peripheral stroma of the human corneal buttons. The iontophoresis method was used for the trans-epithelial application of hypotonic riboflavin in ex vivo corneal culture for 5 min. The corneas were irradiated using three methods: Group 1 (G1), a UVA irradiance of 3 mW/cm2 for 30 min; Group 2 (G2), a UVA irradiance of 10 mW/cm2 for 9 min; Group 3 (G3), without UVA irradiation. Three untreated corneas were used as controls (G0). After the CXL procedure, the corneas were processed for electron microscopy. The CF diameter and PGs in each sample were analyzed using the iTEM program. The keratocyte organelles and stromal architecture in the peripheral cornea were better preserved than those in the central cornea. In G1 and G2, the mean CF diameter in the peripheral cornea was significantly higher than that in the central cornea. In G3, the CF diameter in the central cornea was significantly larger than that in the peripheral cornea. Furthermore, differences in PG area size were observed between the central and peripheral corneas in all groups. Riboflavin + UVA application at 3 mW/cm2 for 30 min and 10 mW/cm2 for 9 min was a suitable method of CXL; however, 3 mW/cm2 for 30 min improved the organization and size of the collagen fibrils. CXL treatment applied at the periphery was more effective than that applied at the center.  相似文献   

10.
The purpose of this study was to explore the role of singlet oxygen in cardiovascular injury. To accomplish this objective, we investigated the effect of singlet oxygen [generated from photoactivation of rose-bengal] on the calcium transport and Ca2+-ATPase activity of cardiac sarcoplasmic reticulum and compared these results with those obtained by superoxide radical, hydrogen peroxide and hydroxyl radical. Isolated cardiac SR exposed to rose bengal (10 nM) irradiated at (560 nm) produced a significant inhibition of Ca 2+ uptake; from 2.27 ± 0.05 to 0.62 ± 0.05 µmol Ca+/mg.min (mean ± SE) (P < 0.01) and Ca2+-ATPase activity from 2.08 ± 0.05 µmol Pi/min. mg to 0.28 ± 0.04 µmol Pi/min. mg (mean ± SE) (P < 0.01). The inhibition of calcium uptake and Ca2+-ATPase activity by rose bengal derived activatedoxygen (singlet oxygen) was dependent on the duration of exposure and intensity of light. The singlet oxygen scavengers ascorbic acid and histidine significantly protected SR Ca2+-ATPase against rose bengal derived activated oxygen species but superoxide dismutase and catalase did not attenuate the inhibition. SDS-polyacrylamide gel electrophoresis of SR exposed to photoactivated rose bengal up to 14 min, demonstrated complete loss of Ca2+-ATPase monomer band which was significantly protected by histidine. Irradiation of rose bengal also caused an 18% loss of total sulfhydryl groups of SR. On the other hand, superoxide (generated from xanthine oxidase action on xanthine) and hydroxyl radical (0.5 mM H2O2 + Fe2+ -EDTA) as well as H2O2 (12 mM) were without any effect on the 97,000 dalton Ca2+-ATPase band ofsarcoplasmic reticulum. The results suggest that oxidative damage of cardiac sarcoplasmic reticulum may be mediated by singlet oxygen. This may represent an important mechanism by which the oxidative injury to the myocardium induces both a loss of tension development and arrhythmogenesis.  相似文献   

11.
Ammonium uptake rates and the mechanism for ammonium transport into the cells have been analysed in Zostera marina L. In the cells of this species, a proton pump is present in the plasmalemma, which maintains the membrane potential. However, this seagrass shows a high-affinity transport mechanism both for nitrate and phosphate which is dependent on sodium and is unique among angiosperms. We have then analysed if the transport of another N form, ammonium, is also dependent of sodium. First, we have studied ammonium transport at the cellular level by measurements of membrane potentials, both in epidermal root cells and mesophyll cells. And second, we have monitored uptake rates in whole leaves and roots by depletion experiments. The results showed that ammonium is taken up by a high-affinity transport system both in root and leaf cells, although two different of kinetics could be discerned in mesophyll cells (with affinity constants of 2.2 ± 1.1 μM NH4+, in the range 0.01-10 μM NH4+, and 23.2 ± 7.1 μM NH4+, at concentrations between 10 and 500 μM NH4+). However, only one kinetic could be observed in epidermal root cells, which showed a Km = 11.2 ± 1.0 μM NH4+, considering the whole ammonium concentration range assayed (0.01-500 μM NH4+). The higher affinity of leaf cells for ammonium was consistent with the higher uptake rates observed in leaves, with respect to roots, in depletion experiments at 10 μM NH4+ initial concentration. However, when an initial concentration of 100 μM was assayed, the difference between uptake rates was reduced, but still being higher in leaves. Variations in proton or sodium-electrochemical gradient did not affect ammonium uptake, suggesting that the transport of this nutrient is not driven by these ions and that the ammonium transport mechanism could be different to the transport of nitrate and phosphate in this species.  相似文献   

12.
13.
The potency of UVA radiation, representing 90% of solar UV light reaching the earth׳s surface, to induce human skin cancer is the subject of continuing controversy. This study was undertaken to investigate the role of reactive oxygen species in DNA damage produced by the exposure of human cells to UVA radiation. This knowledge is important for better understanding of UV-induced carcinogenesis. We measured DNA single-strand breaks and alkali-labile sites in human lymphocytes exposed ex vivo to various doses of 365-nm UV photons compared to X-rays and hydrogen peroxide using the comet assay. We demonstrated that the UVA-induced DNA damage increased in a linear dose-dependent manner. The rate of DNA single-strand breaks and alkali-labile sites after exposure to 1 J/cm2 was similar to the rate induced by exposure to 1 Gy of X-rays or 25 μM hydrogen peroxide. The presence of either the hydroxyl radical scavenger dimethyl sulfoxide or the singlet oxygen quencher sodium azide resulted in a significant reduction in the UVA-induced DNA damage, suggesting a role for these reactive oxygen species in mediating UVA-induced DNA single-strand breaks and alkali-labile sites. We also showed that chromatin relaxation due to hypertonic conditions resulted in increased damage in both untreated and UVA-treated cells. The effect was the most significant in the presence of 0.5 M Na+, implying a role for histone H1. Our data suggest that the majority of DNA single-strand breaks and alkali-labile sites after exposure of human lymphocytes to UVA are produced by reactive oxygen species (the hydroxyl radical and singlet oxygen) and that the state of chromatin may substantially contribute to the outcome of such exposures.  相似文献   

14.
Concentrations of prostaglandin E1 (PGE1; 10−7 M) that do not elicit tension responses in aortic strips potentiate contractions induced by submaximal concentrations (10−8 − 10−7 M) of norepinephrine (NE) or angiotensin III (Ang III) but not those of high K+ depolarization or maximal NE or Ang III concentrations. Higher concentrations of PGE1 (10−6 M and above) initiate contractions which are additive with submaximal responses to NE and Ang III but not to K+. These same concentrations of PGE1 also decrease 45Ca retention at high affinity La+++-resistant sites in a manner similar to but not additive with NE and Ang III. Uptake of 45Ca at low affinity La+++-resistant sites (which is increased by high K+-depolarization) is not altered by 10−6 M PGE1. The effects of PGE1 are not altered by decreased extracellular Ca++ (0.1 mM), decreased temperature, phentolamine or meclofenamate. Thus, PGE1 does not appear to increase uptake of extracellular Ca++ in this smooth muscle tissue. Instead, PGE1 increases mobilization of Ca++ from the same high affinity La+++-resistant sites affected by Ang III and NE and, in this manner, may increase responses to these two stimulatory agents.  相似文献   

15.
The effects of ultrasonic wave irradiation on cell growth and the formation of ethanol and other volatile components in the fermentation process were investigated. The fermentation periods were reduced to 50–64% in wine, beer, and sake made from saccharified rice solution when weak ultrasonic waves were irradiated at 30 mW/cm2; the total intensity was 590 mW. YEPD medium fermented by a combination of optimal thermal trajectory control and continuous ultrasonic irradiation yielded a concentration of isoamylacetate about 2.5 times greater than the maximum concentration under isothermal conditions (20°C). Irradiation had virtually no effect when the dissolved carbon dioxide concentration (DCO2) was maintained at a level lower than the experimental value of Bunsen's CO2 absorption coefficient. Therefore, it is suggested that irradiation accelerates the formation of ethanol and other components mainly by decreasing DCO2.  相似文献   

16.
17.
This Letter reports the synthesis and biological evaluation of a collection of aminophthalazines as a novel class of compounds capable of reducing production of PGE2 in HCA-7 human adenocarcinoma cells. A total of 28 analogs were synthesized, assayed for PGE2 reduction, and selected active compounds were evaluated for inhibitory activity against COX-2 in a cell free assay. Compound 2xxiv (R1 = H, R2 = p-CH3O) exhibited the most potent activity in cells (EC50 = 0.02 μM) and minimal inhibition of COX-2 activity (3% at 5 μM). Furthermore, the anti-tumor activity of analog 2vii was analyzed in xenograft mouse models exhibiting good anti-cancer activity.  相似文献   

18.
This study investigated the action of enprostil, a synthetic analog of PGE2, on gastric HCO3 secretion in humans and on duodenal HCO3 secretion in the anesthetized rat. A previously validated 2-component model was used to calculate gastric HCO3 and H+ secretion in 10 human subjects. Compared to placebo, a single 70 μg oral dose of enprostil increased basal gastric HCO3 secretion from 1810 +- 340 to 3190 ± 890 μmol/hr (P < 0.05). In addition, enprostil reduced basal gastric H+ secretion from 5240 ± 1140 to 1680 ± 530 μmol/hr (P < 0.02). Enprostil also increased HCO3 and reduced H+ secretion during intravenous pentagastrin infusion. In the rat, duodenal HCO3 secretion was measured by direct titration in situ using perfused segments of duodenum just distal to the Brunner gland area dn devoid of pancreatic and biliary secretions. Addition of enprostil(10 μg/ml) to the duodenal bathing solution increased duodenal HOC3 secretion from 6.3 ± 1.3 to 15.1 ± 2.0 μmol/cm·hr (P < 0.01, n = 6). The stimulatory action of enprostil on duodenal HCO3 secretion at 10 μg/ml was comparable in magnitude and duration to that of 10 μg/ml natural PGE2. In summary, the PGE2 analog enprostil stimulated gastroduodenal HCO3 secretion, effects which may be beneficial in protection of the gastroduodenal mucosa against luminal acid.  相似文献   

19.
20.
A series of twenty-two BODIPY compounds were synthesized, containing various meso-phenyl and meso-thienyl groups, and their spectroscopic and structural properties were investigated using both experimental and computational methods. Further functionalization of the BODIPY framework via iodination at the 2,6-pyrrolic positions was explored in order to determine the effect of these heavy atoms on the photophysical and cytotoxicity of the meso-aryl-BODIPYs. BODIPYs bearing meso-thienyl substituents showed the largest red-shifted absorptions and emissions and reduced fluorescence quantum yields. The phototoxicity of the BODIPYs in human carcinoma HEp2 cells depends on both the presence of iodines and the nature of the meso-aryl groups. Six of the eleven 2,6-diiodo-BODIPYs investigated showed at least a sevenfold enhancement in phototoxicity (IC50 = 3.5–28 μM at 1.5 J/cm2) compared with the non-iodinated BODIPYs, while the others showed no cytotoxicity, while their singlet oxygen quantum yields ranged from 0.02 to 0.76. Among the series investigated, BODIPYs 2a and 4a bearing electron-donating meso-dimethoxyphenyl substituents showed the highest phototoxicity and dark/phototoxicity ratio, and are therefore the most promising for application in PDT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号