首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以氮素和水分(冬季增雪和夏季增雨)为控制因子, 开展相关田间控制实验, 分析不同功能群(以生活史为划分依据)尺度和群落尺度植物生物量分配格局对氮素和水分的响应, 得出以下结论: 1)一年生植物的繁殖生物量比重明显高于多年生植物, 而多年生植物种的叶/地上生物量比值显著高于一年生植物; 2)一年生植物对氮素和水分添加的响应剧烈, 氮添加耦合夏季增雨、氮添加耦合冬季增雪显著增加了一年生植物的繁殖生物量比重和叶生物量比重。多年生植物对氮素和水分添加的响应不敏感, 表现为多年生植物的各器官生物量分配格局对氮素添加和水分添加的响应不明显。3)氮素添加和水分处理改变了群落尺度生物量分配格局: 氮素添加耦合冬季增雪处理降低了群落植物的繁殖生物量比重和茎生物量比重, 提高了群落植物的叶生物量比重。4)冬季增雪和夏季增雨与氮素添加的交互作用对群落生物量分配格局的改变不同。夏季增雨耦合氮素添加处理下群落的茎生物量比重显著提高, 群落茎生物量分配的改变引起群落的垂直结构发生改变。冬季增雪氮素处理下群落的叶生物量比重增加, 但茎生物量比重增加不明显。冬季增雪也改变了群落的结构和功能。  相似文献   

2.
海伦撂荒地植物生物量的季节变化   总被引:3,自引:1,他引:3  
对海伦20年和7年撂荒地的地上生物量和地下生物量,以及农田地上生物量和地下生物量的田间定位调查和实验室分析对比研究结果表明,随着农田撂荒时间的延长,植被生物量(根生物量和地上生物量之和)具有明显增加趋势;地上生物量之间的差异不显著,而根生物量的差异达到显著水平,表明不同撂荒年限样地的生物量差异主要体现在根生物量,撂荒时间越长,生态系统抵抗环境胁迫的能力越强,生态系统越稳定,根生物量的周转值越小,表明生态系统具有更加稳定地供应养分和能量的能力。  相似文献   

3.
《植物生态学报》2017,41(1):115
Aims Shrub species have evolved specific strategies to regulate biomass allocation among various organs or between above- and belowground biomass and shrub biomass model is an important approach to estimate biomass allocation among different shrub species. This study was designed to establish the optimal estimation models for each organ (leaf, stem, and root), aboveground and total biomass of 14 common shrub species in Mountain Luya, Shanxi Province, China. Furthermore, we explored biomass allocation characteristics of these shrub species by using the index of leaf biomass fraction (leaf to total biomass), stem biomass fraction (stem to total biomass), root biomass fraction (root to total biomass), and root to shoot mass ratio (R/S) (belowground to aboveground biomass).
Methods We used plant height, basal diameter, canopy diameter and their combination as variables to establish the optimal biomass estimation models for each shrub species. In addition, we used the ratios of leaf, stem, root to total biomass, and belowground to aboveground biomass to explore the difference of biomass allocation patterns of 14 shrub species.
Important findings Most of biomass estimation models could be well expressed by the exponential and linear functions. Biomass for shorter shrub species with more stems could be better estimated by canopy area; biomass for taller shrub species with less stems could be better estimated by the sum of the square of total base diameter multiply stem height; and biomass for the rest shrub species could be better estimated by canopy volume. The averaged value for these shrub species was 0.61, 0.17, 0.48, and 0.35 for R/S, leaf biomass fraction, stem biomass fraction, and root biomass fraction, respectively. Except for leaf biomass fraction, R/S, stem biomass fraction, and root biomass fraction for shrubs with thorn was significantly greater than that for shrubs without thorn.  相似文献   

4.
千烟洲人工林主要树种地上生物量的估算   总被引:28,自引:2,他引:28  
利用不同参数和函数,模拟了千烟洲人工林主要树种马尾松、湿地松和杉木的枝条、叶生物量和总生物量及单株各器官生物量,选择最佳函数计算生物量在各树种不同器官中的分配,估算不同林型的地上生物量.结果表明,不同树种的枝条基径(d)和枝条生物量(BW)、叶生物量(LW)之间,当d3为自变量时,相关系数最高,湿地松利用线性函数、马尾松和杉木利用幂函数模拟效果最佳;单木总生物量以利用D2H(胸径2×树高)为自变量的幂函数模拟相关系数最高;3个树种叶和枝生物量各有不同的最佳自变量和函数类型,但同一树种的叶、枝生物量最佳拟合方程的自变量和函数类型一致.马尾松林、湿地松林和杉木林的地上生物量分别为83.6、72.1和59 t·hm-2,其中树干生物量所占比重最大,叶生物量最小.根据前人的研究结果推算3种林分地下生物量分别为10.44、9.42和11.48 t·hm-2,其固碳量分别为47.94、45.14和37.52 t·hm-2.  相似文献   

5.
Aim An understanding of the relationship between forest biomass and climate is needed to predict the impacts of climate change on carbon stores. Biomass patterns have been characterized at geographically or climatically restricted scales, making it unclear if biomass is limited by climate in any general way at continental to global scales. Using a dataset spanning multiple climatic regions we evaluate the generality of published biomass–climate correlations. We also combine metabolic theory and hydraulic limits to plant growth to first derive and then test predictions for how forest biomass should vary with maximum individual tree biomass and the ecosystem water deficit. Location Temperate forests and dry, moist and wet tropical forests across North, Central and South America. Methods A forest biomass model was derived from allometric functions and power‐law size distributions. Biomass and climate were correlated using extensive forest plot (276 0.1‐ha plots), wood density and climate datasets. Climate variables included mean annual temperature, annual precipitation, their ratio, precipitation of the driest quarter, potential and actual evapotranspiration, and the ecosystem water deficit. The water deficit uniquely summarizes water balance by integrating water inputs from precipitation with water losses due to solar energy. Results Climate generally explained little variation in forest biomass, and mixed support was found for published biomass–climate relationships. Our theory indicated that maximum individual biomass governs forest biomass and is constrained by water deficit. Indeed, forest biomass was tightly coupled to maximum individual biomass and the upper bound of maximum individual biomass declined steeply with water deficit. Water deficit similarly constrained the upper bound of forest biomass, with most forests below the constraint. Main conclusions The results suggest that: (1) biomass–climate models developed at restricted geographic/climatic scales may not hold at broader scales; (2) maximum individual biomass is strongly related to forest biomass, suggesting that process‐based models should focus on maximum individual biomass; (3) the ecosystem water deficit constrains biomass, but realized biomass often falls below the constraint; such that (4) biomass is not strongly limited by climate in most forests so that forest biomass may not predictably respond to changes in mean climate.  相似文献   

6.
根系是植物吸收土壤水分和养分的重要器官, 驱动着多个生态系统过程, 该研究揭示了实验增温对根系生物量的影响及机制, 可为气候变暖背景下土壤碳动态和生态系统过程的变化提供理论依据。该研究从已发表的151篇国内外研究论文中收集到611组数据, 通过整合分析(meta-analysis)方法研究了实验增温对根系生物量(根系总生物量、粗根生物量、细根生物量、根冠比)的影响, 并探讨了增温幅度、增温年限、增温方式的影响, 以及根系生物量对增温的响应与本底环境条件(生态系统类型、年平均气温、年降水量、干旱指数)的关系。结果表明: (1)模拟增温使细根生物量显著增加8.87%, 而对根系总生物量、粗根生物量、根冠比没有显著影响; (2)中等强度增温(1-2 ℃)使得细根生物量和根冠比分别提高14.57%和23.63%; 中短期增温实验(<5年)对细根生物量具有促进影响, 而长期增温实验(≥5年)使细根生物量有降低的趋势; 开顶箱增温和红外辐射增温分别使细根生物量显著提高了17.50%和12.16%, 而电缆加热增温使细根生物量和粗根生物量显著降低了23.44%和43.23%; (3)不同生态系统类型对于增温响应不一致, 模拟增温使苔原生态系统细根生物量显著提高了21.03%, 细根生物量对增温的响应与本底年平均气温、年降水量、干旱指数均呈显著负相关关系。  相似文献   

7.

Aims

We assessed the temporal changes on microbial biomass in relation to changes in soil moisture, dissolved organic carbon and plant biomass during the summer season in a Mediterranean high-mountain grassland.

Methods

Temporal variations were tested by two-way ANOVA. The relationships among microbial biomass, plant biomass, soil water content, soil organic carbon, dissolved organic carbon and total soil nitrogen during the summer season were assessed by means of structural equation modeling.

Results

Microbial biomass did not show variation, while dissolved organic carbon and root biomass decreased throughout the summer. Aboveground plant biomass peaked in the middle of the summer, when soil water content was at its minimum. Soil water content directly and negatively affected soil microbial biomass, and positively affected dissolved organic carbon. Moreover soil microbial biomass and dissolved organic carbon were negatively related. Plant biomass effects on soil microbial biomass were driven by root biomass, which indirectly affected soil microbial biomass through effects on soil organic carbon and soil nitrogen.

Conclusions

The temporal dynamic of microbial biomass during the summer season appeared to differ from previous observations in temperate alpine communities, and indicated the drought resistance of the microbial community during the summer in Mediterranean high-mountain grasslands. During the dry period, microbial biomass may play an alternative role in soil carbon conservation.  相似文献   

8.
生产力是草地生态系统重要的服务功能, 而生物量作为生态系统生产力的主要组成部分, 往往同时受到氮和水分两个因素的限制。在全球变化背景下, 研究草地生态系统生物量对氮沉降增加和降水变化的响应具有重要意义, 但现有研究缺乏对其在大区域空间尺度以及长时间尺度上响应的综合评估和量化。本研究搜集了1990-2017年间发表论文的有关模拟氮沉降及降水变化研究的相关数据, 进行整合分析, 探讨草地生态系统生物量对氮沉降和降水量两个因素的变化在空间和时间尺度上的响应。结果表明: (1)氮添加、增雨处理以及同时增氮增雨处理都能够显著地提高草地生态系统的地上生物量(37%, 41%, 104%)、总生物量(32%, 23%, 60%)和地上地下生物量比(29%, 25%, 46%)。单独增雨显著提高地下生物量(10%), 单独施氮对地下生物量影响不显著, 但同时增雨则能显著提高地下生物量(43%); (2)氮添加和增雨处理对草地生态系统生物量的影响存在明显的空间变异。在温暖性气候区和海洋性气候区的草地生态系统中, 氮添加对地上、总生物量及地上地下生物量比的促进作用更强, 而在寒冷性气候区和温带大陆性气候区的草地生态系统中, 则增雨处理对地下、总生物量的促进作用更强; (3)草地生态系统生物量对氮添加和增雨处理的响应也存在时间格局上的变化, 地下生物量随着氮添加年限的增加有降低的趋势, 地上、总生物量及地上地下生物量比则有增加的趋势。增雨年限的增加对总生物量没有明显的影响, 但持续促进地上生物量和地下生物量, 增加地上地下生物量比, 可见长期增氮、长期增雨对地上生物量的促进作用更明显。  相似文献   

9.
《植物生态学报》2018,42(8):818
生产力是草地生态系统重要的服务功能, 而生物量作为生态系统生产力的主要组成部分, 往往同时受到氮和水分两个因素的限制。在全球变化背景下, 研究草地生态系统生物量对氮沉降增加和降水变化的响应具有重要意义, 但现有研究缺乏对其在大区域空间尺度以及长时间尺度上响应的综合评估和量化。本研究搜集了1990-2017年间发表论文的有关模拟氮沉降及降水变化研究的相关数据, 进行整合分析, 探讨草地生态系统生物量对氮沉降和降水量两个因素的变化在空间和时间尺度上的响应。结果表明: (1)氮添加、增雨处理以及同时增氮增雨处理都能够显著地提高草地生态系统的地上生物量(37%, 41%, 104%)、总生物量(32%, 23%, 60%)和地上地下生物量比(29%, 25%, 46%)。单独增雨显著提高地下生物量(10%), 单独施氮对地下生物量影响不显著, 但同时增雨则能显著提高地下生物量(43%); (2)氮添加和增雨处理对草地生态系统生物量的影响存在明显的空间变异。在温暖性气候区和海洋性气候区的草地生态系统中, 氮添加对地上、总生物量及地上地下生物量比的促进作用更强, 而在寒冷性气候区和温带大陆性气候区的草地生态系统中, 则增雨处理对地下、总生物量的促进作用更强; (3)草地生态系统生物量对氮添加和增雨处理的响应也存在时间格局上的变化, 地下生物量随着氮添加年限的增加有降低的趋势, 地上、总生物量及地上地下生物量比则有增加的趋势。增雨年限的增加对总生物量没有明显的影响, 但持续促进地上生物量和地下生物量, 增加地上地下生物量比, 可见长期增氮、长期增雨对地上生物量的促进作用更明显。  相似文献   

10.
Summary Protozooplankton were sampled in the iceedge zone of the Weddell Sea during the austral spring of 1983 and the austral autumn of 1986. Protozooplankton biomass was dominated by flagellates and ciliates. Other protozoa and micrometazoa contributed a relatively small fraction to the heterotrophic biomass. During both cruises protozoan biomass, chlorophyll a concentrations, phytoplankton production and bacterial biomass and production were low at ice covered stations. During the spring cruise, protozooplankton, phytoplankton, and bacterioplankton reached high concentrations in a welldeveloped ice edge bloom 100 km north of the receding ice edge. During the autumn cruise, the highest concentrations of biomass were in open water well-separated from the ice edge. Integrated protozoan biomass was <12% of the biomass of phytoplankton during the spring cruise and in the autumn the percentages at some stations were >20%. Bacterial biomass exceeded protozooplankton biomass at ice covered stations but in open water stations during the fall cruise, protozooplankton biomass reached twice that of bacteria in the upper 100m of the water column. The biomass of different protozoan groups was positively correlated with primary production, chlorophyll a concentrations and bacterial production and biomass, suggesting that the protozoan abundances were largely controlled by prey availability and productivity. Population grazing rates calculated from clearance rates in the literature indicated that protozooplankton were capable of consuming significant portions of the daily phyto- and bacterioplankton production.  相似文献   

11.
《植物生态学报》2014,38(4):355
Aims Shrub recovery is identified as a major cause of an increase in carbon stocks in terrestrial ecosystems in China, and yet there is a great uncertainty in the contribution of shrubs to the carbon sink. Our objectives were to determine the biomass allocation pattern and carbon density in alpine shrubs.
Methods We conducted investigations in 14 shrub communities in eastern Qinghai-Xizang Plateau, at 3 500 m above sea level. Plant samples were collected from each plot and measured for biomass in leaves, branches and stems, and roots in laboratory; the data were used to analyze the biomass allocation and carbon density.
Important findings The mean biomass was (5.38 ± 3.30) Mg?hm–2 in the shrub layer. There were significant differences in biomass between different shrub types, with the mean of (7.28 ± 4.96) Mg?hm–2 for the broadleaved deciduous shrubs and (4.32 ± 1.36) Mg?hm–2 for the leathery-leaved shrubs. The indicators of individual feature and community structure were significantly correlated with biomass per unit land area. However, these relationships were developed based on multiple community structure factors; any single factor alone was insufficient to explain the patterns of biomass variations. The patterns of biomass allocation differed significantly between different shrub types. In this study, there was more allocation of photosynthetic products to roots. The mean total community biomass was (6.41 ± 3.86) Mg?hm–2 and the shrub layer accounted for (83.18 ± 8.14)% of the total community biomass. There were significant correlations (p < 0.05) between shrub layer biomass and herb layer biomass, between shrub layer biomass and litter layer biomass, and between shrub layer biomass and the total community biomass. The biomass of various organs were also significantly correlated (p < 0.01) with the totalcommunity biomass. The mean biomass carbon density of the shrubs was estimated at (3.20 ± 1.93) Mg?hm–2 across the 14 communities by using biomass conversion factor method.  相似文献   

12.
于2010年7月(夏季)调查了雷州半岛近海海域浮游植物和细菌生物量的空间分布特征,并分析了其与海区主要环境因子间的相互关系。结果表明:雷州半岛近海海域夏季浮游植物生物量的变化范围为15.66~1114.92mg.m-3;平均值为192.49mg.m-3;夏季浮游细菌生物量的变化范围为3.36~50.12mgC.m-3,平均值为18.43mgC.m-3;浮游植物生物量水平分布格局在不同区域间没有显著差异,浮游细菌生物量的水平分布呈现西部海区>东部海区>南部海区的格局,差异极显著;浮游植物和浮游细菌生物量在表底层的垂直分布格局没有明显的规律,表、底层生物量或高或低,差异不显著;浮游植物和浮游细菌生物量多体现近岸站位>中间站位>远岸站位,即从陆向向海向呈递减的分布格局;夏季雷州半岛近海海域浮游细菌生物量与水温、pH和硅酸盐呈显著或极显著正相关,与盐度、TOC和磷酸盐呈极显著负相关;浮游植物生物量与pH和DO呈显著或极显著正相关,与盐度和TOC呈显极显著负相关;浮游植物生物量与浮游细菌生物量存在显著的正相关性,二者存在着相互影响的调控关系。  相似文献   

13.
Uncertainty about the mechanisms driving biomass change at broad spatial scales limits our ability to predict the response of forest biomass storage to global change. Here we use a spatially representative network of 874 forest plots in New Zealand to examine whether commonly hypothesised drivers of forest biomass and biomass change (diversity, disturbance, nutrients and climate) differ between old-growth and secondary forests at a national scale. We calculate biomass stocks and net biomass change for live above-ground biomass, below-ground biomass, deadwood and litter pools. We combine these data with plot-level information on forest type, tree diversity, plant functional traits, climate and disturbance history, and use structural equation models to identify the major drivers of biomass change. Over the period 2002–2014, secondary forest biomass increased by 2.78 (1.68–3.89) Mg ha?1 y?1, whereas no significant change was detected in old-growth forests (+0.28; ?0.72 to 1.29 Mg ha?1 y?1). The drivers of biomass and biomass change differed between secondary and old-growth forests. Plot-level biomass change of old-growth forest was driven by recent disturbance (large tree mortality within the last decade), whereas biomass change of secondary forest was determined by current biomass and past anthropogenic disturbance. Climate indirectly affected biomass change through its relationship with past anthropogenic disturbance. Our results highlight the importance of disturbance and disturbance history in determining broad-scale patterns of forest biomass change and suggest that explicitly modelling processes driving biomass change within secondary and old-growth forests is essential for predicting future changes in global forest biomass.  相似文献   

14.
The allocation of biomass and nutrients in plants is a crucial factor in understanding the process of plant structures and dynamics to different environmental conditions. In this study, we present a comprehensive scaling analysis of data from a desert ecosystem to determine biomass and nutrient (carbon (C), nitrogen (N), and phosphorus (P)) allocation strategies of desert plants from 40 sites in the Hexi Corridor. We found that the biomass and levels of C, N, and P storage were higher in shoots than in roots. Roots biomass and nutrient storage were concentrated at a soil depth of 0–30 cm. Scaling relationships of biomass, C storage, and P storage between shoots and roots were isometric, but that of N storage was allometric. Results of a redundancy analysis (RDA) showed that soil nutrient densities were the primary factors influencing biomass and nutrient allocation, accounting for 94.5% of the explained proportion. However, mean annual precipitation was the primary factor influencing the roots biomass/shoots biomass (R/S) ratio. Furthermore, Pearson’s correlations and regression analyses demonstrated that although the biomass and nutrients that associated with functional traits primarily depended on soil conditions, mean annual precipitation and mean annual temperature had greater effects on roots biomass and nutrient storage.  相似文献   

15.
长白山暗针叶林苔藓植物生物量的研究   总被引:9,自引:0,他引:9  
在长白山北坡暗针叶林对地面和树附生苔藓植物的生物量进行了测定.地面生苔藓采取样带调查取样法测定,树附生苔藓应用McCune方法对树干和树枝的附生苔藓生物量都做了细致的测定.结果表明,长白山暗针叶林中的苔藓植物分布很不均匀,随海拔变化差异很大,海拔1100m最低,仅为543kg·hm^-2;海拔1250m最高,达5097kg·hm^-2.苔藓植物生物量的变化对生境有很好的指示作用,特别是塔藓和拟垂枝藓的生物量随海拔的变化与森林系统的群落学特点有一定的相关性:在海拔1100~1700m,塔藓的生物量与臭冷杉的重要值变化趋势相近,随海拔升高而减少;拟垂枝藓的生物量与鱼鳞云杉重要值的变化趋势相似,随海拔升高而增加.此外,生物量随海拔的变化表明了不同苔藓植物对环境条件要求的差异,拟垂枝藓比塔藓水分条件要求更高.因此,生物量的研究在植物生理上也有一定的指示作用.  相似文献   

16.
Wang Y  Yu S  Wang J 《Ecology letters》2007,10(5):401-410
Earlier studies indicated that plant diversity influences community resistance in biomass when ecosystems are exposed to perturbations. This relationship remains controversial, however. Here we constructed grassland communities to test the relationships between species diversity and productivity under control and experimental drought conditions. Species richness was not correlated with biomass either under constant conditions or under drought conditions. However, communities with lower biomass production were more resistant to drought stress than those that were more productive. Our results also showed that ecosystem resistance to drought is a decreasing but nonlinear function of biomass. In contrast, species diversity had little and an equivocal effect on ecosystem resistance. From the results reported here, and the results of several previous studies, we suggest that high biomass systems exhibited a greater biomass reduction in response to drought than low biomass systems did, regardless of the relationship between plant diversity and community biomass production.  相似文献   

17.
Korb  Julie E.  Ranker  Tom A. 《Plant Ecology》2001,157(1):1-11
We measured leaf distribution, crown shape, and biomass allocation patterns in open-grown saplings of three tree species (Cedrela odorata, Cordia alliodora, and Hyeronima alchorneoides) that differed in above-ground architecture and successional status. The objectives were to: (1) analyze the relationship between crown structure and biomass allocation in free-growing juveniles and (2) assess whether predictions that relate crown structure and biomass distribution of adult individuals can be applied to noncompeting saplings. Significant differences in crown structure and biomass allocation were found among the three species. Mean dry biomass was 990 g in Cedrela, 665 g, in Cordia, and 1281 g in Hyeronima. Cedrela allocated a greater proportion of biomass into roots than the other two species. We observed no distinct pattern of foliage angle, and no evidence of decrease in crown construction efficiency with tree size. Predictions stated by other authors for mature individuals partially explained the relationships between biomass allocation and morphological variables of non-competing saplings. We proposed two alternative biomass allocation patterns: (1) in open conditions saplings of early successional species exhibit structural characteristics more adapted for high light levels than gap-dependent species, and (2) early successional species have lower cost-benefit ratio for biomass construction and higher foliar efficiency than late successional ones. In general, crown morphometric characteristics and biomass distribution patterns of the three species studied corresponded with the two proposed patterns.  相似文献   

18.
Microphytobenthos plays a vital role in estuarine and coastal carbon cycling and food webs. Yet, the role of exogenous factors, and thus the effects of climate change, in regulating microphytobenthic biomass is poorly understood. We aimed to unravel the mechanisms structuring microphytobenthic biomass both within and across ecosystems. The spatiotemporal distribution of the biomass of intertidal benthic algae (dominated by diatoms) was estimated with an unprecedented spatial extent from time-series of Normalized Differential Vegetation Index (NDVI) derived from a 6-year period of daily Aqua MODIS 250-m images of seven temperate, mostly turbid, estuarine and coastal ecosystems. These NDVI time-series were related to meteorological and environmental conditions. Intertidal benthic algal biomass varied seasonally in all ecosystems, in parallel with meteorology and water quality. Seasonal variation was more pronounced in mud than in sand. Interannual variation in biomass was small, but synchronized year-to-year biomass fluctuations occurred in a number of disjointed ecosystems. Air temperature explained interannual fluctuations in biomass in a number of sites, but the synchrony was mainly driven by the wind/wave climate: high wind velocities reduced microphytobenthic biomass, either through increased resuspension or reduced emersion duration. Spatial variation in biomass was largely explained by emersion duration and mud content, both within and across ecosystems. The results imply that effects on microphytobenthic standing stock can be anticipated when the position in the tidal frame is altered, for example due to sea level rise. Increased storminess will also result in a large-scale decrease of biomass.  相似文献   

19.
林龄和竞争对日本落叶松各组分生物量异速关系的影响   总被引:1,自引:0,他引:1  
基于7-、17-、30-和40年生日本落叶松生物量测定数据,应用方差分析和多重比较分析了林龄和林分内树木竞争类型(优势木、平均木和被压木)对各组分生物量分配比例和异速关系的影响,构建了含林龄和树木竞争类型作为哑变量的生物量异速方程,为准确估算日本落叶松人工林生物量和碳储量提供依据。结果表明:(1)林龄显著影响生物量分配比例的异速关系。随林龄增加干生物量比例增大,枝叶生物量比例减小,根生物量逐渐稳定。加入林龄的干、枝和叶生物量方程显著改善。年龄效应在幼龄林阶段作用最显著,需单独构建生物量模型。(2)树木竞争类型对生物量分配的影响小于林龄。立地条件一致下,虽然相同胸径的优势木比劣势木积累更多的枝叶生物量和少的干生物量,但它们分配生物量到不同器官的比例和方式是基本相同的,林内竞争不会导致生物量分配规律由"异速关系理论"向"环境优先理论"转化。因此,常规采用平均木法估算各组分生物量是可行的。(3)在近成熟林分中不同竞争类型树木的根生物量分配比例均较为稳定,采用根茎比比值来估算根生物量是可行的。  相似文献   

20.
We tested whether plants allocate proportionately less biomass to roots in response to above-ground competition as predicted by optimal partitioning theory. Two population densities of Abutilon theophrasti were achieved by planting one individual per pot and varying spacing among pots so that plants in the two densities experienced the same soil volume but different degrees of canopy overlap. Density did not affect root:shoot ratio, the partitioning of biomass between fine roots and storage roots, fine root length, or root specific length. Plants growing in high density exhibited typical above-ground responses to neighbours, having higher ratios of stem to leaf biomass and greater leaf specific area than those growing in low density. Total root biomass and shoot biomass were highly correlated. However, storage root biomass was more strongly correlated with shoot biomass than was fine-root biomass. Fine-root length was correlated with above-ground biomass only for the small subcanopy plants in crowded populations. Because leaf surface area increased with biomass, the ratio between absorptive root surface area and transpirational leaf surface area declined with plant size, a relationship that could make larger plants more susceptible to drought. We conclude that A. theophrasti does not reallocate biomass from roots to shoots in response to above-ground competition even though much root biomass is apparently involved in storage and not in resource acquisition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号