首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Data are presented for the dark adaptation of four species of animals. They show that during dark adaptation the reaction time of an animal to light of constant intensity decreases at first rapidly, then slowly, until it reaches a constant minimum. 2. On the assumption that at all stages of adaptation a given response to light involves a constant photochemical effect, it is possible to describe the progress of dark adaptation by the equation of a bimolecular reaction. This supposes, therefore, that dark adaptation represents the accumulation within the sense cells of a photosensitive material formed by the chemical combination of two other substances. 3. The chemical nature of the process is further borne out by the fact that the speed of dark adaptation is affected by the temperature. The velocity constant of the bimolecular process describing dark adaptation bears in Mya a relation to the temperature such that the Arrhenius equation expresses it with considerable exactness when µ = 17,400. 4. A chemical mechanism is suggested which can account not only for the data of dark adaptation here presented, but for many other properties of the photosensory process which have already been investigated in these animals. This assumes the existence of a coupled photochemical reaction of which the secondary, "dark" reaction is catalyzed by the products of the primary photochemical reaction proper. This primary photochemical reaction itself is reversible in that its main products combine to form again the photosensitive material, whose concentration controls the behavior of the system during dark adaptation.  相似文献   

2.
During the dark adaptation of the human eye, its visual threshold decreases to a small fraction of its original value in the light. An analysis of the quantitative data describing this adaptation shows that it follows the course of a bimolecular chemical reaction. On the basis of these findings it is suggested that visual reception in dim light is conditioned by a reversible photochemical reaction involving a photosensitive substance and its two products of decomposition. Accordingly, dark adaptation depends on the course of the "dark" reaction during which the two products of decomposition reunite to synthesize the original photosensitive substance.  相似文献   

3.
Light-adapted sporangiophores of the fungus Phycomyces respond to sudden darkening by a temporary decrease in the rate of elongation, after a latent period of several minutes. The reaction time of this "dark growth" response is compound like that of the "light growth" response. It is, moreover, shorter the more intense the previous illumination. The rate of dark adaptation following adaptation to a very large range of light intensities is found to be proportional to the logarithm of the preceding light intensity. It is shown that a constant amount of dark adaptation takes place before the response occurs. On the assumption that changes in the rate of growth reflect changes in the concentration of a substance which at constant light intensity is in equilibrium with a light-sensitive material, possible equations for such a photostationary state are examined. The most reasonable formulation requires that the partial velocity of the "light" reaction be taken proportional to log I instead of to I directly.  相似文献   

4.
1. After a discussion of the sources of error involved in the study of dark adaptation, an apparatus and a procedure are described which avoid these errors. The method includes a control of the initial light adaptation, a record of the exact beginning of dark adaptation, and an accurate means of measuring the threshold of the fovea after different intervals in the dark. 2. The results show that dark adaptation of the eye as measured by foveal vision proceeds at a very precipitous rate during the first few seconds, that most of the adaptation takes place during the first 30 seconds, and that the process practically ceases after 10 minutes. These findings explain much of the irregularity of the older data. 3. The changes which correspond to those in the fovea alone are secured by correcting the above results in terms of the movements of the pupil during dark adaptation. 4. On the assumption that the photochemical effect of the light is a linear function of the intensity, it is shown that the dark adaptation of the fovea itself follows the course of a bimolecular reaction. This is interpreted to mean that there are two photolytic products in the fovea; that they are disappearing because they are recombining to form anew the photosensitive substance of the fovea; and that the concentration of these products of photolysis in the sense cell must be increased by a definite fraction in order to produce a visual effect. 5. It is then suggested that the basis of the initial event in foveal light perception is some mechanism that involves a reversible photochemical reaction of which the "dark" reaction is bimolecular. Dark adaptation follows the "dark" reaction; sensory equilibrium is represented by the stationary state; and light adaptation by the shifting of the stationary state to a fresh point of equilibrium toward the "dark" side of the reaction.  相似文献   

5.
1. Ciona possesses two means of responding to an increase in the intensity of illumination. One is by means of a local reaction; the other is by a retraction reflex of the body as a whole. 2. The "ocelli" are not photoreceptors. The photosensitive area is in the intersiphonal region containing the neural mass. This area contains no pigment. 3. The reaction time to light is composed of a sensitization period during which Ciona must be exposed to the light, and of a latent period during which it need not be illuminated in order to react to the stimulus received during the sensitization period. 4. The duration of the reaction time varies inversely as the intensity. Analysis shows the latent period to be constant. The relation between the sensitization period and the intensity follows the Bunsen-Roscoe rule. 5. During dark adaptation the reaction time is at first large, then it decreases until a constant minimum is reached. 6. A photochemical system consisting of a reversible reaction is suggested in order to account for the phenomena observed. This system includes a photosensitive substance and its precursor, the dynamics of the reaction following closely the peculiarities of the photosensitivity of Ciona. 7. It is shown that in order to produce a reaction, a constant ratio must be reached between the amount of sensitive substance broken down by the stimulus and the amount previously broken down. 8. From the chemical system suggested certain experimental predictions were made. The actual experiments verified these predictions exactly. 9. The results obtained with regularly repeated stimulation not only fail to show any basis for a learning process or for the presence of a "higher behavior," but follow the requirements of the photochemical system suggested before.  相似文献   

6.
1. A single-celled, elongating sporangiophore of Phycomyces responds to a sufficient increase in intensity of illumination by a brief increase in growth rate. This is the "light-growth response" of Blaauw. 2. The reaction time is compound, consisting of an exposure period and a latent period (this comprising both the true latent period resulting from photochemical action and any "action time" necessary for the response). During the latter period the plant may be in darkness, responding nevertheless at the end of the latent period. 3. Both light adaptation and dark adaptation occur in the sporangiophore. The kinetics of dark adaptation can be accounted for on the basis of a bimolecular reaction, perhaps modified by autocatalysis. Attention is called to the bimolecular nature of the "dark" reaction in all other photosensory systems that have been studied, in spite of the diversity of the photosensitive substances themselves and of the different forms of the responses to light.  相似文献   

7.
8.
1. The effect of temperature on the reaction time of Mya to light is mainly confined to the latent period. The sensitization period, representing a photochemical process, is changed comparatively little. 2. The relation between the latent period and the temperature is adequately expressed by the Arrhenius equation, for temperatures below 21°C. Above this temperature, the latent period becomes increasingly longer than is required by the Arrhenius formula when µ = 19,680. 3. These deviations, occurring above the highest environmental temperature of Mya, are explained on the assumption that the principal product formed during the latent period is inactivated by heat. 4. Calculation of the velocity of the hypothetical inactivation reaction at different temperatures shows that it also follows the Arrhenius rule when µ = 48,500. This value of µ corresponds to those generally found for spontaneous inactivations and destructions.  相似文献   

9.
1. The effect of temperature on the photosensory latent period in Pholas dactylus is accurately described by the Arrhenius equation when µ = 18,300. 2. The adequacy of this equation has already been found for two other photosensitive animals, Mya and Ciona, which are very similar in behavior to Pholas. The value of µ is different for each of the three species studied. 3. This is taken to mean that though the organization of the receptor process is the same for the three species, the chemical materials concerned are very likely different.  相似文献   

10.
The most effective point in the visible spectrum for the stimulation of Pholas is 550 mµ. On the red side, the effectiveness drops rapidly to almost zero. On the violet side, the effectiveness drops to about half, and rises again in such a way as to indicate a possible second maximum in the near ultra-violet. On the basis of certain ideas these data are assumed to represent the properties of the absorption spectrum of the photosensitive system in Pholas. A comparison with Mya shows that the absorption spectra of the photosensitive systems in the animals are distinctly different. Nevertheless the way in which intensity and reaction time are related in the two animals are found to be identical. The conclusion is then drawn from this and from previous work, that although the fundamental properties of the photoreceptor process show an identical organization in several different animals, the materials which compose these processes are specific.  相似文献   

11.
The latent period in the response of Mya to illumination varies inversely as the duration of the exposure to which it is subjected. The reciprocal of the latent period, measuring the velocity of the process which underlies it, is a linear function of the exposure period. Since the duration of the exposure represents the amount of photochemical activity, it is concluded that the substances formed at that time act to catalyze a chemical reaction which determines the duration of the latent period. This explanation is in accord with the previous work on the photochemical reaction and with the effect of temperature on the latent period. As a result of the combined investigations there is presented a concrete hypothesis for the mechanism of photic reception in Mya.  相似文献   

12.
1. Experiments are presented which show that the latent period in the photosensory response of Ciona is inversely proportional to the duration of the exposure period to light. From this it is found that the velocity of the chemical reaction which determines the latent period is directly proportional to the concentration of photochemical products formed during the exposure period. This is interpreted as showing that the two processes form a coupled photochemical reaction, of which the secondary reaction proceeds only in the presence of products from the primary reaction. This coupling may be a catalysis or a direct chemical relation. 2. Further experiments show that the relation between temperature and the latent period is accurately described by the Arrhenius equation in which µ = 16,200. The precise numerical value of µ tentatively identifies the latent period process as an oxidation reaction which is catalyzed by iron. 3. The photocatalytic properties of certain iron compounds are used as a model for the coupled photochemical reaction suggested for the photosensory mechanism of Ciona and Mya.  相似文献   

13.
Anna Jachner 《Hydrobiologia》1996,325(2):151-155
The response of bleak (Alburnus alburnus (L.)) to alarm substance (from skin extract of conspecifics) was quantified, using a video camera, in laboratory experiments across two light and one dark periods (18 hrs). In the light alarm substance induced hiding in refuges (vegetation) and formation of aggregations. There was no such reaction during darkness or during a second light period.  相似文献   

14.
The levels of the endogenous free amino acid serine in Lemnaperpusilla are found to fluctuate during the course of shortdays. Serine levels do not change in plants receiving long daysor continuous light. The levels of serine decrease graduallyin the dark reaction of short days reaching their lowest aboutthe middle of the dark period, indicating a utilization of serineduring the dark reaction. In the second half of the dark periodthe serine level rises. The decline and rise of serine duringthe dark period is observed in successive short-day cycles.During the light period the serine level increases, reachinga maximum after 6 h from the beginning of the light exposure.When the light period is eliminated and a continuous dark periodis given the serine level remains unchanged. It is suggestedthat serine is involved in the floral initiation as a precursorto a flowering substance.  相似文献   

15.
A method is described which measures the excitation of Agriolimax by light, during the progress of light adaptation, by assuming that the orientating effect of continuous excitation is expressed as a directly proportionate tension difference in the orienting muscles of the two sides of the body. The tendency toward establishment of such a tension difference is caused to work against a similar geotropic effect at right angles to the phototropic one. This enables one to study the kinetics of light adaptation, and of dark adaptation as well. The situation in the receptors is adequately described by the paradigm See PDF for Equation similar to that derived by Hecht for the differential sensitivity of various forms, but with the difference that the "dark" reaction is not only "bimolecular" but also autocatalysed by the reaction product S. The progress of dark adaptation is reflected (1) in the recovery of the amplitude of the orientation and (2) in the rates of light adaptation at different levels of the recovery; each independently supports these assumptions, for which the necessary equations have been provided. These equations also account for the relative variabilities of the angles of orientation, and, more significantly, for the two quite different kinds of curves of dark adaptation which are obtained in slightly different types of tests.  相似文献   

16.
1. In order to produce a response in Mya, the minimum amount of light energy required is 5.62 meter candle seconds. This energy follows the Bunsen-Roscoe law for the relation between intensity and time of exposure. 2. The necessary minimum amount of energy varies but little with the temperature; the temperature coefficient for 10°C. is 1.06. 3. In view of these facts it is concluded that the initial action of the light is photochemical in nature. This substantiates the hypothesis previously suggested to account for the mechanism of photoreception. 4. The constant energy requirement for stimulation of Mya shows that the traditional division of animals into those which respond to a constant source of light and those which respond to a rapidly augmented light is without any fundamental significance for sensory physiology.  相似文献   

17.
The effect of light and dark adaptation on the electrical activity in two species of nocturnal gecko, Hemidactylus turcicus and Tarentola mauritanica was studied. The electroretinogram of both species changes from the scotopic type in the dark-adapted state to the photopic type after strong light adaptation. For the scotopic response fusion frequencies up to 18 flashes per sec. are obtained in both species. For the photopic response fusion frequencies up to 50 flashes per sec. are seen in Tarentola, and up to 25 flashes per sec. in Hemidactylus. Proceeding from dark to light adaptation the increment threshold (dI) is measured at different levels of adaptive illumination (I). At low levels of illumination the dI/I ratio is found to be small and at high levels of illumination to be large. No difference in the dI/I ratio is obtained for test lights of 462 and 605 mµ. During dark adaptation the change of threshold after exposure to moderate and weak lights (up to 103 times dark threshold) is rather fast. After light adaptation to strong light (106 times dark threshold) duplex dark adaptation curves are seen with a break separating a fast and a slow phase of dark adaptation. The significance of these results from a retina which possesses sense cells of only one type is discussed.  相似文献   

18.
The dark period (scotophase) is the most photoperiodically important part of a light-dark cycle in Aleyrodes proletella. Night-interruption studies have revealed three distinct dark stages: the photosensitive stage 1 lasts for about 3 h after dusk and 1-h light breaks both stop and re-set the photoperiodic clock; stage 2 also lasts about 3 h, but is photorefractory to some degree; stage 3 is photosensitive, but short light breaks do not re-set the clock although a 4-h light break (equivalent to a main photophase) does restore the capacity to respond to a normal critical night length in the post-interruption scotophase.Action spectra revealed peak photoperiodic sensitivity to blue light (410–430 nm) with 50% responses., at 1.5 μWcm−2 and 2.5 μWcm−2 for the dusk and dawn peaks respectively. These data are consistent with the view that the photopigment is a carotenoprotein.The results are interpreted in terms of the photoperiodic clock in A. proletella operating on the hour glass principle.  相似文献   

19.
1. The reaction time of the photosensitive response of Metridium was found to be composed almost entirely of a sensitization period. If a latent period exists, it is too short to be detected by the methods used and is probably less than a second in duration. The length of the reaction time, therefore, was used as a measure of the radiant energy necessary at any intensity to elicit a response. 2. The length of the reaction time was found to vary randomly by a factor of seven under constant environmental and stimulating conditions. Determination of large numbers of reaction times on several anemones, grouped according to length, gave closely similar distributions resembling Poisson distributions. It was suggested that the variability may be caused by the same factor or mechanism in each individual. An experimental scheme was presented for determining the expected error and variation in statistical quantities when groups of ten observations are used. 3. The means of groups of reaction times determined at different intensities formed a hyperbolic relationship when plotted against intensity, suggesting that the animal obeys the Bunsen-Roscoe law of reciprocity. No marked changes were noted of per cent deviation from the mean or of randomness at different intensities. Stimulation of Metridium requires roughly 5 x 109 incident quanta/cm.2 of blue-green light. 4. No temperature effect could be found on either the means, the per cent deviation from the mean, or the degree of randomness of series of about ten observations, studied over a 17°C. range. It was concluded that the variability in reaction time was not due to changes in any complex physiological state such as muscular tone. 5. A possible use of the photosensitive response is suggested and the potentialities of "integrative" photosensitivity are discussed. 6. Possible mechanisms to explain the variability in reaction time are discussed. In the light of evidence presented, the most likely hypothesis appears to be the uncertainty of quantum capture caused by low concentrations of photosensitive pigment. Assuming the validity of this hypothesis, evidence suggests that the anemones responded to less than 10 quanta of absorbed light. Caution, however, is recommended in accepting the hypothesis because of the indirect nature of the supporting evidence.  相似文献   

20.
The effect of chilling temperatures (5°C) on chlorophyll fluorescence transients was used to study chilling-induced inhibition of photosynthesis in plant species with differing chilling sensitivities. A Brancker SF-20 fluorometer was used to measure induced fluorescence transients from both attached and detached leaves of chilling-sensitive cucumber (Cucumis sativus L. cv Ashley) and chilling-resistant pea (Pisum sativum L. cv Alaska). The rate of reappearance of the variable component of fluorescence (Fv), following a period of illumination at 25°C, was dependent on the temperature at which the leaf was allowed to dark adapt in chilling-sensitive cucumber, but not in chilling-resistant pea. In cucumber, dark adaptation at 25°C following illumination resulted in a much faster return of Fv than dark adaptation at 5°C following illumination. However, Fv reappearance during the dark adaptation period in chilling-resistant pea was temperature independent. The difference in the temperature response of Fv following illumination correlated with temperature sensitivity of these two species. The process responsible for the difference in Fv may represent a site of chilling sensitivity in the photosynthetic apparatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号