首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Assessment of eutrophication pressure on lakes using littoral invertebrates   总被引:1,自引:1,他引:0  
Until the E.U. Water Framework Directive listed benthic invertebrates as a biotic element to be used for ecological classification of lakes, techniques for the assessment of the response of littoral invertebrates to anthropogenic pressures were extremely limited compared with those of rivers and lake profundal zones. We describe here the development of an ecological classification model based on changes of littoral invertebrate assemblages across a gradient of eutrophication, which is the most widespread anthropogenic pressure on lakes across Europe. The model comprises three derived parameters, two of which were developed from taxon-specific optima along a total phosphorus gradient calculated using canonical correspondence analysis, and the third based on invertebrate abundance. Combining the parameter metrics, we can estimate the ecological quality ratio (EQR), relative to those from paleolimnologically-confirmed reference lakes. The model was tested using independent samples collected from both hard and soft substrata and across two seasons from 45 lakes, comprising three alkalinity groups (n = 15 in each), and across gradients in water column total phosphorus concentrations. For hard substrata, EQRs were related consistently and highly significantly to water column concentrations of total phosphorus, accounting for the majority of the variance in every alkalinity group. For samples taken from soft substrata, a significant relationship was found only for high alkalinity lakes, accounting for a moderate proportion of the variability in water column total phosphorus concentrations. Our results compare highly favourably with those from other aquatic ecological assessment methods, irrespective of the faunal or floral group upon which they are based, demonstrating that littoral invertebrate assemblages can provide a statistically robust prediction of nutrient status when samples are collected from hard substrata. While the method was developed specifically to assess nutrient pressures on littoral invertebrates, many lakes are subject to multiple pressures. The development of classification models that incorporate multiple pressures presents a particularly significant challenge for the implementation of the Water Framework Directive, requiring both reliable identification of minimally-impacted reference states and incorporation of pressures that are unlikely to interact in predictable ways.  相似文献   

2.
East-German lowland lakes are highly susceptible to climatic changes, as most lakes are groundwater fed and strongly dependent on the balance of precipitation and evapotranspiration in their catchments. As a significant decrease of precipitation at least during summer is forecasted, a substantial and permanent reduction of lake water levels can be expected. Water-level fluctuations will predominantly affect the eulittoral zone where submerged tree roots form an important habitat type in lowland lakes that will become unavailable for eulittoral invertebrates. Hence, we compared the invertebrate community from eulittoral root habitats with those of infralittoral habitats to test which components of the invertebrate community would be potentially affected by the loss of root habitats, and whether infralittoral habitat types could mitigate these effects. Species richness did not significantly differ between eulittoral roots and the infralittoral habitat types. Community composition of roots significantly differed from that of coarse woody debris, sand and stones but not from reed habitats. Abundances of Coleoptera, Trichoptera and abundances of piercer, predator, shredder and xylophagous species were significantly lower on sand than on roots. Conversely, there were no significant differences in community measures between reed and root habitats except abundances of Coleoptera. Our results suggest that the loss of eulittoral root habitats will cause a significant alteration of the littoral invertebrate community. This could be mitigated if unimpaired reed habitats are available in the infralittoral zone which may serve as a refuge for most species typical for root habitats. Our results need to be verified by direct observations, especially as the extent of future water-level fluctuations is currently not assessable and might be more severe than assumed.  相似文献   

3.
1. We studied the patterns of litter decomposition in lake littoral habitats and investigated whether decay rates, as an integrating proxy for environmental conditions in the sediment, would co‐vary with net carbon dioxide (CO2) exchange and methane (CH4) efflux. These gas fluxes are known to be sensitive to environmental conditions. Losses in the mass of cellulose, root, rhizome and moss litter were measured during 2 years in boreal littoral wetlands in Finland and compared with published data on concurrently measured gas fluxes. Four study sites covered a range of sediment types and hydrological conditions. 2. Decomposition was not linearly related to the duration of flooding but depended on sediment type. Readily decomposable litter fractions, such as cellulose and rhizome litter, lost mass at a faster rate in marshes with a longer period of flooding but wide water level fluctuations that hinder establishment of a Sphagnum cover, than in peat‐forming fens. In marshes, the mean first‐year mass losses were 83–99% and 19–62% for cellulose and rhizomes, respectively. In fens, the respective losses were 40–53% and 33%. In the first year, the loss in the mass of the more recalcitrant root litter did not differ between sites (mean 19–30%) and moss litter lost no mass. 3. The estimated first‐year carbon loss from belowground litter was about 0.1–0.3 times ecosystem respiration and roughly similar to net carbon gas (CO2, CH4) efflux, suggesting that vascular plants and recent plant residues contribute substantially to ecosystem release of carbon gases. On the other hand, at least 40% of the mass of the belowground litter remained on a littoral site after the first 2 years of decomposition. Slow decomposition may indicate the accumulation of organic‐rich sediments. The accumulated carbon could explain the excess CO2 release found in most littoral sites. In continuously inundated sites decomposition rates were similar to those in periodically flooded sites, but ecosystem‐atmosphere CO2 exchange fell to close to zero. This discrepancy implies that the released CO2 is dissolved in water and may be exported into the pelagic zone of the lake.  相似文献   

4.
1. Fish play a key role in the functioning of temperate shallow lakes by affecting nutrient exchange among habitats as well as lake trophic structure and dynamics. These processes are, in turn, strongly influenced by the abundance of submerged macrophytes, because piscivorous fish are often abundant at high macrophyte density. Whether this applies to warmer climates as well is virtually unknown. 2. To compare fish community structure and dynamics in plant beds between subtropical and temperate shallow lakes we conducted experiments with artificial submerged and free‐floating plant beds in a set of 10 shallow lakes in Uruguay (30°–35°S) and Denmark (55°–57°N), paired along a gradient of limnological characteristics. 3. The differences between regions were more pronounced than differences attributable to trophic state. The subtropical littoral fish communities were characterised by higher species richness, higher densities, higher biomass, higher trophic diversity (with predominance of omnivores and lack of true piscivores) and smaller body size than in the comparable temperate lakes. On average, fish densities were 93 ind. m−2 (±10 SE) in the subtropical and 10 ind. m−2 (±2 SE) in the temperate lakes. We found a twofold higher total fish biomass per unit of total phosphorus in the subtropical than in the temperate lakes, and as fish size is smaller in the former, the implication is that more energy reaches the littoral zone fish community of the warmer lakes. 4. Plant architecture affected the spatial distribution of fish within each climate zone. Thus, in the temperate zone fish exhibited higher densities among the artificial free‐floating plants while subtropical fish were denser in the artificial submerged plant beds. These patterns appeared in most lakes, regardless of water turbidity or trophic state. 5. The subtropical littoral fish communities resembled the fish communities typically occurring in temperate eutrophic and hypertrophic lakes. Our results add to the growing evidence that climate warming may lead to more complex and omnivory‐dominated food webs and higher density and dominance of smaller‐sized fish. This type of community structure may lead to a weakening of the trophic cascading effects commonly observed in temperate shallow lakes and a higher risk of eutrophication.  相似文献   

5.
Regulation of lake water level for power production and flood control is among the major anthropogenic disturbances in boreal aquatic ecosystems. In Finland, over 300 lakes, representing one third of the total inland water area of the country, are artificially regulated. To study the effects of regulation on lake littoral macroinvertebrate communities, samples were taken from upper stony littoral and from lower soft bottom littoral habitats of 11 lakes with different regulation amplitudes (wintertime fall in water level 1.19–6.75 m). Twelve unregulated (wintertime fall in water level 0.11–0.55 m) lakes with otherwise similar characteristics were used as a reference. Non-metric Multidimensional Scaling ordinations showed that the composition of macroinvertebrate assemblages was strongly associated with the amplitude of water level regulation. Taxon richness also decreased with increasing intensity of regulation. Freezing and flushing of sediments in late winter are probably the most important factors leading to the impoverished littoral macroinvertebrate fauna. Invertebrates with long life cycle seem to be particularly vulnerable to unnatural water level fluctuation. Our results show that regulation of water level has a major impact on functionally significant lake littoral macroinvertebrates.  相似文献   

6.
贫营养湖泊花神湖和紫霞湖浮游细菌群落结构分析   总被引:1,自引:0,他引:1  
以南京市花神湖和紫霞湖两个贫营养型湖泊为研究对象,通过构建花神湖和紫霞湖16S rRNA基因克隆文库探讨了浮游细菌群落结构组成的变化。结果表明,花神湖和紫霞湖两湖泊水体中浮游细菌群落结构相似,主要隶属于放线菌门(Actinobacteria)、蓝藻门(Cyanobacteria)、α-变形菌门(Alphaproteobacteria)、β-变形菌门(Betaproteobacteria)、杆菌门(Bacteroidetes)、浮霉菌门(Planctomycetes)、疣微菌门(Verrucomicrobia)和芽单胞菌门(Gemmatimonadetes),其中放线菌门(Actinobacteria)、蓝藻门(Cyanobacteria)、β-变形菌门(Betaproteobacteria)是优势细菌类群。两个湖泊水体中75%的细菌与GenBank中已有的未培养细菌同源性高于97%,同时在两个克隆文库中还发现了6个淡水细菌新类群。通过对低纬度区域贫营养型湖泊浮游细菌群落结构的分析,加深了我们对浮游细菌多样性的了解,表明湖泊浮游细菌多样性有待进一步认识。  相似文献   

7.
Distribution, diurnal variability, aggregation of zooplankton in the littoral zone of lakes and effect of various macrophyte species on the structure of its community are considered. It is shown that the horizontal migrations of zooplankton, both direct and reverse ones, are caused mainly by the pressure of fish. The effect of predacious zooplankton is less important and is directed mainly at small-sized species. The intensity of horizontal migrations of zooplankton decreases with depth, while the effect of shore avoidance is observed for the large-sized zooplankton species and is caused not only by the pressure of fish but also by other factors, most likely abiotic. The problem of interaction between macrophytes and zooplankton cannot be reduced to the role of macrophytes as a refuge. Allelopathic properties of macrophytes, competitive relations between separate zooplankton species in macrophyte thickets, as well as the effect of predacious invertebrates associated with macrophytes on zooplankton remain unclear. The role of macrophytes as a factor causing changes in hydrodynamic processes in the littoral regions of lakes is also unknown.  相似文献   

8.
Jason D. Stockwell  Jonathan P. Doubek  Rita Adrian  Orlane Anneville  Cayelan C. Carey  Laurence Carvalho  Lisette N. De Senerpont Domis  Gaël Dur  Marieke A. Frassl  Hans‐Peter Grossart  Bas W. Ibelings  Marc J. Lajeunesse  Aleksandra M. Lewandowska  María E. Llames  Shin‐Ichiro S. Matsuzaki  Emily R. Nodine  Peeter Nges  Vijay P. Patil  Francesco Pomati  Karsten Rinke  Lars G. Rudstam  James A. Rusak  Nico Salmaso  Christian T. Seltmann  Dietmar Straile  Stephen J. Thackeray  Wim Thiery  Pablo Urrutia‐Cordero  Patrick Venail  Piet Verburg  R. Iestyn Woolway  Tamar Zohary  Mikkel R. Andersen  Ruchi Bhattacharya  Josef Hejzlar  Nasime Janatian  Alfred T. N. K. Kpodonu  Tanner J. Williamson  Harriet L. Wilson 《Global Change Biology》2020,26(5):2756-2784
In many regions across the globe, extreme weather events such as storms have increased in frequency, intensity, and duration due to climate change. Ecological theory predicts that such extreme events should have large impacts on ecosystem structure and function. High winds and precipitation associated with storms can affect lakes via short‐term runoff events from watersheds and physical mixing of the water column. In addition, lakes connected to rivers and streams will also experience flushing due to high flow rates. Although we have a well‐developed understanding of how wind and precipitation events can alter lake physical processes and some aspects of biogeochemical cycling, our mechanistic understanding of the emergent responses of phytoplankton communities is poor. Here we provide a comprehensive synthesis that identifies how storms interact with lake and watershed attributes and their antecedent conditions to generate changes in lake physical and chemical environments. Such changes can restructure phytoplankton communities and their dynamics, as well as result in altered ecological function (e.g., carbon, nutrient and energy cycling) in the short‐ and long‐term. We summarize the current understanding of storm‐induced phytoplankton dynamics, identify knowledge gaps with a systematic review of the literature, and suggest future research directions across a gradient of lake types and environmental conditions.  相似文献   

9.
In littoral environments, different food resources are available for zooplankters. In addition to seston, species may feed on biofilms growing on sediments, plants (epiphyton), and at the air–water interface (neuston). However, despite a growing interest in these different biofilms, little is known about their food quality for microcrustaceans. In a field study, we measured changes in the food quality over time in terms of the essential fatty acid (EFA) content of different potential food sources for littoral consumers. The food quality of seston, neuston, and epiphyton growing on three different aquatic macrophytes were assessed. Our results showed that there is an important seasonal variability within each food source. However, in the system studied, epiphytic biofilms, especially those of Ludwigia and Callitriche offered the highest food quality, in terms of EFA content, throughout the year. As the highest EFA concentrations in each food source were found consecutively, high concentrations of these physiologically important compounds are maintained in the system throughout the year. Therefore, greater diversity of food resources could affect ecosystem productivity.  相似文献   

10.
1. Structural complexity may stabilise predator–prey interactions and affect the outcome of trophic cascades by providing prey refuges. In deep lakes, vulnerable zooplankton move vertically to avoid fish predation. In contrast, submerged plants often provide a diel refuge against fish predation for large‐bodied zooplankton in shallow temperate lakes, with consequences for the whole ecosystem. 2. To test the extent to which macrophytes serve as refuges for zooplankton in temperate and subtropical lakes, we introduced artificial plant beds into the littoral area of five pairs of shallow lakes in Uruguay (30°–35°S) and Denmark (55°–57°N). We used plants of different architecture (submerged and free‐floating) along a gradient of turbidity over which the lakes were paired. 3. We found remarkable differences in the structure (taxon‐richness at the genus level, composition and density) of the zooplankton communities in the littoral area between climate zones. Richer communities of larger‐bodied taxa (frequently including Daphnia spp.) occurred in the temperate lakes, whereas small‐bodied taxa characterised the subtropical lakes. More genera and a higher density of benthic/plant‐associated cladocerans also occurred in the temperate lakes. The density of all crustaceans, except calanoid copepods, was significantly higher in the temperate lakes (c. 5.5‐fold higher). 4. Fish and shrimps (genus Palaemonetes) seemed to exert a stronger predation pressure on zooplankton in the plant beds in the subtropical lakes, while the pelagic invertebrate Chaoborus sp. was slightly more abundant than in the temperate lakes. In contrast, plant‐associated predatory macroinvertebrates were eight times more abundant in the temperate than in the subtropical lakes. 5. The artificial submerged plants hosted significantly more cladocerans than the free‐floating plants, which were particularly avoided in the subtropical lakes. Patterns indicating diel horizontal migration were frequently observed for both overall zooplankton density and individual taxa in the temperate, but not the subtropical, lakes. In contrast, patterns of diel vertical migration prevailed for both the overall zooplankton and for most individual taxa in the subtropics, irrespective of water turbidity. 6. Higher fish predation probably shapes the general structure and dynamics of cladoceran communities in the subtropical lakes. Our results support the hypothesis that horizontal migration is less prevalent in the subtropics than in temperate lakes, and that no predator‐avoidance behaviour effectively counteracts predation pressure in the subtropics. Positive effects of aquatic plants on water transparency, via their acting as a refuge for zooplankton, may be generally weak or rare in warm lakes.  相似文献   

11.
1. The annual dynamics of methane (CH4) in a temporarily flooded meadow, mire bank, lacustrine sedge fen, temporarily and continuously inundated sedge ( Carex sp.) and reed ( Phragmites australis ) marshes were studied from June to November in the humic mesoeutrophic Lake Mekrijärvi and in eutrophicated parts of the mesotrophic Lake Heposelkä in the southern part of East Finland. The effects of water level and temperature on littoral CH4 fluxes were determined. Vegetation zonation along the moisture gradient, and associated CH4 fluxes, were evaluated.
2. The CH4 flux increased along the moisture gradient from –0.2 to 14.2 mg CH4 m–2 h–1, and was highest in the permanently inundated marshes. The duration of anoxia in the sediment caused differences in the CH4 flux. Estimated emissions for the period 1 June – 30 September in continuously inundated sparse reed and sedge marshes, drying sedge marsh, and lacustrine sedge fen were 13, 11 and 6 g CH4 m–2, respectively.
3. In continuously inundated vegetation, the fluxes were highest in late July/early August. The seasonal CH4 flux pattern suggested that the fluxes were regulated by the supply of organic matter during the course of the summer and the water level. In the temporarily flooded zone, the seasonal CH4 flux dynamics was greatly affected by changes in the lake water level, the fluxes being highest during the spring flood in early June.  相似文献   

12.
The fish community in the littoral areas of eight regulated lakes and five reference lakes in Finland was sampled by electrofishing. No significant effect of winter drawdown on species richness was recorded across lakes. Total fish density for stony bottoms of the regulated and reference lakes averaged 19.3 and 32.7 individuals per 100 m2, respectively, but this difference was not statistically significant. The combined proportion of littoral fish species, including minnow (Phoxinus phoxinus), bullhead (Cottus gobio), alpine bullhead (Cottus poecilopus), nine-spined stickleback (Pungitius pungitius), and stone loach (Barbatula barbatula), supplemented with zoobenthos feeders ruffe (Gymnocephalus cernuus) and young burbot (Lota lota), was much lower in the regulated lakes than in the reference lakes. Besides winter drawdown, other variables, such as nutrient level and lake size, affected the fish community. Guest editors: K. M. Wantzen, K.-O. Rothhaupt, M. M?rtl, M. Cantonati, L. G.-Tóth & P. Fischer Ecological Effects of Water-Level Fluctuations in Lakes  相似文献   

13.
This article presents an evaluation of two sampling methods for assessing the biodiversity of heavily vegetated wetlands. The aim was to establish an effective sampling regime to maximise total taxon richness and minimise sampling effort. Three Integrated Constructed Wetland (ICW) systems in Annetown Valley, Co. Waterford, SE of the Republic of Ireland, were sampled during spring and summer 2005. The two methods that were evaluated were pond netting and two types of horizontal activity traps, namely “horizontal activity traps” (HATs) and modified “horizontal activity traps” (modified HATs). The activity traps provided a one-way funnel system and were constructed from 2 l plastic bottles, allowing for the passive collection of taxa. HATs were designed to capture macroinvertebrates in open water and modified HATs, which were designed specifically for this study, were used to sample within stands of dense emergent vegetation. Results show that a combination of pond netting and activity traps will yield a more complete estimate of taxon richness. The performance of Modified HATs was not significantly different from that of the HATs in dense vegetation. Tests on the sampling effort required for each method are also discussed. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Guest editors: R. Céréghino, J. Biggs, B. Oertli and S. Declerck The ecology of European ponds: defining the characteristics of a neglected freshwater habitat  相似文献   

14.
Aqueous calcium (Ca) concentrations are declining in softwater lakes of the Canadian Shield largely because of decades of acid deposition and afforestation following timber harvesting. Populations of pelagic cladoceran taxa with high Ca requirements, especially Daphnia spp., are declining in response to reduced aqueous Ca availability. However, the Ca content, and thus the requirements of littoral cladoceran taxa are unknown; therefore, the potential vulnerability of this major component of lake ecosystems to ongoing regional Ca decline remains uncertain. Here, we identify the body Ca concentration of nine littoral cladoceran taxa collected from three lakes in the Muskoka-Haliburton region of Ontario, Canada. Ca content differed among taxonomic groups, ranging from 3.6 mg g−1 for Acroperus harpae to 23.2 mg g−1 for Disparalona spp. Perhaps surprisingly, some littoral microcrustacean taxa have Ca burdens comparable to the Ca-rich daphniids. Therefore, there may be differential responses to ongoing lake water Ca declines among taxa within littoral communities as has been observed among open-water taxa, with potential ecological repercussions for near-shore food webs.  相似文献   

15.
1. Ecosystems are often exposed to broad‐scale environmental change, which can potentially synchronise community dynamics and biodiversity trends. Detection of temporal coherence may, however, depend on the metrics used and their sensitivity to detect change, requiring several lines of evidence to elucidate the full range of temporal responses to environmental change. 2. Here, we tested whether the patterns of synchrony among littoral invertebrate communities of Swedish lakes over 20 years (1988–2007) differed when analysed using univariate (taxon richness, evenness, Shannon diversity and total abundance) or multivariate (temporal turnover in community composition) metrics. We included both culturally acidified and circumneutral lakes to examine whether anthropogenic stress influenced the patterns of synchrony. 3. Average total abundance, taxon richness and temporal turnover in community composition changed monotonically with time, while evenness and Shannon diversity fluctuated around a long‐term mean. However, among‐lake variability was high, resulting in a weak temporal coherence. Only trends of temporal turnover changed synchronously across lakes, irrespective of their acidification history. 4. Spatially synchronous trends in turnover across lakes were correlated with increasing water colour and decreasing sulphate concentrations, showing the importance of regional drivers of spatiotemporal coherence. 5. Our results underpin an increasing body of evidence that the detection of diversity patterns varies among metrics that ignore (taxon richness, evenness, Shannon diversity) or consider (turnover) species identities. More generally, our results suggest that community‐level studies of synchrony are suitable for elucidating the role of intrinsic versus extrinsic factors in mediating complex community assembly processes in the long term. This, in turn, contributes to our understanding of temporal patterns of biodiversity.  相似文献   

16.
17.
The bacterioplankton community composition in two Finnish forest lakes with different content of humic substances was studied by denaturing gradient gel electrophoresis (DGGE) and sequencing of the major bands. The same dominant bacterial phylotypes were detected in the bacterioplankton communities of clear-water Lake Ahvenlammi and humic Lake Sammalisto. For 4 years, in every water layer, Actinobacteria was the dominant and Verrucomicrobia the second most common phylum. In the hypolimnion, other dominant phyla were also found. We set up a mesocosm experiment to assess the effect of a sudden load of allochthonous humus extract to the bacterioplankton community composition. Changes in the bacterial communities were followed in four control and four humus extract-added mesocosms for 50 days. In the humic mesocosms the phylotypes of allochthonous Proteobacteria arriving with the humus extract were initially prevalent but disappeared during the first weeks. After this the Actinobacteria-dominated communities resembled the bacterioplankton communities of the control mesocosms and Lake Ahvenlammi. Towards the end of the experiment the community patterns in all the mesocosms started to change slightly because of erratic occurrence of new proteobacterial phylotypes. Thus the effects of a sudden load of allochthonous humic material and bacteria to the bacterioplankton community composition were transient.  相似文献   

18.
19.
Lake eutrophication and community structure   总被引:1,自引:0,他引:1  
The role of external and internal phosphorus loading in the lake eutrophication was estimated according to published data and our own. The role of plankton and benthos animals has been determined in phosphorus excretion and the formation of internal nutrient load. It is shown that the term “eutrophication” is valid both in the anthropogenic and natural increases in the trophic status of the water body.  相似文献   

20.
The ecological risk of changes in the content of essential polyunsaturated fatty acids (PUFAs) in plankton of lakes due to global warming is assessed. The analyzed hazards are temperature, dissolved phosphorus and nitrogen, and the phyto- and zooplankton structure. The main risks are related not only to the temperature increase, but indirect effects of warming. The critical link in PUFA risk assessment is the phytoplankton structure due to the particularly favorable growth conditions for cyanobacteria in nutrient rich waters in shallow lakes and reservoirs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号