共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The SNAG domain of Snail1 functions as a molecular hook for recruiting lysine‐specific demethylase 1
Junlin Li Chenfang Dong Xiaofeng Ye Young‐In Chi B Mark Evers Binhua P Zhou 《The EMBO journal》2010,29(11):1803-1816
Epithelial–mesenchymal transition (EMT) is a transdifferentiation programme. The mechanism underlying the epigenetic regulation of EMT remains unclear. In this study, we identified that Snail1 interacted with histone lysine‐specific demethylase 1 (LSD1). We demonstrated that the SNAG domain of Snail1 and the amine oxidase domain of LSD1 were required for their mutual interaction. Interestingly, the sequence of the SNAG domain is similar to that of the histone H3 tail, and the interaction of Snail1 with LSD1 can be blocked by LSD1 enzymatic inhibitors and a histone H3 peptide. We found that the formation of a Snail1–LSD1–CoREST ternary complex was critical for the stability and function of these proteins. The co‐expression of these molecules was found in cancer cell lines and breast tumour specimens. Furthermore, we showed that the SNAG domain of Snail1 was critical for recruiting LSD1 to its target gene promoters and resulted in suppression of cell migration and invasion. Our study suggests that the SNAG domain of Snail1 resembles a histone H3‐like structure and functions as a molecular hook for recruiting LSD1 to repress gene expression in metastasis. 相似文献
3.
Zhong-Tian Bai Zheng-Rong Wu Li-Li Xi Xun Li Peng Chen Fu-Qiang Wang Wen-Bo Meng Wen-Ce Zhou Xin-An Wu Xiao-Jun Yao Min Zhang 《Bioorganic & medicinal chemistry letters》2017,27(4):989-993
N-trans-feruloyloctopamine (FO) isolated from Garlic skin was identified as the primary antioxidant constituents, however, the effect of which on HCC invasion is still unclear. Herein, the FO was synthesized and its antitumor activities were evaluated in HCC cell lines. Cellular functional analyses have revealed that the reformed FO owns strong abilities of inhibiting cell proliferation and invasion in HCC cells. Molecular data have further showed that FO could significantly decrease the phosphorylation levels of Akt and p38 MAPK. In addition, the expression of Slug was inhibited and the level of E-cadherin increased. Molecular docking analysis indicates that the H-bond and hydrophobic interactions were critical for FO and E-cadherin binding, but FO did not seem to act directly on phosphorylated Akt and p38 MAPK. We have thus concluded that reformed FO inhibits cell invasion might be directly through EMT related signals (E-cadherin) and indirectly through PI3K/Akt, p38 MAPK signaling pathways. FO might be a promising drug in HCC treatment and prognosis. 相似文献
4.
5.
Xiang Li Xiaopei Yan Yanli Wang Jingjing Wang Fang Zhou Hong Wang Weiping Xie Hui Kong 《Experimental cell research》2018,362(2):489-497
Silicosis is an incurable and progressive lung disease characterized by chronic inflammation and fibroblasts accumulation. Studies have indicated a vital role for epithelial-mesenchymal transition (EMT) in fibroblasts accumulation. NLRP3 inflammasome is a critical mediator of inflammation in response to a wide range of stimuli (including silica particles), and plays an important role in many respiratory diseases. However, whether NLRP3 inflammasome regulates silica-induced EMT remains unknown. Our results showed that silica induced EMT in human bronchial epithelial cells (16HBE cells) in a dose- and time-dependent manner. Meanwhile, silica persistently activated NLRP3 inflammasome as indicated by continuously elevated extracellular levels of interleukin-1β (IL-1β) and IL-18. NLRP3 inflammasome inhibition by short hairpin RNA (shRNA)-mediated knockdown of NLRP3, selective inhibitor MCC950, and caspase-1 inhibitor Z-YVAD-FMK attenuated silica-induced EMT. Western blot analysis indicated that TAK1-MAPK-Snail/NF-κB pathway involved NLRP3 inflammasome-mediated EMT. Moreover, pirfenidone, a commercially and clinically available drug approved for treating idiopathic pulmonary fibrosis (IPF), effectively suppressed silica-induced EMT of 16HBE cells in line with NLRP3 inflammasome inhibition. Collectively, our results indicate that NLRP3 inflammasome is a promising target for blocking or retarding EMT-mediated fibrosis in pulmonary silicosis. On basis of this mechanism, pirfenidone might be a potential drug for the treatment of silicosis. 相似文献
6.
The aim of this study was to investigate whether transforming growth factor-beta1 (TGF-beta1) could induce alveolar epithelial to mesenchymal transition (EMT) in vitro. Alveolar epithelial cells (AECs) from SD rats were isolated by elastase cell dispersion and IgG panning. Expression of alpha-smooth muscle actin (alpha-SMA) was assayed using Western blotting and immunostaining analysis. Morphological changes, the markers of epithelial cell (E-cadherin), and stress fiber by actin reorganization were detected by an indirect immunostaining. The contents of collagen I were determined by spectrophotometry. The levels of endogenous TGF-beta1 were measured with ELISA. Incubation of AECs with TGF-beta1 (0.1 approximately 10 ng/mL) induced abundant expression of alpha-SMA protein, and alpha-SMA expression in AECs reached a plateau when TGF-beta1 was > 3 ng/mL. Furthermore, we found that TGF-beta1 (3 ng/mL) exposure of AECs induced an authentic EMT characterized by abundant expression of alpha-smooth muscle actin, transformation of myofibroblastic morphology, increased formation of stress fiber by actin reorganization, and loss of epithelial marker E-cadherin. Meanwhile, significant increase in the levels of collagen I from 32.0 +/- 6.6 mg/g in control to 98 +/- 10.8 mg/g in TGF-beta1-treated group was found over a 72 h incubation period. Moreover, following stimulated by TGF-beta1 (3 ng/mL), a marked and time-dependent increase in endogenous TGF-beta1 released from AECs was observed. At time points 72 h, TGF-beta1 release mounted to 3451 pg/ml, which was much enough to induce EMT in vitro. These results demonstrated that AECs, under stimulation of TGF-beta1, underwent a conversion process into myofibroblasts in vitro. 相似文献
7.
8.
Alipio ZA Jones N Liao W Yang J Kulkarni S Sree Kumar K Hauer-Jensen M Ward DC Ma Y Fink LM 《Differentiation; research in biological diversity》2011,82(2):89-98
Induced pluripotent stem (iPS) cells are derived from reprogrammed somatic cells and are similar to embryonic stem (ES) cells in morphology, gene/protein expression, and pluripotency. In this study, we explored the potential of iPS cells to differentiate into alveolar Type II (ATII)-like epithelial cells. Analysis using quantitative real time polymerase chain reaction and immunofluorescence staining showed that pulmonary surfactant proteins commonly expressed by ATII cells such as surfactant protein A (SPA), surfactant protein B (SPB), and surfactant protein C (SPC) were upregulated in the differentiated cells. Microphilopodia characteristics and lamellar bodies were observed by transmission electron microscopy and lipid deposits were verified by Nile Red and Periodic Acid Schiff staining. C3 complement protein, a specific feature of ATII cells, was present at high levels in culture supernatants demonstrating functionality of these cells in culture. These data show that the differentiated cells generated from iPS cells using a culture method developed previously (Rippon et al., 2006) are ATII-like cells. To further characterize these ATII-like cells, we tested whether they could undergo epithelial to mesenchymal transition (EMT) by exposure to drugs that induce lung fibrosis in mice, such as bleomycin, and the combination of transforming growth factor beta1 (TGF(b1)) and epidermal growth factor (EGF). When the ATII-like cells were exposed to either bleomycin or a TGF(b1)-EGF cocktail, they underwent phenotypic changes including acquisition of a mesenchymal/fibroblastic morphology, upregulation of mesenchymal markers (Col1, Vim, a-Sma, and S100A4), and downregulation of surfactant proteins and E-cadherin. We have shown that ATII-like cells can be derived from skin fibroblasts and that they respond to fibrotic stimuli. These cells provide a valuable tool for screening of agents that can potentially ameliorate or prevent diseases involving lung fibrosis. 相似文献
9.
10.
Junyu Tan Xixun Zhang Wenjun Xiao Xiong Liu Chun Li Yuxian Guo 《Cell Adhesion & Migration》2019,13(1):203-218
EMT allows a polarized epithelium to lose epithelial integrity and acquire mesenchymal characteristics. Previously, we found that overexpression of the intracellular domain of Notch3 (N3ICD) can inhibit EMT in breast cancer cells. In this study, we aimed to elucidate the influence of N3ICD or N3ICD combined with the transmembrane domain (TD+N3ICD) on the expression and distribution of TJs/AJs and polar molecules. We found that although N3ICD can upregulate the expression levels of the above-mentioned molecules, TD+N3ICD can inhibit EMT more effectively than N3ICD alone. TD+N3ICD overexpression upregulated the expression of endogenous full-length Notch3 and contributed to correcting the position of TJs/AJs molecules and better acinar structures formation. Co-immunoprecipitation results showed that the upregulated endogenous full-length Notch3 could physically interact with E-ca in MDA-MB-231/pCMV-(TD+N3ICD) cells. Collectively, our data indicate that overexpression of TD+N3ICD can effectively inhibit EMT, resulting in better positioning of TJs/AJs molecules and cell-cell adhesion in breast cancer cells.Abbreviations: EMT: Epithelial-mesenchymal transition; TJs: Tight junctions; AJs: Adherens junctions; aPKC: Atypical protein kinase C; Crb: Crumbs; Lgl: Lethal (2) giant larvae; LLGL2: lethal giant larvae homolog 2; PAR: Partitioning defective; PATJ: Pals1-associated TJ protein 相似文献
11.
上皮细胞向间充质细胞转变(epithelial to mesenchymal transition,EMT)是细胞通过瞬时去分化为间充质表型,导致上皮细胞的可塑性发生变化的多步骤的生物学过程。EMT及其逆转MET多数发生在胚胎发生形态发生过程中。近期更多的证据显示EMT参与肝纤维化和肝癌进程。在肝癌转移的早期阶段,细胞由于E-钙粘蛋白的消融而丧失细胞-细胞接触抑制,迁移能力增强,得以扩散到周围或远处组织,故EMT在肝癌转移的早期阶段中起关键作用。此外,由于EMT的增强诱导剂如转移生长因子(transforming growth factor-β,TGF-β)具有协调肝纤维化及肝癌进程的作用,故肝癌进程中上皮细胞的可塑性研究显得尤为重要。在本综述中,作者将阐述EMT-MET在肝癌进程中的重要性,及EMT在肝癌进程中的作用机制。同时,概述最近在识别影响重要EMT转录因子的临床诊治方面取得的进展。 相似文献
12.
Chien-Liang Chen Kang-Ju Chou Po-Tsang Lee Ying-Shou Chen Chih-Yang Hsu Hsiao-Min Chung Hua-Chang Fang 《Experimental cell research》2010,316(7):1109-1118
Purpose
Tumor growth factor-β1 (TGF-β1) plays a pivotal role in processes like kidney epithelial-mesenchymal transition (EMT) and interstitial fibrosis, which correlate well with progression of renal disease. Little is known about underlying mechanisms that regulate EMT. Based on the anatomical relationship between erythropoietin (EPO)-producing interstitial fibroblasts and adjacent tubular cells, we investigated the role of EPO in TGF-β1-mediated EMT and fibrosis in kidney injury.Methods
We examined apoptosis and EMT in TGF-β1-treated LLC-PK1 cells in the presence or absence of EPO. We examined the effect of EPO on TGF-β1-mediated Smad signaling. Apoptosis and cell proliferation were assessed with flow cytometry and hemocytometry. We used Western blotting and indirect immunofluorescence to evaluate expression levels of TGF-β1 signal pathway proteins and EMT markers.Results
We demonstrated that ZVAD-FMK (a caspase inhibitor) inhibited TGF-β1-induced apoptosis but did not inhibit EMT. In contrast, EPO reversed TGF-β1-mediated apoptosis and also partially inhibited TGF-β1-mediated EMT. We showed that EPO treatment suppressed TGF-β1-mediated signaling by inhibiting the phosphorylation and nuclear translocation of Smad 3. Inhibition of mitogen-activated protein kinase kinase 1 (MEK 1) either directly with PD98059 or with MEK 1 siRNA resulted in inhibition of EPO-mediated suppression of EMT and Smad signal transduction in TGF-β1-treated cells.Conclusions
EPO inhibited apoptosis and EMT in TGF-β1-treated LLC-PK1 cells. This effect of EPO was partially mediated by a mitogen-activated protein kinase-dependent inhibition of Smad signal transduction. 相似文献13.
Jipeng Li Yiping Wang Jianping LuoZhongming Fu Jianfei YingYanhong Yu Wanjun Yu 《FEBS letters》2012,586(20):3761-3765
Recent studies have implied that miRNAs act as crucial modulators for epithelial-to-mesenchymal transition (EMT). We found that miR-134 expression correlated with invasive potential and EMT phenotype of NSCLC cells. Functional assays demonstrated that miR-134 inhibited EMT in NSCLC cells. In addition, we showed that Forkhead Box M1 (FOXM1) is a direct target of miR-134. Knockdown of FOXM1 reversed EMT resembling that of miR-134 overexpression. We further found that FOXM1 was involved in TGF-β1-induced EMT in A549 cells. These findings suggest that miR-134 acts as a novel EMT suppressor in NSCLC cells. 相似文献
14.
《Bioorganic & medicinal chemistry letters》2017,27(4):1081-1088
The epithelial–mesenchymal transition (EMT) is an important cellular process during which polarized epithelial cells become motile mesenchymal cells, which promote cancer metastasis. Ginger, the rhizome of Zingiber officinale, is extensively used in cooking worldwide and also as a traditional medicinal herb with antioxidant, anti-inflammatory and anticancer properties. Several pungent compounds have been identified in ginger, including zingerone, which has anticancer potential. However, the role of zingerone in EMT is unclear. We investigated the synergistic effect of zingerone and its derivative on EMT. Transforming growth factor-beta 1 (TGF-β1) induces the EMT to promote hepatocellular carcinoma metastasis, including migration and invasion. To understand the repressive role of the combination of zingerone and its derivative (ZD 2) in hepatocellular carcinoma metastasis, we investigated the potential use of each compound of ginger, such as zingerone, ZD 2 and 6-shogaol, or the mixture of zingerone and ZD 2 (ZD 2-1) as inhibitors of TGF-β1 induced EMT development in SNU182 hepatocellular carcinoma cells in vitro. We show that ZD 2-1, but not zingerone, ZD 2 and 6-shogaol significantly increased expression of the epithelial marker E-cadherin and repressed Snail upregulation and expression of the mesenchymal marker N-cadherin during initiation of the TGF-β1 induced EMT. In addition, ZD 2-1 inhibited the TGF-β1 induced increase in cell migration and invasion of SNU182 hepatocellular carcinoma cells. Furthermore, ZD 2-1 significantly inhibited TGF-β1 regulated matrix metalloproteinase-2/9 and activation of Smad2/3. We also found that ZD 2-1 inhibited nuclear translocation of NF-κB, activation of p42/44 MAPK/AP1 signaling pathway in the TGF-β1 induced EMT. Our findings provide new evidence that combined treatment with ZD 2, novel zingerone derivative, and zingerone synergistically suppresses hepatocellular carcinoma metastasis in vitro by inhibiting the TGF-β1 induced EMT. 相似文献
15.
Faisal Alowaidi Saeed M Hashimi Maria Nguyen Mallika Meshram Naif Alqurashi Brenton L Cavanagh Bernadette Bellette Saso Ivanovski Adrian Meedenyia Stephen A Wood 《Journal of cellular biochemistry》2019,120(5):7412-7427
Cripto-1 has been implicated in a number of human cancers. Although there is high potential for a role of Cripto-1 in glioblastoma multiforme (GBM) pathogenesis and progression, few studies have tried to define its role in GBM. These studies were limited in that Cripto-1 expression was not studied in detail in relation to markers of cancer initiation and progression. Therefore, these correlative studies allowed limited interpretation of Criptos-1's effect on the various aspects of GBM development using the U87 GBM cell line. In this study, we sought to delineate the role of Cripto-1 in facilitating pathogenesis, stemness, proliferation, invasion, migration and angiogenesis in GBM. Our findings show that upon overexpressing Cripto-1 in U87 GBM cells, the stemness markers Nanog, Oct4, Sox2, and CD44 increased expression. Similarly, an increase in Ki67 was observed demonstrating Cripto-1's potential to induce cellular proliferation. Likewise, we report a novel finding that increased expression of the markers of migration and invasion, Vimentin and Twist, correlated with upregulation of Cripto-1. Moreover, Cripto-1 exposure led to VEGFR-2 overexpression along with higher tube formation under conditions promoting endothelial growth. Taken together our results support a role for Cripto-1 in the initiation, development, progression, and maintenance of GBM pathogenesis. The data presented here are also consistent with a role for Cripto-1 in the re-growth and invasive growth in GBM. This highlights its potential use as a predictive and diagnostic marker in GBM as well as a therapeutic target. 相似文献
16.
17.
18.
Won-Chul Lim Hyunhee Kim Young-Joo Kim Kyung-Chul Choi In Ho Lee Ki Heon Lee Mi Kyung Kim Hyeonseok Ko 《Bioorganic & medicinal chemistry letters》2017,27(15):3342-3348
Epithelial-to-mesenchymal transition (EMT), an important cellular process, occurs during cancer development and progression, has a crucial role in metastasis by enhancing the motility of tumor cells. Dioscin is a polyphenolic component isolated from Phyllanthus amarus, which exhibits a wide range of pharmacological and physiological activities, such as anti-tumor, anti-inflammatory, anti-obesity, anti-fungal, and anti-viral activities. However, the possible role of dioscin in the EMT is unclear. We investigated the suppressive effect of dioscin on the EMT. Transforming growth factor-beta 1 (TGF-β1) is known to induce EMT in a number of cancer cell types and promote lung adenocarcinoma migration and invasion. To verify the inhibitory role of dioscin in lung cancer migration and invasion, we investigated the use of dioscin as inhibitors of TGF-β1-induced EMT in A549 lung cancer cells in vitro. Here, we found that dioscin prominently increased expression of the epithelial marker E-cadherin and expression of the mesenchymal marker N-cadherin and Snail during the TGF-β1-induced EMT. In addition, dioscin inhibited the TGF-β1-induced increase in cell migration and invasion of A549 lung cancer cells. Also, dioscin remarkably inhibited TGF-β1-regulated activation of MMP-2/9, Smad2, and p38. Taken together, our findings provide new evidence that dioscin suppresses lung cancer migration, and invasion in vitro by inhibiting the TGF-β1-induced EMT. 相似文献
19.
Koa Hosoki Keigo Kainuma Masaaki Toda Etsuko Harada Ayshwarya-Lakshmi Chelakkot-Govindalayathila Ziaurahman Roeen Mizuho Nagao Corina N. D’Alessandro-Gabazza Takao Fujisawa Esteban C. Gabazza 《Biochemical and biophysical research communications》2014
Epithelial to mesenchymal transition (EMT) is a mechanism by which eosinophils can induce airway remodeling. Montelukast, an antagonist of the cysteinyl leukotriene receptor, can suppress airway remodeling in asthma. The purpose of this study was to evaluate whether montelukast can ameliorate airway remodeling by blocking EMT induced by eosinophils. EMT induced was assessed using a co-culture system of human bronchial epithelial cells and human eosinophils or the eosinophilic leukemia cell lines, Eol-1. Montelukast inhibited co-culture associated morphological changes of BEAS-2b cells, decreased the expression of vimentin and collagen I, and increased the expression of E-cadherin. Montelukast mitigated the rise of TGF-β1 production and Smad3 phosphorylation. Co-culture of human eosinophils with BEAS-2B cells significantly enhanced the production of CysLTs compared with BEAS-2B cells or eosinophils alone. The increase of CysLTs was abolished by montelukast pre-treatment. Montelukast had similar effects when co-culture system of Eol-1 and BEAS-2B was used. This study showed that montelukast suppresses eosinophils-induced EMT of airway epithelial cells. This finding may explain the mechanism of montelukast-mediated amelioration of airway remodeling in bronchial asthma. 相似文献
20.
Jianguang Du Christina Leonhard-Melief Malgosia Dlugosz Bernadette C. Holdener 《Developmental biology》2010,346(1):25-38
Thrombospondin type 1 repeat (TSR) superfamily members regulate diverse biological activities ranging from cell motility to inhibition of angiogenesis. In this study, we verified that mouse protein O-fucosyltransferase-2 (POFUT2) specifically adds O-fucose to TSRs. Using two Pofut2 gene-trap lines, we demonstrated that O-fucosylation of TSRs was essential for restricting epithelial to mesenchymal transition in the primitive streak, correct patterning of mesoderm, and localization of the definitive endoderm. Although Pofut2 mutant embryos established anterior/posterior polarity, they underwent extensive mesoderm differentiation at the expense of maintaining epiblast pluripotency. Moreover, mesoderm differentiation was biased towards the vascular endothelial cell lineage. Localization of Foxa2 and Cer1 expressing cells within the interior of Pofut2 mutant embryos suggested that POFUT2 activity was also required for the displacement of the primitive endoderm by definitive endoderm. Notably, Nodal, BMP4, Fgf8, and Wnt3 expression were markedly elevated and expanded in Pofut2 mutants, providing evidence that O-fucose modification of TSRs was essential for modulation of growth factor signaling during gastrulation. The ability of Pofut2 mutant embryos to form teratomas comprised of tissues from all three germ layer origins suggested that defects in Pofut2 mutant embryos resulted from abnormalities in the extracellular environment. This prediction is consistent with the observation that POFUT2 targets are constitutive components of the extracellular matrix (ECM) or associate with the ECM. For this reason, the Pofut2 mutants represent a valuable tool for studying the role of O-fucosylation in ECM synthesis and remodeling, and will be a valuable model to study how post-translational modification of ECM components regulates the formation of tissue boundaries, cell movements, and signaling. 相似文献