首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nicotinic acetylcholine receptors are ligand-gated ion channels found in the plasma membrane of both excitable and non-excitable cells. Previously we reported that nicotinic receptors containing α7 subunits were present in the outer membranes of mitochondria to regulate the early apoptotic events like cytochrome c release. Here we show that signaling of mitochondrial α7 nicotinic receptors affects intramitochondrial protein kinases. Agonist of α7 nicotinic receptors PNU 282987 (30 nM) prevented the effect of phosphatidyl inositol-3-kinase inhibitor wortmannin, which stimulated cytochrome c release in isolated mouse liver mitochondria, and restored the Akt (Ser 473) phosphorylation state decreased by either 90 μM Ca2+ or wortmannin. The effect of PNU 282987 was similar to inhibition of calcium-calmodulin-dependent kinase II (upon 90 μM Ca2+) or of Src kinase(s) (upon 0.5 mM H2O2) and of protein kinase C. Cytochrome c release from mitochondria could be also attenuated by α7 nicotinic receptor antagonist methyllicaconitine or α7-specific antibodies. Allosteric modulator PNU 120526 (1 μM) did not improve the effect of agonist PNU 282987. Acetylcholine (1 μM) and methyllicaconitine (10 nM) inhibited superoxide release from mitochondria measured according to alkalization of Ca2+-containing medium. It is concluded that α7 nicotinic receptors regulate mitochondrial permeability transition pore formation through ion-independent mechanism involving activation of intramitochondrial PI3K/Akt pathway and inhibition of calcium-calmodulin-dependent or Src-kinase-dependent signaling pathways.  相似文献   

2.
Ubiquitous calpains (calpain I and II) are generally recognized as cytosolic proteins. Recently, mitochondrial localized calpain I (μ-calpain) has been identified. Activation of mito-μ-calpain cleaves apoptosis inducing factor (AIF), a flavoprotein located within the mitochondrial intermembrane space, in liver mitochondria, but not in brain mitochondria. We first tested if activation of mito-μ-calpain cleaves AIF in isolated heart mitochondria. A decrease in AIF content within mitochondria increases cardiac injury during ischemia–reperfusion by augmenting oxidative stress. We hypothesize that the activation of mito-μ-calpain by calcium overload during ischemia–reperfusion results in decreased AIF content within mitochondria by cleaving AIF. The μ-calpain was present within mouse heart mitochondria, mostly in the intermembrane space. Exogenous calcium treatment induced a calpain-dependent decrease of mitochondrial AIF content in isolated mouse heart mitochondria. This process was blocked by a calpain inhibitor (MDL-28170). The Mitochondrial μ-calpain activity was increased by 160 ± 15% during ischemia–reperfusion compared to time control. In contrast, the mitochondrial AIF content was decreased by 52 ± 7% during reperfusion vs. time control in the buffer perfused mouse heart. Inhibition of mito-μ-calpain using MDL-28170 decreased cardiac injury by preserving AIF content within mitochondria during ischemia–reperfusion. Thus, activation of mito-μ-calpain is required to release AIF from cardiac mitochondria. Inhibition of calpains using MDL-28170 decreases cardiac injury by inhibiting both cytosolic calpains and mito-μ-calpain during ischemia–reperfusion.  相似文献   

3.
The translocation of apoptosis-inducing factor (AIF) from mitochondria to the nucleus has been implicated in the mechanism of glutamate excitotoxicity in cortical neurons and has been observed in vivo following acute rodent brain injuries. However, the mechanism and time course of AIF redistribution to the nucleus is highly controversial. Because elevated intracellular calcium is one of the most ubiquitous features of neuronal cell death, this study tested the hypothesis that cleavage of AIF by the calcium-activated protease calpain mediates its release from mitochondria. Both precursor and mature forms of recombinant AIF were cleaved near the amino terminus by calpain I in vitro. Mitochondrial outer membrane permeabilization by truncated Bid induced cytochrome c release from isolated liver or brain mitochondria but only induced AIF release in the presence of active calpain. Enzymatic inhibition of calpain by calpeptin precluded AIF release, demonstrating that proteolytic activity was required for release. Calpeptin and the mitochondrial permeability transition pore antagonist cyclosporin A also inhibited calcium-induced AIF release from mouse liver mitochondria, implicating the involvement of an endogenous mitochondrial calpain in release of AIF during permeability transition. Cleavage of AIF directly decreased its association with pure lipid vesicles of mitochondrial inner membrane composition. Taken together, these results define a novel mechanism of AIF release involving calpain processing and identify a potential molecular checkpoint for cytoprotective interventions.  相似文献   

4.
The BH3 domain is essential for the release of cytochrome c from mitochondria by pro-apoptotic Bcl-2 family proteins during apoptosis. This study tested the hypothesis that a Bax peptide that includes the BH3 domain can permeabilize the mitochondrial outer membrane and release cytochrome c in the absence of a permeability transition at the mitochondrial inner membrane. BH3 peptide (0.1-60 microm) released cytochrome c from mitochondria in the presence of physiological concentrations of ions in a cell type-selective manner, whereas a BH3 peptide with a single amino acid substitution was ineffective. The release of cytochrome c by BH3 peptide correlated with the presence of endogenous Bax at the mitochondria and its integral membrane insertion. Cytochrome c release was accompanied by adenylate kinase release, was not associated with mitochondrial swelling or substantial loss of electrical potential across the inner membrane, and was unaffected by inhibitors of the permeability transition pore. Cytochrome c release was, however, inhibited by Bcl-2. Although energy-coupled respiration was inhibited after the release of cytochrome c, mitochondria maintained membrane potential in the presence of ATP due to the reversal of the ATP synthase. Overall, results support the hypothesis that BH3 peptide releases cytochrome c by a Bax-dependent process that is independent of the mitochondrial permeability transition pore but regulated by Bcl-2.  相似文献   

5.
Mitochondrial metabolism depends on movement of hydrophilic metabolites through the mitochondrial outer membrane via the voltage-dependent anion channel (VDAC). Here we assessed VDAC permeability of intracellular mitochondria in cultured hepatocytes after plasma membrane permeabilization with 8 μM digitonin. Blockade of VDAC with Koenig’s polyanion inhibited uncoupled and ADP-stimulated respiration of permeabilized hepatocytes by 33% and 41%, respectively. Tenfold greater digitonin (80 μM) relieved KPA-induced inhibition and also released cytochrome c, signifying mitochondrial outer membrane permeabilization. Acute ethanol exposure also decreased respiration and accessibility of mitochondrial adenylate kinase (AK) of permeabilized hepatocytes membranes by 40% and 32%, respectively. This inhibition was reversed by high digitonin. Outer membrane permeability was independently assessed by confocal microscopy from entrapment of 3 kDa tetramethylrhodamine-conjugated dextran (RhoDex) in mitochondria of mechanically permeabilized hepatocytes. Ethanol decreased RhoDex entrapment in mitochondria by 35% of that observed in control cells. Overall, these results demonstrate that acute ethanol exposure decreases mitochondrial outer membrane permeability most likely by inhibition of VDAC.  相似文献   

6.
This study shows the effects of the flavonoid quercetin on diverse mitochondrial functions, among them membrane permeability. Our findings indicate that the addition of 50 μM quercetin did not produce reactive oxygen derived species; however, it inhibited the oxidative stress induced after the addition of Fe2/H2O2 by about 38%. At this concentration, quercetin also promoted a fast calcium release, inhibited oxidative phosphorylation, stimulated oxygen consumption, and decreased membrane potential. In addition 50 μM quercetin inhibited the adenine nucleotide translocase (ANT) by 46%. These effects induced the opening of the permeability transition pore and release of cytochrome c, by its interaction with a component of the non-specific pore complex, fixed to the carrier in the conformation c, as carboxyatractyloside does. Quercetin-induced permeability transition pore opening was inhibited by 0.5 μM cyclosporin A, but, interestingly, the release of cytochrome c was not inhibited by the immunosuppressor, as quercetin was found to disrupt the outer membrane.  相似文献   

7.
In apoptosis, mitochondrial outer membrane permeabilization (MOMP) triggers caspase-dependent death. However, cells undergo clonogenic death even if caspases are blocked. One proposed mechanism involved the release of cytotoxic proteins (e.g., AIF and endoG) from mitochondria. To initiate MOMP directly without side effects, we created a tamoxifen-switchable BimS fusion protein. Surprisingly, even after MOMP, caspase-inhibited cells replicated DNA and divided for ∼48 h before undergoing proliferation arrest. AIF and endoG remained in mitochondria. However, cells gradually lost mitochondrial membrane potential and ATP content, and DNA synthesis slowed to a halt by 72 h. These defects resulted from a partial loss of respiratory function, occurring 4–8 h after MOMP, that was not merely due to dispersion of cytochrome c. In particular, Complex I activity was completely lost, and Complex IV activity was reduced by ∼70%, whereas Complex II was unaffected. Later, cells exhibited a more profound loss of mitochondrial protein constituents. Thus, under caspase inhibition, MOMP-induced clonogenic death results from a progressive loss of mitochondrial function, rather than the release of cytotoxic proteins from mitochondria.  相似文献   

8.
Several observations have been reported in the last years indicating that ceramide may activate the mitochondrial route of apoptosis. We show here that on addition of either C2- or C16-ceramide to mitochondria isolated from rat heart and suspended in a saline medium, release of cytochrome c and apoptosis-inducing factor (AIF) from the intermembrane space takes place. The release process is Ca2+ -independent and is not inhibited by Cyclosporin A (CsA). For the protein release process to occur, the presence of an oxidizable substrate is required. When mitochondria are suspended in sucrose instead of potassium medium, only short chain C2-ceramide causes cytochrome c release through a Ca2+ -dependent and CsA sensitive mitochondrial permeability transition (MPT) mechanism. The latter effect appears to be related to the membrane potential dissipating ability exhibited by short chain C2-ceramide.  相似文献   

9.
This study tested the hypothesis that mitochondrial precursor targeting peptides can elicit the release of cytochrome c from both liver and brain mitochondria by a mechanism distinct from that mediated by the classical, Ca2+-activated permeability transition pore. Human cytochrome oxidase subunit IV signal peptide (hCOXIV1-22) at concentrations from 15 to 100 microM induced swelling, a decrease in membrane potential, and cytochrome c release in both types of mitochondria. Although cyclosporin A and bongkrekic acid were without effect, dibucaine, propanolol, dextran, and the uncoupler FCCP were each able to inhibit signal peptide-induced swelling and cytochrome c release. Adenylate kinase was coreleased with cytochrome c, arguing against a signal peptide-induced cytochrome c-specific pathway of efflux across the outer membrane. Taken together, the data indicate that a human mitochondrial signal peptide can evoke the release of cytochrome c from both liver and brain mitochondria by a unique permeability transition that differs in several characteristics from the classical mitochondrial permeability transition.  相似文献   

10.
Porins, a major class of outer membrane proteins in Gram-negative bacteria, primarily act as transport channels. OmpU is one of the major porins of human pathogen, Vibrio cholerae. In the present study, we show that V. cholerae OmpU has the ability to induce target cell death. Although OmpU-mediated cell death shows some characteristics of apoptosis, such as flipping of phosphatidylserine in the membrane as well as cell size shrinkage and increased cell granularity, it does not show the caspase-3 activation and DNA laddering pattern typical of apoptotic cells. Increased release of lactate dehydrogenase in OmpU-treated cells indicates that the OmpU-mediated cell death also has characteristics of necrosis. Further, we show that the mechanism of OmpU-mediated cell death involves major mitochondrial changes in the target cells. We observe that OmpU treatment leads to the disruption of mitochondrial membrane potential, resulting in the release of cytochrome c and apoptosis-inducing factor (AIF). AIF translocates to the host cell nucleus, implying that it has a crucial role in OmpU-mediated cell death. Finally, we observe that OmpU translocates to the target cell mitochondria, where it directly initiates mitochondrial changes leading to mitochondrial membrane permeability transition and AIF release. Partial blocking of AIF release by cyclosporine A in OmpU-treated cells further suggests that OmpU may be inducing the opening of the mitochondrial permeability transition pore. All of these results lead us to the conclusion that OmpU induces cell death in target cells in a programmed manner in which mitochondria play a central role.  相似文献   

11.
Apoptosis can be evoked by reactive oxygen species (ROS)-induced mitochondrial release of the proapoptotic factors cytochrome c and apoptosis-inducing factor (AIF). Because skeletal muscle is composed of two mitochondrial subfractions that reside in distinct subcellular regions, we investigated the apoptotic susceptibility of subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria. SS and IMF mitochondria exhibited a dose-dependent release of protein in response to H2O2 (0, 25, 50, and 100 µM). However, IMF mitochondria were more sensitive to H2O2 and released a 2.5-fold and 10-fold greater amount of cytochrome c and AIF, respectively, compared with SS mitochondria. This finding coincided with a 44% (P < 0.05) greater rate of opening (maximum rate of absorbance decrease, Vmax) of the protein release channel, the mitochondrial permeability transition pore (mtPTP), in IMF mitochondria. IMF mitochondria also exhibited a 47% (P < 0.05) and 60% (0.05 < P < 0.1) greater expression of the key mtPTP component voltage-dependent anion channel and cyclophilin D, respectively, along with a threefold greater cytochrome c content, but similar levels of AIF compared with SS mitochondria. Despite a lower susceptibility to H2O2-induced release, SS mitochondria possessed a 10-fold greater Bax-to-Bcl-2 ratio (P < 0.05), a 2.7-fold greater rate of ROS production, and an approximately twofold greater membrane potential compared with IMF mitochondria. The expression of the antioxidant enzyme Mn2+-superoxide dismutase was similar between subfractions. Thus the divergent protein composition and function of the mtPTP between SS and IMF mitochondria contributes to a differential release of cytochrome c and AIF in response to ROS. Given the relatively high proportion of IMF mitochondria within a muscle fiber, this subfraction is likely most important in inducing apoptosis when presented with apoptotic stimuli, ultimately leading to myonuclear decay and muscle fiber atrophy. reactive oxygen species; skeletal muscle; mitochondrial permeability transition pore; cytochrome c; apoptosis  相似文献   

12.
Poly(ADP-ribose) polymerase-1 (PARP-1) mediates neuronal cell death in a variety of pathological conditions involving severe DNA damage. Poly(ADP-ribose) (PAR) polymer is a product synthesized by PARP-1. Previous studies suggest that PAR polymer heralds mitochondrial apoptosis-inducing factor (AIF) release and thereby, signals neuronal cell death. However, the details of the effects of PAR polymer on mitochondria remain to be elucidated. Here we report the effects of PAR polymer on mitochondria in cells in situ and isolated brain mitochondria in vitro. We found that PAR polymer causes depolarization of mitochondrial membrane potential and opening of the mitochondrial permeability transition pore early after injury. Furthermore, PAR polymer specifically induces AIF release, but not cytochrome c from isolated brain mitochondria. These data suggest PAR polymer as an endogenous mitochondrial toxin and will further our understanding of the PARP-1-dependent neuronal cell death paradigm.  相似文献   

13.
Calpains are Ca2+-dependent cysteine proteases; their aberrant activation is associated with several neurodegenerative diseases. The μ-calpain catalytic subunit, calpain-1, is located in the cytoplasm as well as in the mitochondria. Mitochondrial calpain-1 cleaves apoptosis-inducing factor (AIF), leading to apoptotic cell death. We have previously reported that short peptides of calpain-1 C2-like domain conjugated with cell penetrating peptide HIV-Tat (Tat-μCL) selectively inhibit mitochondrial calpain-1 and effectively prevent neurodegenerative diseases of the eye. In this study, we determined whether mitochondrial calpain-1 mediates oxytosis (oxidative glutamate toxicity) in hippocampal HT22 cells using Tat-μCL and newly generated polyhistidine-conjugated μCL peptide and compared their efficacies in preventing oxytosis. TUNEL assay and single strand DNA staining revealed that both μCL peptides inhibited glutamate-induced oxytosis. Additionally, both the peptides suppressed the mitochondrial AIF translocation into the nucleus. All polyhistidine-μCL peptides (containing 4–16 histidine residues) showed higher cell permeability than Tat-μCL. Notably, tetrahistidine (H4)-μCL exerted the highest cytoprotective activity. Thus, H4-μCL may be a potential peptide drug for calpain-1-mediated neurodegenerative diseases such as Alzheimer's disease.  相似文献   

14.
Background and Aim: Our previous study of Helicobacter pylori‐induced apoptosis showed the involvement of Bcl‐2 family proteins and cytochrome c release from mitochondria. Here, we examine the release of other factors from mitochondria, such as apoptosis‐inducing factor (AIF), and upstream events involving caspase‐8 and Bid. Methods: Human gastric adenocarcinoma (AGS) cells were incubated with a cagA‐positive H. pylori strain for 0, 3, 6, and 24 hours and either total protein or cytoplasmic, nuclear, and mitochondrial membrane fractions were collected. Results: Proteins were immunoblotted for AIF, Bid, polyadenosine ribose polymerase (PARP), caspase‐8, and β‐catenin. H. pylori activated caspase‐8, caused PARP cleavage, and attenuated mitochondrial membrane potential. A time‐dependent decrease in β‐catenin protein expression was detected in cytoplasmic and nuclear extracts, coupled with a decrease in β‐actin. An increase in the cytoplasmic pool of AIF was seen as early as 3 hours after H. pylori exposure, and a concomitant increase was seen in nuclear AIF levels up to 6 hours. A band corresponding to full‐length Bid was seen in both the cytoplasmic and the nuclear fractions of controls, but not after H. pylori exposure. Active AIF staining was markedly increased in gastric mucosa from infected persons, compared to uninfected controls. Conclusion: H. pylori might trigger apoptosis in AGS cells via interaction with death receptors in the plasma membrane, leading to the cleavage of procaspase‐8, release of cytochrome c and AIF from mitochondria, and activation of subsequent downstream apoptotic events, as reported previously for chlorophyllin. This is consistent with AIF activation that was found in the gastric mucosa of humans infected with H. pylori. Hence, the balance between apoptosis and proliferation in these cells may be altered in response to injury caused by H. pylori infection, leading to an increased risk of cancer.  相似文献   

15.
Deprivation of tyrosine (Tyr) and phenylalanine (Phe) inhibits growth and induces programmed cell death (apoptosis) of human A375 melanoma cells. Herein, we found that activation of caspases and release of mitochondrial cytochrome c are required for this process. Culturing A375 cells in Tyr/Phe-free medium, containing 10% dialyzed fetal bovine serum, results in activation of caspase-3-like activity. This is accompanied by decreased cell viability and increased apoptosis. Tyr/Phe deprivation also stimulates proteolytic cleavage of the DNA repair enzyme, poly(ADP-ribose) polymerase (PARP). Western blot analysis showed that caspases 3, 7, 8, and 9 are activated by deprivation of Tyr/Phe. Tyr/Phe deprivation decreases mitochondrial membrane potential, induces cleavage of Bid, increases translocation of Bax from the cytosol to mitochondria, and results in release of cytochrome c from the mitochondria to the cytosol. Apoptosis due to Tyr/Phe deprivation is almost completely inhibited by the broad-spectrum cell-permeable caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (Z.VAD.fmk). This inhibitor suppresses the cleavage of Bid, the release of cytochrome c from the mitochondria to the cytosol, and the cleavage of PARP. Decylubiquinone, a mitochondrial permeability transition pore inhibitor, does not suppress the activation of caspase 8 but suppresses release of cytochrome c, activation of caspase 9, and induction of apoptosis. These results indicate that activation of caspases, cleavage of Bid, and mitochondrial release of cytochrome c are required for apoptosis induced by Tyr/Phe deprivation.  相似文献   

16.
Zhao Chen 《BBA》2009,1787(5):553-2974
It has long been observed that cancer cells rely more on glycolysis to generate ATP and actively use certain glycolytic metabolic intermediates for biosynthesis. Hexokinase II (HKII) is a key glycolytic enzyme that plays a role in the regulation of the mitochondria-initiated apoptotic cell death. As a potent inhibitor of hexokinase, 3-bromopyruvate (3-BrPA) is known to inhibit cancer cell energy metabolism and trigger cell death, supposedly through depletion of cellular ATP. The current study showed that 3-BrPA caused a covalent modification of HKII protein and directly triggered its dissociation from mitochondria, leading to a specific release of apoptosis-inducing factor (AIF) from the mitochondria to cytosol and eventual cell death. Co-immunoprecipitation revealed a physical interaction between HKII and AIF. Using a competitive peptide of HKII, we showed that the dissociation of hexokinase II from mitochondria alone could cause apoptotic cell death, especially in the mitochondria-deficient ρ0 cells that highly express HKII. Interestingly, the dissociation of HKII itself did not directly affect the mitochondrial membrane potential, ROS generation, and oxidative phosphorylation. Our study suggests that the physical association between HKII and AIF is important for the normal localization of AIF in the mitochondria, and disruption of this protein complex by 3-BrPA leads to their release from the mitochondria and eventual cell death.  相似文献   

17.
Increased mitochondrial Ca2+ accumulation is a trigger for the release of cytochrome c from the mitochondrial intermembrane space into the cytosol where it can activate caspases and lead to apoptosis. This study tested the hypothesis that Ca2+-induced release of cytochrome c in vitro can occur by membrane permeability transition (MPT)-dependent and independent mechanisms, depending on the tissue from which mitochondria are isolated. Mitochondria were isolated from rat liver and brain and suspended at 37 degrees C in a K+-based medium containing oxidizable substrates, ATP, and Mg2+. Measurements of changes in mitochondrial volume (via light scattering and electron microscopy), membrane potential and the medium free [Ca2+] indicated that the addition of 0.3 - 3.2 micromol Ca2+ mg-1 protein induced the MPT in liver but not brain mitochondria. Under these conditions, a Ca2+ dose-dependent release of cytochrome c was observed with both types of mitochondria; however, the MPT inhibitor cyclosporin A was only capable of inhibiting this release from liver mitochondria. Therefore, the MPT is responsible for cytochrome c release from liver mitochondria, whereas an MPT-independent mechanism is responsible for release from brain mitochondria.  相似文献   

18.
BMAP-28, a bovine antimicrobial peptide of the cathelicidin family, induces membrane permeabilization and death in human tumor cell lines and in activated, but not resting, human lymphocytes. In addition, we found that BMAP-28 causes depolarization of the inner mitochondrial membrane in single cells and in isolated mitochondria. The effect of the peptide was synergistic with that of Ca(2+) and inhibited by cyclosporine, suggesting that depolarization depends on opening of the mitochondrial permeability transition pore. The occurrence of a permeability transition was investigated on the basis of mitochondrial permeabilization to calcein and cytochrome c release. We show that BMAP-28 permeabilizes mitochondria to entrapped calcein in a cyclosporine-sensitive manner and that it releases cytochrome c in situ. Our results demonstrate that BMAP-28 is an inducer of the mitochondrial permeability transition pore and that its cytotoxic potential depends on its effects on mitochondrial permeability.  相似文献   

19.
Change in the permeability of the mitochondrial membrane to proteins (cytochrome c and Smac) and protons is a critical step in apoptosis. Although the time from the induction of apoptosis to the change of mitochondrial permeability is variable over a period of hours, the release of proteins is an “all or none” phenomenon that is completed in an individual cell within minutes. Here, using single-cell fluorescence microscopy, we show that the release of cytochrome c from a single mitochondrion occurs in a single step. However, this increased permeability of the outer membrane to cytochrome c propagates throughout the cell as a slower, spatially coordinated wave. The permeability of the outer membrane to Smac propagates with the same spatial pattern but lagging in time. This is followed by a wave of increased permeability of the inner membrane to protons. Only afterward do the mitochondria fission. The spatial dependence of the permeability wave was inhibited by thapsigargin, an inhibitor of the endoplasmic reticulum calcium pumps, but buffering cytosolic calcium had no effect. These results show that the trigger for apoptosis is spatially localized, initiating at one or only a few mitochondria preceding the loss of mitochondrial energetics, and the subsequent temporal propagation of mitochondrial membrane permeability is calcium-dependent.  相似文献   

20.
Cell death regulation by the Bcl-2 protein family in the mitochondria   总被引:38,自引:0,他引:38  
An increase in the permeability of the outer mitochondrial membrane is central to apoptotic cell death, since it leads to the release of several apoptogenic factors, such as cytochrome c and Smac/Diablo, into the cytoplasm that activate downstream death programs. During apoptosis, the mitochondria also release AIF and endonuclease G, both of which are translocated to the nucleus and are implicated in apoptotic nuclear changes that occur in a caspase-independent manner. Mitochondrial membrane permeability is directly controlled by the major apoptosis regulator, i.e., the Bcl-2 family of proteins, mainly through regulation of the formation of apoptotic protein-conducting pores in the outer mitochondrial membrane, although the precise molecular mechanisms are still not completely understood. Here, I focus on the mechanisms by which Bcl-2 family members control the permeability of mitochondrial membrane during apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号