首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的:构建Surrogate报告载体,并利用Surrogate报告载体提高CRISPR/Cas9对HEK293T细胞TMEM215基因打靶效率。方法:构建针对人TMEM215的CRISPR/Cas9表达载体及相应Surrogate报告载体,两者共转HEK293T细胞,通过流式分析、T7EI检测、TA克隆测序等明确Surrogate报告载体对不同sgRNA打靶效率的检测及对基因修饰细胞的筛选富集作用。结果:流式分析结果表明,Surrogate报告载体成功检测出不同sgRNA的打靶效率,并筛选出高效率sgRNA;T7EI检测及TA克隆测序显示,外加嘌呤霉素抗性筛选时,Surrogate报告载体可有效富集基因修饰细胞。结论:成功构建Surrogate报告载体,并利用Surrogate报告载体提高CRISPR/Cas9对HEK293T细胞TMEM215基因的打靶效率。  相似文献   

2.
CRISPR/Cas9核酸酶作为一种新的基因组靶向编辑技术,已成功应用于多种动植物基因组修饰研究. CRISPR/Cas9作用后的阳性细胞筛选和富集是该技术的关键之一. 本研究以鸡EAV-HP(endogenous avian retrovirus-HP)基因和MSTN(myostatin)基因为例,从靶位点的选择、表达载体构建、双基因报告载体构建和核酸酶活性验证4个方面,系统研究了CRISPR/Cas9核酸酶技术平台. 结果表明,利用寡聚核苷酸直接退火方法,构建表达载体和报告载体的阳性率分别高达100%和89.5%. 报告载体的PuroR(puromycin resistant gene)和eGFP(enhanced green fluorescent protein)基因的成功表达表明,构建的CRISPR/Cas9系统能有效切割靶序列,并用于后续阳性克隆的筛选和富集. 本方法摒弃了传统分子克隆的PCR扩增和酶切处理目标基因的方法,而是利用寡聚核苷酸直接退火获得含有黏性末端的目标DNA,简化了载体构建过程,低成本且快速获得CRISPR/Cas9基因组靶向编辑系统.  相似文献   

3.
我国是家猪养殖和消费大国,提高母猪的繁殖力对于促进我国生猪产业的发展具有重要的作用。排卵率和产仔数是影响家畜繁殖力的关键因素,其中BMP15 (bone morphogenetic protein 15)基因已被鉴定是控制绵羊排卵数和多胎性状的一个主效基因,然而目前在家猪BMP15基因中尚未发现类似绵羊多胎品系的天然突变。基于高等哺乳动物基因功能的保守性和CRISPR/Cas9(clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9)等基因组编辑技术对动物基因组定点修饰的高效性,应用CRISPR/Cas9技术对家猪BMP15基因进行精确的遗传修饰,使家猪获得类似多胎绵羊的天然突变,对于研究该基因对家猪繁殖力的影响以及培育高繁殖力家猪新品系具有重要的意义。本研究通过CRISPR/Cas9对长白猪胎儿成纤维(porcine embryonic fibroblasts, PEF)细胞中BMP15基因进行打靶,T7E1分析显示打靶效率仅有5%。随后通过共转染RGS双荧光替代性报告载体(RFP-GFP surrogate reporter),并应用流式细胞术分选出双荧光细胞,富集到基因组被CRISPR/Cas9修饰的细胞,使基因打靶效率提高至18%。本研究结果表明,应用RGS双荧光替代性报告载体可以有效提高CRISPR/Cas9在PEF细胞中对BMP15基因的打靶效率,为今后通过体细胞核移植技术培育BMP15基因编辑猪进行了有效的探索。  相似文献   

4.
5.
The CRISPR/Cas9 system has been demonstrated to efficiently induce targeted gene editing in a variety of organisms including plants. Recent work showed that CRISPR/Cas9‐induced gene mutations in Arabidopsis were mostly somatic mutations in the early generation, although some mutations could be stably inherited in later generations. However, it remains unclear whether this system will work similarly in crops such as rice. In this study, we tested in two rice subspecies 11 target genes for their amenability to CRISPR/Cas9‐induced editing and determined the patterns, specificity and heritability of the gene modifications. Analysis of the genotypes and frequency of edited genes in the first generation of transformed plants (T0) showed that the CRISPR/Cas9 system was highly efficient in rice, with target genes edited in nearly half of the transformed embryogenic cells before their first cell division. Homozygotes of edited target genes were readily found in T0 plants. The gene mutations were passed to the next generation (T1) following classic Mendelian law, without any detectable new mutation or reversion. Even with extensive searches including whole genome resequencing, we could not find any evidence of large‐scale off‐targeting in rice for any of the many targets tested in this study. By specifically sequencing the putative off‐target sites of a large number of T0 plants, low‐frequency mutations were found in only one off‐target site where the sequence had 1‐bp difference from the intended target. Overall, the data in this study point to the CRISPR/Cas9 system being a powerful tool in crop genome engineering.  相似文献   

6.
目的:CRISPR/Cas9系统在斑马鱼的反向遗传学中的到了广泛应用,但突变基因的表型观察往往需要在突变鱼系的F1中进行,费时较长。LHX9作为LIM家族的一种转录因子,在胚胎早期的泌尿生殖嵴中有广泛分布;且LHX9基因敲除的小鼠存在性腺发育不良。本研究拟通过一种新的CRISPR/Cas9基因编辑技术,采用四条sgRNA对LHX9基因进行VASA转基因斑马鱼的基因敲除,以观察该基因缺陷对斑马鱼性腺发育的影响。方法:利用新的CRISPR/Cas9技术,设计四条针对斑马鱼LHX9基因3号外显子的20bp的sgRNA,通过非克隆体外转录得到靶位点的四条sgRNA。将以上靶位点的四条sgRNA与Cas9核酸酶蛋白同时注射入单细胞期的斑马鱼胚胎内,利用PCR鉴定突变型类型和突变比例。通过对LHX9基因突变体的VASA转基因斑马鱼进行荧光观察,发现LHX9基因缺陷的斑马鱼性腺发育的情况。结果:靶向Exon 3的四条sgRNA可成功编辑斑马鱼LHX9基因,敲除效率高达82%,Sanger测序发现产生10种不同的移码突变类型。通过该方法对VASA转基因斑马鱼的LHX9基因进行编辑,发现LHX9基因突变导致dph6的的斑马鱼原始生殖细胞增殖和迁移受到影响。结论:基于4条sgRNA注射的CRISPR/Cas9技术,可以快速地产生具有突变表型的G0斑马鱼,具有应用潜力。LHX9基因敲除导致原始生殖细胞的发育和迁移受到影响,提示该基因参与了斑马鱼早期性腺的发育。  相似文献   

7.

Background

Epithelial cell adhesion molecule (EpCAM) is overexpressed in solid tumors and regarded as a putative cancer stem cell marker. Here, we report that employing EpCAM aptamer (EpApt) and EpCAM siRNA (SiEp) dual approach, for the targeted delivery of siRNA to EpCAM positive cancer cells, efficiently inhibits cancer cell proliferation.

Results

Targeted delivery of siRNA using polyethyleneimine is one of the efficient methods for gene delivery, and thus, we developed a novel aptamer-PEI-siRNA nanocomplex for EpCAM targeting. PEI nanocomplex synthesized with EpCAM aptamer (EpApt) and EpCAM siRNA (SiEp) showed 198 nm diameter sized particles by dynamic light scattering, spherical shaped particles, of 151 ± 11 nm size by TEM. The surface charge of the nanoparticles was −30.0 mV using zeta potential measurements. Gel retardation assay confirmed the PEI-EpApt-SiEp nanoparticles formation. The difference in size observed by DLS and TEM could be due to coating of aptamer and siRNA on PEI nanocore. Flow cytometry analysis revealed that PEI-EpApt-SiEp has superior binding to cancer cells compared to EpApt or scramble aptamer (ScrApt) or PEI-ScrApt-SiEp. PEI-EpApt-SiEp downregulated EpCAM and inhibited selectively the cell proliferation of MCF-7 and WERI-Rb1 cells.

Conclusions

The PEI nanocomplex fabricated with EpApt and siEp was able to target EpCAM tumor cells, deliver the siRNA and silence the target gene. This nanocomplex exhibited decreased cell proliferation than the scrambled aptamer loaded nanocomplex in the EpCAM expressing cancer cells and may have potential for EpCAM targeting in vivo.

Electronic supplementary material

The online version of this article (doi:10.1186/s12929-014-0108-9) contains supplementary material, which is available to authorized users.  相似文献   

8.
CRISPR/Cas9 and Cas12a (Cpf1) nucleases are two of the most powerful genome editing tools in plants. In this work, we compared their activities by targeting maize glossy2 gene coding region that has overlapping sequences recognized by both nucleases. We introduced constructs carrying SpCas9‐guide RNA (gRNA) and LbCas12a‐CRISPR RNA (crRNA) into maize inbred B104 embryos using Agrobacterium‐mediated transformation. On‐target mutation analysis showed that 90%–100% of the Cas9‐edited T0 plants carried indel mutations and 63%–77% of them were homozygous or biallelic mutants. In contrast, 0%–60% of Cas12a‐edited T0 plants had on‐target mutations. We then conducted CIRCLE‐seq analysis to identify genome‐wide potential off‐target sites for Cas9. A total of 18 and 67 potential off‐targets were identified for the two gRNAs, respectively, with an average of five mismatches compared to the target sites. Sequencing analysis of a selected subset of the off‐target sites revealed no detectable level of mutations in the T1 plants, which constitutively express Cas9 nuclease and gRNAs. In conclusion, our results suggest that the CRISPR/Cas9 system used in this study is highly efficient and specific for genome editing in maize, while CRISPR/Cas12a needs further optimization for improved editing efficiency.  相似文献   

9.
刘改改  李爽  韦余达  张永贤  丁秋蓉 《遗传》2015,37(11):1167-1173
CRISPR/Cas9技术提供了一个全新的基因组编辑体系。本文利用CRISPR/Cas9平台,在人胚胎干细胞株中对选取的一段特定基因组区域进行了多种基因组编辑:通过在基因编码框中引入移码突变进行基因敲除;通过单链DNA提供外源模板经由同源重组定点敲入FLAG序列;通过同时靶向多个位点诱导基因组大片段删除。研究结果表明CRISPR/Cas9可以对多能干细胞进行高效基因编辑,获得的突变干细胞株有助于对基因和基因组区域的功能进行分析和干细胞疾病模型的建立。  相似文献   

10.
Epithelial cell adhesion molecule EpCAM is expressed on a subset of normal epithelia and overexpressed on malignant cells from a variety of different tumor entities. This overexpression is even more pronounced on so-called tumor-initiating cells (TICs) of many carcinomas. Taking this rather ubiquitous expression of EpCAM in carcinomas and TICs into account, the question arises how EpCAM can serve as a reliable marker for tumor-initiating cells and what might be the advantage for TICs to express this molecule. Furthermore, several approaches for therapeutic strategies targeting exclusively EpCAM on cancer cells were undertaken over the past decades and have recently been transferred to pre-clinical attempts to eradicate TICs. In the present review, we will depict potential functions of EpCAM in tumor cells with a special focus on TICs and therapeutic implications.  相似文献   

11.
Epithelial cell adhesion molecule EpCAM is expressed on a subset of normal epithelia and overexpressed on malignant cells from a variety of different tumor entities. This overexpression is even more pronounced on so-called tumor-initiating cells (TICs) of many carcinomas. Taking this rather ubiquitous expression of EpCAM in carcinomas and TICs into account, the question arises how EpCAM can serve as a reliable marker for tumor-initiating cells and what might be the advantage for TICs to express this molecule. Furthermore, several approaches for therapeutic strategies targeting exclusively EpCAM on cancer cells were undertaken over the past decades and have recently been transferred to pre-clinical attempts to eradicate TICs. In the present review, we will depict potential functions of EpCAM in tumor cells with a special focus on TICs and therapeutic implications.  相似文献   

12.
The clustered regulatory interspersed short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) system has been widely used for gene knock-out. Lentiviral vectors have been commonly used as a delivery method for this system, however, prolonged Cas9/sgRNA expression due to lentiviral integration can lead to accumulating off-target mutations. To solve this issue in engineering a gene knock-out cell line, this study established a novel system, which was composed of two lentiviral vectors. One lentiviral vector carried simultaneously sgRNAs and CRISPR/Cas9 expression cassettes targeting single or multiple gene(s); the other lentiviral vector carried Cre that could remove excess sgRNAs and Cas9 expression cassettes in the genome after gene targeting was achieved. To prove the principle, two candidate genes, extracellular matrix protein 1 (ECM1) and progranulin (PGRN), both highly expressed in MDA-MB-231 cells, were selected for testing the novel system. A dual knock-out of ECM1 and PGRN was successfully achieved in MDA-MB-231 cell line, with the sgRNAs and Cas9 expression cassettes being removed by Cre. This system should have great potential in applications for multiple genes knock-out in vitro.  相似文献   

13.
14.
CRISPR/Cas技术能高效进行基因组定点编辑,但不同细菌来源或人工改造的Cas9以及Cpf1等核酸酶识别的PAM (protospacer adjacent motif)有差异,因此不同的基因编辑核酸酶可能采用不同类型的sgRNAs(small guide RNAs)。MicroRNAs (miRNAs)是一类调控性的小分子非编码RNAs,为了研究miRNA前体中是否可能存在特异性高的sgRNAs靶点,本文利用本课题组前期开发的生物信息学软件CRISPR-offinder,对靶向28 645条miRNA前体的11种不同类型sgRNA的丰度及特异性进行了分析,并利用CRISPR/Cas9慢病毒技术构建了猪miR-302/367基因簇敲除细胞系,对构建的猪miRNA敲除细胞系的效率进行了检测。结果表明,每个miRNA前体中平均存在约8种不同类型sgRNA的靶点;通过评估靶向猪miRNA前体sgRNA的脱靶效应,发现其中特异性高的sgRNA仅占18.2%;通过CRISPR/Cas9慢病毒技术成功构建了猪miR-302/367基因簇敲除细胞系,发现通过该技术构建miRNA敲除细胞系的效率为40%。本研究为利用CRISPR/Cas技术靶向敲除miRNA提供了重要资源。  相似文献   

15.
CRISPR/Cas9基因打靶技术是近几年发展起来的一种高效率的定向打靶技术,被认为是遗传领域的革命性技术。Titin-Cap基因是本实验室已初步鉴定的斑马鱼心脏发育候选基因,且国内外目前尚无斑马鱼Titin-Cap基因的敲除品系。为了研究Titin-Cap基因在心脏发育过程中的作用机制,我们利用CRISPR/Cas9基因打靶技术建立斑马鱼Titin-Cap基因的敲除品系。测序结果显示,注射了CRISPR/Cas9 gRNA的胚胎出现双峰,说明在打靶位点附近出现了碱基缺失或插入,证明我们设计的gRNA是有效的。对F0代突变体成鱼的筛选中,测序结果同样显示有阳性结果。这些结果说明用CRISPR/Cas9基因打靶技术成功敲除了斑马鱼Titin-Cap基因,获得了Titin-Cap基因敲除的嵌合体斑马鱼。  相似文献   

16.
基因编辑技术是通过核酸内切酶对基因组DNA进行定向改造的技术,可以实现对特定DNA碱基的缺失、替换等,常用的四种基因编辑工具分别是:巨型核酸酶、锌指核酸酶、转录激活因子样效应物核酸酶以及CRISPR/Cas9系统.其中CRISPR/Cas9系统作为一种新型的基因组编辑技术具有组成简单、特异性好、切割效率高的优点.该文对...  相似文献   

17.
CRISPR/Cas9‐based strategies are widely used for genome editing in many organisms, including zebrafish. Although most applications consist in introducing double strand break (DSB)‐induced mutations, it is also possible to use CRISPR/Cas9 to enhance homology directed repair (HDR) at a chosen genomic location to create knock‐ins with optimally controlled precision. Here, we describe the use of CRISPR/Cas9‐targeted DSB followed by HDR to generate zebrafish transgenic lines where exogenous coding sequences are added in the nefma gene, in frame with the endogenous coding sequence. The resulting knock‐in embryos express the added gene (fluorescent reporter or KalTA4 transactivator) specifically in the populations of neurons that express nefma, making them convenient tools for research on these populations.  相似文献   

18.
In recent years, CRISPR/Cas9 has rapidly become one of the most promising genome editing tools because it is simple and easy to use and cost effective. However, the large size of Cas9 sequences limits its application in clinically promising vectors and it also impacts non-viral transfection. In this study, CRISPR/Cas9 adenovirus vectors that target the buffalo 18s rDNA gene were constructed, transfected into 293 cells for adenovirus packaging, and the adenovirus was used to knockout the 18s rDNA gene in buffalo mammary epithelial cells. The results demonstrated that the CRISPR/Cas9 adenovirus vectors for the buffalo 18s rDNA gene could efficiently target the sites as revealed by the fluorescence reporter system. After amplification, the adenovirus titer of Sn458-18s1 and Sn458-18s2 reached 1.03 × 109PFU/mL and 1.05 × 109 PFU/mL, respectively. For buffalo mammary epithelial cell infection, the efficiency was 100% when the multiplicity of infection (MOI) ≥ 100 PFU/mL. There were 9 mutational clones found in the 20 clones, and the gene mutagenesis rate reached 45%. Of these, 2 clones were 35-bp deleted and 7 clones were 12-bp deleted. These results suggested that the adenovirus system overcame the low transfection efficiency of the buffalo mammary epithelial cells associated with using lipid-based methods or electroporation. Moreover, we preliminary developed an efficient technique for multiple-locus gene targeting at repeated sequences of the buffalo genome.  相似文献   

19.
Dong  Zhanqi  Qin  Qi  Hu  Zhigang  Chen  Peng  Huang  Liang  Zhang  Xinling  Tian  Ting  Lu  Cheng  Pan  Minhui 《中国病毒学》2019,34(4):444-453
Recently the developed single guide(sg)RNA-guided clustered regularly interspaced short palindromic repeats/associated protein 9 nuclease(CRISPR/Cas9) technology has opened a new avenue for antiviral therapy. The CRISPR/Cas9 system uniquely allows targeting of multiple genome sites simultaneously. However, there are relatively few applications of CRISPR/Cas9 multigene editing to target insect viruses. To address the need for sustained delivery of a multiplex CRISPR/Cas9-based genome-editing vehicle against insect viruses, we developed a one-vector(pSL1180-Cas9-U6-sgRNA) system that expresses multiple sgRNA and Cas9 protein to excise Bombyx mori nucleopolyhedrovirus(BmNPV) in insect cells.We screened the immediate-early-1 gene(ie-1), the major envelope glycoprotein gene(gp64), and the late expression factor gene(lef-11), and identified multiple sgRNA editing sites through flow cytometry and viral DNA replication analysis. In addition, we constructed a multiplex editing vector(PSL1180-Cas9-sgIE1-sgLEF11-sgGP64, sgMultiple) to efficiently regulate multiplex gene-editing and inhibit BmNPV replication after viral infection. This is the first report of the application of a multiplex CRISPR/Cas9 system to inhibit insect virus replication. This multiplex system can significantly enhance the potential of CRISPR/Cas9-based multiplex genome engineering in insect virus.  相似文献   

20.
Efforts to leverage clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) for targeted genomic modifications in mammalian cells are limited by low efficiencies and heterogeneous outcomes. To aid method optimization, we developed an all-in-one reporter system, including a novel superfolder orange fluorescent protein (sfOrange), to simultaneously quantify gene disruption, site-specific integration (SSI), and random integration (RI). SSI strategies that utilize different donor plasmid formats and Cas9 nuclease variants were evaluated for targeting accuracy and efficiency in Chinese hamster ovary cells. Double-cut and double-nick donor formats significantly improved targeting accuracy by 2.3–8.3-fold and 19–22-fold, respectively, compared to standard circular donors. Notably, Cas9-mediated donor linearization was associated with increased RI events, whereas donor nicking minimized RI without sacrificing SSI efficiency and avoided low-fidelity outcomes. A screen of 10 molecules that modulate the major mammalian DNA repair pathways identified two inhibitors that further enhance targeting accuracy and efficiency to achieve SSI in 25% of transfected cells without selection. The optimized methods integrated transgene expression cassettes with 96% efficiency at a single locus and with 53%–55% efficiency at two loci simultaneously in selected clones. The CRISPR-based tools and methods developed here could inform the use of CRISPR/Cas9 in mammalian cell lines, accelerate mammalian cell line engineering, and support advanced recombinant protein production applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号