首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The vagus nerve of the gopher-snake, Drymarchon corais couperi (Holbrook), discharges carbon dioxide at an average rate of 0.00234 mgm. of gas per gram of nerve per minute. The extremes were 0.0032 mgm. and 0.0017 mgm. 2. These rates were maintained as well when the nerve was separated from its central and its peripheral connections as when these connections were intact showing that the resting metabolism of nerve is a local operation and is not immediately dependent upon distant connections. 3. These observations also point to the conclusion that the passage of normal impulses over a nerve call for an increase of activity that is unobservable by the method employed and that must be small in amount compared with that produced by artificial stimulation.  相似文献   

2.
The potassium contraction of skeletal muscle and relaxation of cardiac muscle have been correlated with the carbon dioxide and total acid production of these tissues. 1. The immersion of surviving sartorius muscles of the frog in isotonic potassium chloride solution causes a marked increase in the rate of acid production. 2. It is probable that carbon dioxide is the principal acid involved in the above effect. 3. The immersion of surviving cardiac muscle of the frog in isotonic potassium chloride solution causes a pronounced depression in the rate of survival acid production. 4. Reasons are given for believing that these changes in metabolism may be independent of the stimulation and inhibition of contraction which potassium simultaneously produces in these tissues.  相似文献   

3.
1. It is possible to determine by the colorimetric method the rate of production of carbon dioxide by the cardiac ganglion of Limulus. 2. Carbon dioxide formation in the cardiac ganglion was found to run parallel to the rate of heart beat for different temperatures. 3. The conclusion seems justified that the rate of cardiac rhythm of Limulus depends upon a chemical reaction in the nerve cells of the cardiac ganglion and that this reaction is associated with the production of carbon dioxide since the rate of beat and the rate of CO2 production are similarly affected by changes in temperature.  相似文献   

4.
1. In Mnemiopsis veratrin shows two stages of veratrin poisoning. First, inhibition of the beats of the plates which disappears on cutting them away either singly or in small groups. Second, after half an hour mechanical stimulation excites the beat of the plates in the intact veratrinized animal. It is concluded that veratrin acts on nervous tissue and not on the substance of the swimming plates. 2. In Lumbricus, veratrin acts on the ventral nerve cord alone, and not on the muscles and peripheral nerves. 3. In Musca, veratrin first causes opisthotonos, then spasms and extreme flexion of the legs. Decapitation causes these effects to disappear hence veratrin acts on the cerebral ganglia of the fly. 4. Veratrin applied to the sciatic nerve of the frog causes, after a latent period of 20 minutes, irregular contractions of the gastrocnemius which persist for an hour or more. Veratrin is thus a neurophil alkaloid of the first class as well as second and in this way resembles tetraethyl ammonium chloride. 5. If the end of a sciatic nerve is dipped into veratrin solution, then direct stimulation of the gastrocnemius muscle results in contraction with delayed relaxation, although the muscle itself is not subject to the action of veratrin. 6. By means of preparations of the sartorius muscle of the frog it is shown that veratrin acts not on the muscle cells directly but on the nerve fibers. Hence veratrin produces the characteristic muscle curve showing delayed relaxation by its action on the nervous elements.  相似文献   

5.
1. Quiescent sciatic nerve of the frog discharges CO2 at the average rate of 0.00876 mg. CO2 per gram of nerve per minute. 2. Sciatic nerve steeped one minute in boiling water discharges CO2 at first at a low rate and after an hour and a half not at all. 3. Degenerated sciatic nerve discharges CO2 at a slightly higher rate than normal living nerve does. 4. Connective tissue from the frog discharges CO2 at an average rate of 0.0097 mg. per gram of tissue per minute. 5. Assuming that a nerve is composed of from one-half to one-quarter connective tissue the CO2 output from its strictly nervous components is estimated to be at a rate of 0.008 mg. CO2 per gram of nerve per minute. 6. Stimulated sciatic nerve increases the rate of its CO2 output over quiescent nerve by about 14 per cent. When this number is corrected for strictly nervous tissue the rate is about 16 per cent. 7. The increased rate of CO2 production noted on stimulation in normal sciatic nerves was not observed when they were boiled, blocked, or degenerated. It was also not observed with stimulated strands of connective tissue.  相似文献   

6.
FAST AXONAL TRANSPORT IN VITRO IN THE SCIATIC SYSTEM OF THE FROG   总被引:7,自引:3,他引:4  
Abstract— An in vitro system from the frog has been used to study fast axonal protein transport. The preparation, which was incubated in a specially made chamber, consisted of the gastrocnemius muscle, the sciatic nerve, the dorsal ganglia and part of the spinal cord. The parts were separated from each other by silicone grease barriers, which made it possible to follow the migration of labelled proteins from the spinal cord and ganglia, along the sciatic nerve, towards the muscle. About 80 per cent of transported proteins in the sciatic nerve originated from the dorsal spinal ganglia and moved antidromically at a rate of 60–90 mm per day at 18°C. The rapidly transported proteins were 90 per cent particulate and mainly associated with structures sedimenting in the microsomal fraction.
The effects of cyclohexirnide showed that the synthesis of rapidly moving proteins and their transport were separate processes. A low concentration of colchicine inhibited the transport when it was present in the medium surrounding the ganglia, but had no effect even at a higher concentration, when it was added to the nerve compartment. The presence of vinblastine at a low concentration in either of the two compartments completely arrested the protein transport. Likewise N-ethylmaleimide or p-chloromercuribenzene sulphonic acid in the nerve medium effectively blocked the fast transport. Results from experiments performed to test the possibility of disto-proximal flow and of transfer of proteins from the muscle to the nerve are discussed.  相似文献   

7.
To test the hypothesis that vasodilation occurs because of the release of a vasoactive substance after a brief muscle contraction and to determine whether acetylcholine spillover from the motor nerve is involved in contraction-induced hyperemia, tetanic muscle contractions were produced by sciatic nerve stimulation in anesthetized dogs (n = 16), instrumented with flow probes on both external iliac arteries. A 1-s stimulation of the sciatic nerve at 1. 5, 3, and 10 times motor threshold increased blood flow above baseline (P < 0.01) for 20, 25, and 30 s, respectively. Blood flow was significantly greater 1 s after the contraction ended for 3 and 10 x motor threshold (P < 0.01) and did not peak until 6-7 s after the contraction. The elevations in blood flow to a 1-s stimulation of the sciatic nerve and a 30-s train of stimulations were abolished by neuromuscular blockade (vecuronium). The delayed peak blood flow response and the prolonged hyperemia suggest that a vasoactive substance is rapidly released from the contracting skeletal muscle and can affect blood flow with removal of the mechanical constraint imposed by the contraction. In addition, acetylcholine spillover from the motor nerve is not responsible for the increase in blood flow in response to muscle contraction.  相似文献   

8.
1. Effects of PCP at the frog neuromuscular junction were studied in vitro in sciatic nerve sartorius muscle of the toad Pleurodema-thaul. 2. Within the concentration 0.003-0.1 mM, PCP caused a dose-time-dependent block of evoked transmitter release acompanied by an increase in the rate of spontaneous quantal release. 3. PCP induced an increase in miniature endplate potential (MEPP) frequency and it was not antagonized in a Ca2(+)-free medium, indicating that it does not depend upon Ca2+ influx from the external medium, but may act by releasing Ca2+ from intraterminal stores. 4. The present data, together with previous results concerning PCP at eighth sympathetic ganglia indicate that 3,4-diaminopyridine (3,4-DAP) counteracts the effects of PCP on synaptic transmission. This result suggests that PCP interfering Ca2+ influx occurs during depolarization of motor nerve terminals.  相似文献   

9.
MTT, a positively charged tetrazolium salt, is widely used as an indicator of cell viability and metabolism and has potential for histochemical identification of tissue regions of hypermetabolism. In the present study, MTT was infused in the constant-flow perfused rat hindlimb to assess the effect of various agents and particularly vasoconstrictors that increase muscle metabolism. Reduction of MTT to the insoluble formazan in muscles assessed at the end of experiments was linear over a 30 min period and production rates were greater in red fibre types than white fibre types. The vasoconstrictors, norepinephrine (100 nM) and angiotensin (10 nM) decreased MTT formazan production in all muscles but increased hindlimb oxygen uptake and lactate efflux. Veratridine, a Na(+) channel opener that increases hindlimb oxygen uptake and lactate efflux without increases in perfusion pressure, also decreased MTT formazan production. Membrane stabilizing doses (100 microM) of (+/-)-propranolol reversed the inhibitory effects of angiotensin and veratridine on MTT formazan production. Muscle contractions elicited by stimulation of the sciatic nerve, reversed the norepinephrine-mediated inhibitory effects on MTT formazan production, even though oxygen consumption and lactate efflux were further stimulated. Stimulation of hindlimb muscle oxygen uptake by pentachlorophenol, a mitochondrial uncoupler, was not associated with alterations in MTT formazan production. It is concluded that apart from muscle contractions MTT formazan production does not increase with increased muscle metabolism. Since the vasoconstrictors angiotensin and norepinephrine as well as veratridine activate Na(+) channels and the Na(+)/K(+) pump, energy required for Na(+) pumping may be required for MTT reduction. It is unlikely that vasoconstrictors that stimulate oxygen uptake do so by uncoupling respiration.  相似文献   

10.
The pattern of synthesis of rapidly-labelled RNA of hen sciatic nerve was studied during Wallerian degeneration. At 2,4,8, 16 and 30 days of degeneration the proximal and distal stumps of the severed nerve as well as the intact contralateral sciatic nerve (functional control) were excised and incubated with either [5-3H]uridine or [2-14C]uridine for 0.5 h. The electrophoretic pattern of RNA from the normal adult sciatic nerve showed that most of the radioactivity was incorporated into RNA species migrating between the 18 S and 4 S components of the bulk RNA. The synthesis of RNA was sensitive to actinomycin-D, an indication that it was directed by a DNA template. The electrophoretic patterns of the rapidly-labelled RNA in the proximal and distal nerve stumps demonstrated a change following nerve section. After 2–4 days of Wallerian degeneration the degenerating distal nerves incorporated more radioactivity in the 4 S region than the corresponding controls, but at 8 and 16-days after degeneration relatively more label appeared in higher molecular weight RNA species. In the intact sciatic nerve of the operated hens progressively more radioactivity was detected in the 4 S region with increasing time after the contralateral nerve section. At each stage of Wallerian degeneration the specific radioactivities of RNA in the control nerves from experimental hens were higher than those of the normal adult sciatic nerve. These results indicated a change of RNA metabolism in increased functional activity and during Wallerian degeneration.  相似文献   

11.
The normal reaction of the cœlomic fluid in Patiria miniata and Asterias ochraceus is pH 7.6, and of the cæca, 6.7, compared with sea water at 8.3, all without salt error correction. A medium at pH 6.7–7.0 is optimum for the cæca for ciliary survival and digestion of protein, and is maintained by carbon dioxide production. The optimum pH found for carbon dioxide production is a true one for the effect of hydrogen ion concentration on the tissue. It does not represent an elimination gradient for carbon dioxide. Because the normal excised cæca maintain a definite hydrogen ion concentration and change their internal environment toward that as an optimum during life, there exists a regulatory process which is an important vital function.  相似文献   

12.
1. By means of a differential volumeter the increased oxygen consumption and the increased carbon dioxide output of frog nerve during and after stimulation have been observed. 2. Measurements of the R.Q. of nerve by this method are complicated by the retention of carbon dioxide. Attempts were made to avoid this (a) by studying the nerves at high CO2 tensions to make the retention small and (b) by calculating the amount of CO2 retained from the carbon dioxide dissociation curve of nerve and applying this value as a correction. 3. The results of both those methods when averaged together give an R.Q. of the excess metabolism of 1.19 and an R.Q. of the resting nerve of 0.97. 4. Observations on the time course of the gas exchange during stimulation indicate a delay in the appearance of the extra carbon dioxide output relative to the oxygen intake. 5. Very similar time curves can be calculated from the diffusion coefficients and the solubilities of the oxygen and the carbon dioxide.  相似文献   

13.
Perfect coordination is required between the amount of air breathed to ventilate the air cells of the lungs and the amount of blood pumped through them by the heart.Over-ventilation often accompanies severe emotional disturbances with far-reaching effects on the functions of the brain and other organs. Of particular interest are the effects of altering breathing upon angina pectoris.In conditions with under-ventilation the effects are serious because the carbon dioxide which accumulates acts as a narcotic on the nerve centers which control breathing. If oxygen is given to such patients they may be made much worse and become unconscious. Morphine and other narcotics also make matters worse.Under-ventilation in patients with over-distention of the air cells of the lungs results in a chronic form of carbon dioxide poisoning, so that the lungs may fail in ventilatory function. Recent work by Whittenberger has shown how to combat this situation by mechanical over-ventilation. As the excess of carbonic acid is removed the narcotic effect of the gas is lessened and the nerve center governing breathing resumes more normal operation under which the effect of oxygen is no longer deleterious.  相似文献   

14.
Abstract— The lipid composition of chick brain and sciatic nerve was determined during development. It was confirmed that the addition of CaCl2 to solvents during the extraction of lipids from brain results in much higher yields of diphosphoinositides particularly from unmyelinated embryo brain. Unlike the earlier report for rat brain, the recovery of triphosphoinositides was also Substantially increased. The amount of CaCl2, required to achieve optimal recoveries decreased with increasing age and addition of more than this optimal amount depressed the yields of polyphosphoinositides, particularly triphosphoinositides. CaCl2, addition did not improve the yield of diphosphoinositides from sciatic nerve of any age but drastically reduced recovery of triphosphoinositidcs. Differenccs in the effect of CaCl2 were not the result of variation in the tissue concentrations of calcium or magnesium.
The lipid composition of sciatic nerve closely reflected that of the myelin. Both polyphosphoinositides were absent initially and their accumulation paralleled that of cerebrosides and sulfatides. The concentration of diphosphoinositides remained constant after the period of most active myelination while triphosphoinositides and the galactolipids continued to increase suggesting maturational changes in the myelin composition. The pattern of deposition in chick brain was similar except for the much greater contribution of non-myelin structures. Both polyphosphoinositides were present in equimolar amounts in pre-myelination embryonic tissue. The concentration of diphosphoinositides increased during active myelination only while triphosphoinositides continued to increase thereafter.  相似文献   

15.
16.
本实验使用120只Wistar系大鼠,采用定位、定量、定时的方法压挫坐骨神经后,给予治疗剂量的地塞米松,动态地观察损伤后红、白、中间肌纤维运动终板AChE的酶组织化学及各型肌纤维运动终板超微结构的变化。结果提示,早期适量应用地塞米松对周围神经损伤后运动终板的恢复有促进作用。  相似文献   

17.
1. The resting rate of oxygen consumption of the excised sciatic nerve of the frog is 1.23 c.mm. of oxygen per gm. of nerve per minute. 2. During stimulation with an induction coil with 100 make and 100 break shocks per second there is an excess oxygen consumption amounting on the average to 0.32 c.mm. of oxygen per gm. of nerve per minute of stimulation, or a 26 per cent increase over the resting rate. 3. The magnitude of the excess oxygen consumption in stimulation, in agreement with the all-or-none law, is not markedly influenced by considerable variations in the intensity of stimulation. 4. Increasing the frequency of stimulation from 100 to 200 shocks per second increases the extra oxygen used only 1.12–1.18 times. The same change in frequency of stimulation increases the negative variation 1.15 times and the heat production about 1.25 times (Hill). 5. This parallelism between the excess oxygen and the negative variation argues definitely for some causal connection between the excess oxygen and the nerve impulse itself. 6. Calculation shows that the oxygen tension inside these nerves was not zero.  相似文献   

18.
The subcutaneous injection of acrylamide (30 mg kg-1 day-1) in adult male rats induces a severe impairment of the general state of health and a progressive polyneuropathy at the cumulative dose of 180 mg/kg. At the cumulative dose of 400 mg acrylamide does not interfere with the incorporation of plasma inorganic phosphate into the inorganic and organic acid-soluble phosphate fractions of either the gastrocnemius muscle or the sciatic nerve Schwann cells. Nor does it modify the characteristic metabolic response of these fractions to Wallerian degeneration and neurogenic muscle atrophy.  相似文献   

19.
Although the results we have recorded merely serve to indicate the possibilities of this interesting field of investigation, we have sufficient data to enable us to draw certain general conclusions. In the first place it is evident that the bloods of the more highly developed marine invertebrates, such as the active Crustacia and the Cephalopods, are specially adapted for the carriage of carbon dioxide. The quantity of carbon dioxide taken up by the blood of Maia, Palinurus, or Octopus at any given tension of the gas is, in general, about twice or three times as great as that which is taken up by sea water under the same conditions. On the other hand, the blood of a slow, creeping form, such as Aplysia, or of a sessile animal such as the ascidian Phallusia shows no more adaptation for the carriage of carbon dioxide than does sea water. But our estimations of the CO2 content of the blood as it circulates in the bodies of these more active invertebrates show that the conditions of transport of this gas differ considerably in some respects from those which obtain in mammals. For the invertebrate blood in the body contains only a relatively small quantity of carbon dioxide, averaging in the forms we examined from 3 to 10 cc. per 100 cc. of blood. This forms a marked contrast with the condition found in mammals where even the arterial blood contains about 50 cc. of CO2 per 100 cc. of blood. The invertebrate, therefore, works at a very low CO2 tension. There is a twofold significance in this circumstance. In the first place, it means that only the first portion of the carbon dioxide dissociation curve is in use in the respiratory mechanism. Now an inspection of our curves will show that at these low carbon dioxide tensions the dissociation curves tend to be steeper than at higher tensions. As we intend to show in a later paper it can be proved mathematically that, other things being equal, a blood with a carbon dissociation curve of moderate steepness, i.e. one in which the carbon dioxide content of the blood increases fairly rapidly with increase of carbon dioxide tension, is a more efficient carrier of the gas from the tissues to a respiratory surface than a blood in which the dissociation curve is either steeper or flatter. It would seem as if the active invertebrates avoid the use of too flat a part of their CO2 dissociation curves by working over the initial steeper portion. Furthermore, it is seen that over the range of this initial steep portion of the curves the changes of reaction produced by the uptake of carbon dioxide are much smaller than at higher tensions of the gas; for these initial portions of the curves are more nearly parallel to the lines of constant reaction calculated for a temperature of 15°C. according to Hasselbalch''s method (10) on the assumption that the whole of the combined CO2 is in the form of sodium bicarbonate. It is evident also that on this assumption the hydrogen ion concentration of the blood of invertebrates (with the exception of the tunicates) would appear to be practically the same as that of the warm-blooded vertebrates—a conclusion confirmed by the direct measurements of Quagliariello (9). On the other hand, our measurements do not lend support to the idea put forward by Collip (4) that in order to maintain an appropriate faintly alkaline reaction an invertebrate needs to retain carbon dioxide in its blood at a comparatively high tension. This idea was based on the observation that at comparatively high CO2 tensions the blood of invertebrates contains considerably more sodium bicarbonate than does sea water. But our curves show that this is no longer true at the lower values of carbon dioxide tension, the amount of sodium bicarbonate falling off more rapidly in the blood than in the sea water with diminution of the carbon dioxide tension so that in order to maintain an appropriate reaction in the blood only a comparatively small tension of CO2 is required. The largest amount of carbon dioxide that we found present in the circulating blood of any of the types examined was 9.7 cc. per 100 cc. of blood in the case of Maia, and in most cases the amount was considerably less. But even this lowest value corresponds to a tension of CO2 of only about 3 mm., so that the tension gradient across the gill membrane must be even less than this. We would emphasize rather the circumstances that as the portion of the dissociation curve over which the reaction is approximately constant is of but small extent, it is necessary that in an active form like Octopus the carbon dioxide produced should be removed rapidly lest an accumulation of it should cause the limits of normal reaction to be exceeded; and this need is correlated with the extreme efficiency of the respiratory apparatus in this animal. It is interesting to notice that the mammal which, in order to obtain an appropriate reaction in the blood, has to work at relatively high carbon dioxide tensions where the dissociation curve is comparatively flat, secures a steeper physiological CO2 dissociation curve in the body, and with it a more efficient carriage of carbon dioxide and a more constant reaction in the circulating fluid, in virtue of the effect of oxygenation on the carbon dioxide-combining power of its blood (3, 6). Returning now to the consideration of the actual form of the dissociation curves we have obtained—it is a significant fact that it is in those forms such as Maia, Palinurus, and Octopus whose bloods are rich in proteins—particularly hemocyanine—that the initial steep portion of the curve is observed. This suggests that in these forms the blood proteins act as weak acids and expel carbon dioxide from the blood at the low tensions which include the physiological range, just as in vertebrates the hemoglobin similarly displaces carbonic acid from its combination with alkali metal. On the other hand the cœlomic fluid of Aplysia contains no pigment and only 0.00672 per cent of protein nitrogen (Bottazzi (11)) and shows no initial rapidly ascending portion of the CO2 dissociation curve. This is supported by the observation of Quagliariello (9) that the acid-neutralising power of the blood of an invertebrate is roughly proportional to its protein content. It seems as if the proteins of invertebrate blood like the blood proteins of vertebrates, exist in the form of sodium salts which are capable of giving up sodium for the transport of carbon dioxide as sodium bicarbonate. That this is so in the case of hemocyanine follows from the fact that the isoelectric point of this pigment occurs at a hydrogen ion concentration of 2.12 x 10–5 N, i.e. at a pH of 4.67 (Quagliariello (12)) so that in the alkaline blood of the invertebrates possessing it, hemocyanine will act as a weak acid. It is probable that the initial steep portion of the carbon dioxide dissociation curves which we have found to be of such importance in the respiration physiology of Octopus, Palinurus, and Maia is produced by the competition of this acid with carbonic acid for the available sodium of the blood.  相似文献   

20.
Contraction of rat skeletal muscle by electrical stimulation of the sciatic nerve caused remarkable increase in binding of AMP deaminase (EC 3.5.4.6) to myofibrils, but did not change the total enzyme activity. After 30 sec stimulation, the ratio of bound to free enzyme was about 5 times that in resting muscle. This treatment also increased the ammonia content of the muscle to 5 times that in resting state. From these findings, we suggest that there is a correlation between the binding of muscle type AMP deaminase to myofibrils and ammoniagenesis in the muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号