首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundApoptosis played vital roles in the formation and progression of osteosarcoma. However, no studies elucidated the prognostic relationships between apoptosis-associated genes (AAGs) and osteosarcoma.MethodsThe differentially expressed genes associated with osteosarcoma metastasis and apoptosis were identified from GEO and MSigDB databases. The apoptosis-associated prognostic signature was established through univariate and multivariate cox regression analyses. The Kaplan–Meier (KM) survival curve, ROC curve and nomogram were constructed to investigate the predictive value of this signature. CIBERSORT algorithm and ssGSEA were used to explore the relationships between immune infiltration and AAG signature. The above results were validated in another GEO dataset and the expression of AAGs was also validated in osteosarcoma patient samples by immunohistochemistry.ResultsHSPB1 and IER3 were involved in AAG signature. In training and validation datasets, apoptosis-associated risk scores were negatively related to patient survival rates and the AAG signature was regarded as the independent prognostic factor. ROC and calibration curves demonstrated the signature and nomogram were reliable. GSEA revealed the signature related to immune-associated pathways. ssGSEA indicated that one immune cell and three immune functions were significantly dysregulated. The immunohistochemistry analyses of patients’ samples revealed that AAGs were significantly differently expressed between metastasis and non-metastasis osteosarcomas.ConclusionsThe present study identified and validated a novel apoptosis-associated prognostic signature related to osteosarcoma metastasis. It could serve as the potential biomarker and therapeutic targets for osteosarcoma in the future.  相似文献   

2.
BackgroundTacrolimus is a powerful immunosuppressant and has been widely used in organ transplantation. In order to further explore the role of tacrolimus in liver transplantation, we conducted network pharmacology analysis.MethodsGSE100155 was obtained from the GEO database, and the DEGs of liver transplantation were analyzed. The 2D structure of tacrolimus was obtained from the National Library of Medicine, and the pharmacophore model of tacrolimus was predicted using the online tool pharmmapper. Then a network of tacrolimus and target genes was constructed through network pharmacology, and visualization and GO enrichment analysis was performed through Cytoscape. In addition, we also analyzed the correlation between key genes and immune infiltrating cells. The data of GSE84908 was used to verify the changes of key gene expression levels after tacrolimus treatment.ResultsThe results of network pharmacological analysis showed that tacrolimus had 43 target genes, and the GO enrichment results showed many potential functions. Further analysis found that there were 5 key target genes in DEGs, and these 5 genes were significantly down-regulated in liver transplant patients. Another important finding was that 5 genes were significantly related to some immune infiltrating cells. The results of the GSE84908 data analysis showed that after tacrolimus treatment, the expression of DAAM1 was significantly increased (p = 0.015).ConclusionTacrolimus may inhibit the human immune response by affecting the expression of DAAM1 in liver transplant patients.  相似文献   

3.
BackgroundAbout half-century ago, Immunoglobulin A nephropathy (IgAN) was discovered as a complicated disease with frequent clinical symptoms. Until now, exact mechanism underlying the pathogenesis of IgAN is poorly known. Therefore, current study was aimed to understand the molecular mechanism of IgAN by identifying the key miRNAs and their targeted hub genes. The key miRNAs might contribute to the diagnosis and therapy of IgAN, and could turn out to be a new star in the field of IgAN.MethodsThe microarray datasets were downloaded from Gene Expresssion Omnibus (GEO) database and analyzed using R package (LIMMA) in order to obtain differential expressed genes (DEGs). Then, the hub genes were identified using cytoHubba plugin of cytoscpae tool and other bioinformatics approaches including protein-protein interaction (PPI) network analysis, module analysis, and miRNA-hub gene network construction was also performed.ResultsA total of 348 DEGs were identified, of which 107 were upregulated genes and 241 were downregulated genes. Subsequently, the 12 overlapped genes were predicted from cytoHubba, and considered as hub genes. Moreover, a network among miRNA-hub genes was created to explore the correlation between the hub genes and their targeted miRNAs. Network construction ultimately lead to the identification of nine gene named FN1, EGR1, FOS, JUN, SERPINE1, MMP2, ATF3, MYC, and IL1B and one novel key miRNA namely, has-miR-144-3p as biomarker for diagnosis and therapy of IgAN.ConclusionThis study updates the information and yield a new perspective in context of understanding the pathogenesis and development of IgAN. In future, key miRNAs might be capable of improving the personalized detection and therapies for IgAN. In vivo and in vitro investigation of miRNAs and pathway interaction is essential to delineate the specific roles of the novel miRNAs, which may help to further reveal the mechanisms underlying IgAN.  相似文献   

4.
PurposeThe aim of this study is to assess baseline mean leukocyte telomere length (TL) as a potential predictive factor for chemotherapy toxicity and a prognostic marker for long-term outcome in early breast cancer (BC) patients.Methods445 BC patients were selected, diagnosed between 2007 and 2010 with early BC and treated with (neo)adjuvant fluorouracil, epirubicin and cyclophosphamide (FEC) or with FEC and Docetaxel (FEC-D). RT-qPCR was performed on germline DNA samples collected at diagnosis before any treatment, to measure mean leukocyte TL. Uni- and multivariable logistic regression or Cox proportional hazard regression analyses were carried out to assess correlation between baseline TL and toxicity parameters (derived from the medical chart) or longer-term outcome.ResultsBaseline TL correlated with age as expected (p = 0.005), but not with febrile neutropenia (n = 97), left ventricular ejection fraction >10% decrease (n = 17) nor other toxicity endpoints measured (all p > 0.05). TL was neither associated with overall survival, breast cancer specific survival or distant disease-free survival (all p > 0.05).ConclusionsBaseline TL is not associated with chemotherapy-related toxicity nor long-term outcome in BC patients.  相似文献   

5.
6.
Breast cancer accounts for nearly half of all cancer-related deaths in women worldwide. However, the molecular mechanisms that lead to tumour development and progression remain poorly understood and there is a need to identify candidate genes associated with primary and metastatic breast cancer progression and prognosis. In this study, candidate genes associated with prognosis of primary and metastatic breast cancer were explored through a novel bioinformatics approach. Primary and metastatic breast cancer tissues and adjacent normal breast tissues were evaluated to identify biomarkers characteristic of primary and metastatic breast cancer. The Cancer Genome Atlas-breast invasive carcinoma (TCGA-BRCA) dataset (ID: HS-01619) was downloaded using the mRNASeq platform. Genevestigator 8.3.2 was used to analyse TCGA-BRCA gene expression profiles between the sample groups and identify the differentially-expressed genes (DEGs) in each group. For each group, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were used to determine the function of DEGs. Networks of protein–protein interactions were constructed to identify the top hub genes with the highest degree of interaction. Additionally, the top hub genes were validated based on overall survival and immunohistochemistry using The Human Protein Atlas. Of the top 20 hub genes identified, four (KRT14, KIT, RAD51, and TTK) were considered as prognostic risk factors based on overall survival. KRT14 and KIT expression levels were upregulated while those of RAD51 and TTK were downregulated in patients with breast cancer. The four proposed candidate hub genes might aid in further understanding the molecular changes that distinguish primary breast tumours from metastatic tumours as well as help in developing novel therapeutics. Furthermore, they may serve as effective prognostic risk markers based on the strong correlation between their expression and patient overall survival.  相似文献   

7.
BackgroundPancreatic ductal adenocarcinoma (PDAC) is a fatal malignant tumor with an unfavorable prognosis. Increasing evidence indicated circRNAs were associated with the pathogenesis and progression of tumors, but data on the expression of serum exosomal circRNAs in PDAC are scarce. This study attempted to explore the prognostic value and function of serum exosomes in PDAC patients.MethodsMicroarray-based circRNA expression was determined in PDAC and paired with normal serum samples, and the intersection of differentially expressed circRNAs (DECs) in serum exosomal samples and GSE79634 tissue samples was conducted. A specific CircRNA database was applied to investigate DECs binding miRNAs. Target genes were predicted using the R package multiMiR. Cox regression analyses were applied for constructing a prognostic model. The immunological characteristics analysis was carried out through the TIMER, QUANTISEQ, XCELL, EPIC, and ssGSEA algorithms.Results15 DECs were finally identified, and a circRNA-miRNA-mRNA network was established. A prognostic risk model was developed to categorize patients according to the risk scores. Furthermore, the association between risk score and immune checkpoint genes including CD80, TNFSF9, CD276, CD274, LGALS9, and CD44 were significantly elevated in the high-risk group, while ICOSLG and ADORA2A were upregulated in the low-risk group.ConclusionsOur results may provide new clues for the prognosis and treatment of PDAC.  相似文献   

8.
Background3D collagen scaffold culture is a good tool to study glioma metastasis and recurrence in vitro.MethodsThe effect of 3D collagen culture on the colony formation, the sphere formation, and drug sensitivity of glioma cells was observed by soft-agar colony formation assays, sphere formation assays, and CCK-8 assays, respectively. 3D-glioma-drug genes were identified by previous results and online databases. Gene enrichment and PPI analyses were performed by R software and Metacsape. Hub 3D-glioma-drug genes were screened by STRING and Cytoscape. TCGA and CGGA databases and R software were used to analyze the distribution of hub genes in glioma and their effects on the prognosis. Western Blot was used to verify the effect of 3D collagen culture on the expression of hub genes. miRNAs targeting hub genes were predicted by ENCORI.Results3D collagen scaffold culture promoted colony formation, sphere formation, and drug resistance of glioma cells. There were 77 3D-glioma-drug genes screened, and the pathways enriched in the protein interaction network mainly included responses to stressors, DNA damage and repair, and drug metabolism. Hub 3D-glioma-drug genes were AKT1, ATM, CASP3, CCND1, EGFR, PARP1, and TP53. These genes and predicted miRNAs were expressed differentially in glioma samples and partially affected the prognosis of patients with glioma. These findings suggested these hub genes and miRNAs may play a key role in the effects generated by the 3D culture model and become new markers for glioma diagnosis and treatment.  相似文献   

9.
Brain metastases (BMs) of lung cancer are common malignant intracranial tumours associated with severe neurological symptoms and an abysmal prognosis. Prostate-specific membrane antigen (PSMA) has been reported to express significantly in a variety of solid tumours. However, the clinical applications of 68Ga-PSMA PET/CT and the mechanism of PSMA expression in patients with BMs of lung cancer have rarely been reported. Experiments with 68Ga-PSMA PET/CT and immunohistochemical staining were conducted to evaluate the expression of PSMA from seven patients with BMs of lung cancer who accepted surgical treatment in Fudan University Shanghai Cancer Center between October 2020 and October 2021. The mechanism of PSMA expression in BMs of lung cancer was explored by using single-cell RNA sequencing. The median maximum standardized uptake value (SUVmax) in BMs was higher than that in primary lung cancer (8.6 ± 2.8 vs. 3.6 ± 1.3, P < 0.01). The mean SUVmax in BMs was 1.76-fold higher than that in the liver, which indicated the potential of PSMA radioligand therapy (PSMA-RLT) for BMs. BMs showed intense PSMA staining, while normal lung tissue had no PSMA staining and there was only faint primary lung cancer staining by immunohistochemistry (IHC). Single-cell RNA sequencing (scRNA-seq) analysis found that PSMA was mainly expressed in oligodendrocytes of BMs, whereas it was expressed at lower levels in solid cells of lung cancer. PSMA expression in oligodendrocytes might be regulated by the factors ATF3 and NR4A1, which were associated with ER stress.  相似文献   

10.
《Endocrine practice》2022,28(10):1100-1106
ObjectiveSince January 2020, the highly contagious novel coronavirus SARS-CoV-2 has caused a global pandemic. Severe COVID-19 leads to a massive release of proinflammatory mediators, leading to diffuse damage to the lung parenchyma, and the development of acute respiratory distress syndrome. Treatment with the highly potent glucocorticoid (GC) dexamethasone was found to be effective in reducing mortality in severely affected patients.MethodsTo review the effects of glucocorticoids in the context of COVID-19 we performed a literature search in the PubMed database using the terms COVID-19 and glucocorticoid treatment. We identified 1429 article publications related to COVID-19 and glucocorticoid published from 1.1.2020 to the present including 238 review articles and 36 Randomized Controlled Trials. From these studies, we retrieved 13 Randomized Controlled Trials and 86 review articles that were relevant to our review topics. We focused on the recent literature dealing with glucocorticoid metabolism in critically ill patients and investigating the effects of glucocorticoid therapy on the immune system in COVID-19 patients with severe lung injury.ResultsIn our review, we have discussed the regulation of the hypothalamic-pituitary-adrenal axis in patients with critical illness, selection of a specific GC for critical illness-related GC insufficiency, and recent studies that investigated hypothalamic-pituitary-adrenal dysfunction in patients with COVID-19. We have also addressed the specific activation of the immune system with chronic endogenous glucocorticoid excess, as seen in patients with Cushing syndrome, and, finally, we have discussed immune activation due to coronavirus infection and the possible mechanisms leading to improved outcomes in patients with COVID-19 treated with GCs.ConclusionFor clinical endocrinologists prescribing GCs for their patients, a precise understanding of both the molecular- and cellular-level mechanisms of endogenous and exogenous GCs is imperative, including timing of administration, dosage, duration of treatment, and specific formulations of GCs.  相似文献   

11.
《Genomics》2022,114(5):110478
Stomach cancer is the fifth most common cancer in terms of prevalence and incidence and the fourth leading cause of mortality in men and women worldwide. It is well-established that aberrant DNA methylation in cells can lead to carcinogenesis. The primary objective of our study was to investigate the aberrant DNA methylation status of genes associated with stomach cancer with a particular reference to the ethnic population of Mizoram, North East India. The site-level analysis identified 2883 CpG sites differentially methylated, representing ~922 genes. Out of which 476 Differentially Methylated Positions (DMPs) were promoter-associated, 452 DMPs were hypermethylated, and 24 were hypomethylated. The region-level analysis identified 462 Differentially Methylated Regions (DMRs) corresponding to ~320 genes, of which ~281 genes were hypermethylated and ~40 genes were hypomethylated. TCGA analysis showed that some of the genes had been previously implicated in other cancers including stomach cancer. Five hypermethylated genes were selected as candidate genes for further investigations and they have shown to be novel and could serve as candidate hypermethylation biomarkers for stomach cancer in this particular ethnic group.  相似文献   

12.
ObjectivePatient-centered studies have shown that several patients on thyroid hormone replacement therapy for hypothyroidism exhibit persistent symptoms, including “brain fog.” Here, we aimed to determine which of these specific symptoms are associated with brain fog, identify patient-reported factors that modify these symptoms, and identify patient concerns related to brain fog not included in thyroid-specific questionnaires.MethodsA survey on brain fog symptoms adapted from thyroid-specific patient-reported outcome was distributed online. Textual data analysis was performed to identify common areas of concern from open-ended survey responses.ResultsA total of 5170 participants reporting brain fog while being treated for hypothyroidism were included in the analysis. Of these, 2409 (46.6%) participants reported symptom onset prior to the diagnosis of hypothyroidism, and 4096 (79.2%) participants experienced brain fog symptoms frequently. Of the symptoms listed, participants associated fatigue and forgetfulness most frequently with brain fog. More rest was the most common factor provided for improving symptoms. The textual data analysis identified areas of concern that are not often included in thyroid-specific quality of life questionnaires, including a focus on the diagnosis of hypothyroidism, the types and doses of medications, and the patient-doctor relationship.ConclusionBrain fog in patients treated for hypothyroidism was associated most frequently with fatigue and cognitive symptoms. Several additional areas of patient concern were found to be associated with brain fog, which are not typically addressed in thyroid-specific questionnaires.  相似文献   

13.
Novel treatment in multiple myeloma represented by proteasome inhibitors, immunomodulatory drugs and monoclonal antibodies have produced a deep response. However, relapses are possible, and all classes of drugs are refractory to patients. Next-generation sequencing has improved our understanding of the multiple myeloma genome related to drug resistance and has discovered many genomic variants. Therefore, this study was conducted to investigate new variants associated with drug resistance in MM patients who relapsed and refractory to bortezomib regimen and daratumumab treatment using next-generation sequencing for whole-exome sequencing. Peripheral blood samples were collected in EDTA tubes from six patients; four were in relapsed and refractory to bortezomib regimens and daratumumab; two patients responded to bortezomib regimens. Whole-exome sequencing was performed by the MGI-DNBSEQ-G400 instrument. We identified 21 variants in multiple myeloma patients. Seventeen variants were found in relapsed and refractory multiple myeloma in 11 genes (GNAQ, PMS1, CREB1, NSUNS2, PIK3CG, ROS1, PMS2, FIT4, KDM5A, STK11 and ZFHX3). And four variants were identified in two patients with response to bortezomib regimens in 4 genes (RAF1, CREB1, ZFHX3 and INSR). We have observed several genetic variants in many genes that may have been associated with the poor prognosis and poor response to treatment in these patients. These values should be further confirmed in large sample studies using the RNA-seq technique to identify genome expression.  相似文献   

14.
15.
ObjectiveThe prevalence of euthyroid sick syndrome (ESS) and its association with the prognosis of COVID-19 and mortality in patients with lung involvement in COVID-19 have not yet been elucidated.MethodsClinical and laboratory data of patients with COVID-19 with or without ESS were collected retrospectively and analyzed on admission. All subjects were admitted to the Department of Internal Diseases and Clinical Pharmacology at Bieganski Hospital between December 2020 and April 2021.ResultsIn total, 310 medical records of patients with COVID-19 were analyzed retrospectively. Among 215 enrolled patients, 82 cases of ESS were diagnosed. The patients with ESS had higher pro-inflammatory factor levels, longer hospitalizations, and a higher risk of requiring high-flow nasal oxygen therapy or intubation than the patients without ESS. The Kaplan-Meier curve indicated that the patients with ESS had a lower probability of survival when computed tomography showed ≤50% parenchymal involvement compared with that in patients without ESS. However, no differences in mortality were noted in those with more than 50% parenchymal involvement. The survival curve showed that ESS was associated with a higher risk of mortality during hospitalization.ConclusionESS is closely associated with a poor prognosis, including longer hospitalizations, more frequent intubation, transfer to the intensive care unit, and a higher mortality rate in patients with COVID-19. ESS is a potential prognostic predictor of survival, regardless of lung involvement in COVID-19.  相似文献   

16.
Interleukin 19 (IL-19) is a cytokine produced by monocytes and belongs to the family of IL-10. The IL-19 protein stimulates fibronectin (FN) expression and assembly, metastasis, and cell division in breast cancer (BC) cells. IL-19, which is connected to breast pathogenesis and has an autocrine action in BC cells, is a key predictor of prognosis for many tumour forms, including breast cancer. Augmented IL-19 expression has been related to poorer clinical outcomes for patients with BC and directly enhances proliferation and migration while also serving as a microenvironment for tumour formation. The main aim of our study was to examine the expression profile, functional role, and prognostic significance of interleukin-19 in BC pathogenesis and also to find out the molecular mechanism of IL-19 in BC. In this work, we used the various computational approach and tools, to evaluate the expression profile and prognostic implication of IL-19 in BC and discover the role of IL-19 in BC pathogenesis. IL-19 was shown to be highly upregulated in BC as compared to other interleukins. Also, its levels were highly overexpressed in liminal BC patients, mostly in 3rd stage groups under the age group of 21–40 years. IL-19 levels were increased in BC and elevated expression of IL-19 was examined to have worse overall survival (OS). The KEGG analysis and gene ontology of IL-19 depict that IL-19 is significantly augmented in cytokine activity and receptor-ligand activity and also in the JAK-STAT signaling pathway. Moreover, IL-19 showed a high correlation with IL20RA, as later is involved with the JAK-STAT signaling pathway. The in-vivo and in-vitro studies have also reflected that upregulation of IL-19 enhances tumor development and affects clinical outcomes in BC patients through several pathways including the JAK TAT signalling pathway. Overall, our study indicates that IL-19 increases tumour growth and that inhibiting it in addition to standard treatments will greatly improve BC patient’s therapeutic responses.  相似文献   

17.
《Journal of Asia》2022,25(3):101950
The terpene, terpinen-4-ol (T4ol), exhibits contact toxicity in Tribolium castaneum. However, the molecular mechanisms underlying this toxicity have not been elucidated. This study examined changes in the expression of four classic enzymes after exposure of T. castaneum to T4ol. Acetylcholinesterase and glutathione S-transferase activities were markedly inhibited after exposure to T4ol, while that of the detoxifying enzyme cytochrome oxidase P450 increased markedly. Carboxylesterase activity did not show significant changes. Furthermore, RNA sequencing revealed 260 differentially expressed genes (DEG) between the T4ol-treated and control samples, and qRT-PCR was used to validate the RNA-Seq data. The Gene Ontology analysis classified the DEGs into 36 functional groups, including the immune system processes, response to stimulus, and developmental processes. T4ol altered the response to stimulus and the immune system process of beetles by inducing the expression of the genes Stabilin-1, Attacin 1, and Defensin 1. Furthermore, the DEGs receptor tyrosine kinase Torso-like protein (RTKTsl), Frizzled 4 (Fz4), Protein Wnt-5b, Ecdysone-induced protein 78C (E78), Zinc finger protein GLIS1 (ZFPGLIS1) were classified as participating in beetle development, and Fz4 and Protein Wnt-5b also mapped to the Wnt signaling pathway. This indicated that pathways associated with development are inhibited after exposure to T4ol. T4ol also induced CYP9Z6/GSTs7 overexpression, and RNAi targeting these genes significantly increased larvae mortality on T4ol exposure, supporting the participation of CYP9Z6/GSTs7 in the response to T4ol in T. castaneum. The results of this study will facilitate understanding of the toxic mechanisms of T4ol and provide a basis for controlling the pests of stored products.  相似文献   

18.
BackgroundKidney renal clear cell carcinoma (KIRC) is a common cancer of the adult urological system. Recent developments in tumor immunology and pyroptosis biology have provided new directions for kidney cancer treatment. Therefore, there is an urgent need to identify potential targets and prognostic biomarkers for the combination of immunotherapy and pyroptosis-targeted therapy.MethodsThe expression of immune-pyroptosis-related differentially expressed genes (IPR-DEGs) between KIRC and healthy tissues was examined using the Gene Expression Omnibus datasets. The GSE168845 dataset was selected for subsequent analyses. Data of 1793 human immune-related genes were downloaded from the ImmPort database (https://www.immport.org./home), while those of 33 pyroptosis-related genes were extracted from previous reviews. The independent prognostic value of IPR-DEGs was determined using differential expression, prognostic, and univariate and multivariate Cox regression analyses. The GSE53757 dataset was used to further verify the GSDMB and PYCARD levels. In our cohorts, the association among DEGs and clinicopathological features and overall survival was analyzed. The least absolute shrinkage and selection operator Cox regression model was established to evaluate the correlation of IPR-DEGs with the immune score, immune checkpoint gene expression, and one-class logistic regression (OCLR) score. KIRC cells and clinical tissue samples were subjected to quantitative real-time polymerase chain reaction to examine the GSDMB and PYCARD mRNA levels. The GSDMB and PYCARD levels in a healthy kidney cell line (HK-2 cells) and two KIRC cell lines (786-O and Caki-1 cells) were verified. The tissue levels of GSDMB and PYCARD were evaluated using immunohistochemical analysis. GSDMB and PYCARD were knocked down in 786-O cells using short-interfering RNA. Cell proliferation was examined using the cell counting kit-8 assay. Cell migration was measured by transwell migration assaysResultsGSDMB and PYCARD were determined to be IPR-DEGs with independent prognostic values. A risk prognostic model based on GSDMB and PYCARD was successfully established. In the GSE53757 dataset, the GSDMB and PYCARD levels in KIRC tissues were significantly higher than those in healthy tissues. The GSDMB and PYCARD expression was related to T stage and OS in our cohort. The GSDMB and PYCARD levels were significantly correlated with the immune score, immune checkpoint gene expression, and OCLR score. The results of experimental studies were consistent with those of bioinformatics analysis. The GSDMB and PYCARD levels in KIRC cells were significantly upregulated when compared with those in healthy kidney cells. Consistently, GSDMB and PYCARD in KIRC tissues were significantly upregulated when compared with those in adjacent healthy kidney tissues. GSDMB and PYCARD knockdown significantly decreased 786-O cell proliferation (p < 0.05). Transwell migration result reflects that silencing GSDMB and PYCARD inhibited 786-O cell migration (p < 0.05) .ConclusionsGSDMB and PYCARD are potential targets and effective prognostic biomarkers for the combination of immunotherapy and pyroptosis-targeted therapy in KIRC.  相似文献   

19.
ObjectiveTo prioritize genes that were pleiotropically or potentially causally associated with periodontitis.MethodsWe applied the summary data-based Mendelian randomization (SMR) method integrating genome-wide association study (GWAS) for periodontitis and expression quantitative trait loci (eQTL) data to identify genes that were pleiotropically associated with periodontitis. We performed separate SMR analysis using CAGE eQTL data and GTEx eQTL data. SMR analysis were done for participants of European and East Asian ancestries, separately.ResultsWe identified multiple genes showing pleiotropic association with periodontitis in participants of European ancestry and participants of East Asian ancestry. PDCD2 (corresponding probe: ILMN_1758915) was the top hit showing pleotropic association with periodontitis in the participants of European ancestry using CAGE eQTL data, and BX093763 (corresponding probe: ILMN_1899903) and AC104135.3 (corresponding probe: ENSG00000204792.2) were the top hits in the participants of East Asian ancestry using CAGE eQTL data and GTEx eQTL data, respectively.ConclusionWe identified multiple genes that may be involved in the pathogenesis of periodontitis in participants of European ancestry and participants of East Asian ancestry. Our findings provided important leads to a better understanding of the mechanisms underlying periodontitis and revealed potential therapeutic targets for the effective treatment of periodontitis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号