首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
From the facts stated in this paper it is evident that the thymus gland of mammals contains a substance which is capable of producing tetany when fed to the larvæ of certain species of salamanders (Ambystoma opacum and Ambystoma maculatum). As long as the larvæ have not developed their own thymus glands, they are able, by means of some mechanism, to counterbalance the tetanic action of the thymus substance introduced in their food. When, however, the secretion from their own thymus glands is added to the thymus material introduced with the food, this mechanism of preventing tetany becomes inadequate and tetany ensues. In the larva of a third species of salamander, Ambystoma tigrinum, this mechanism will prevent tetany even when the larvæ are fed on thymus. In mammals the parathyroids are known to prevent tetany and are supposed either to absorb the tetany-producing substance and thus prevent its action or to change it into another non-toxic substance. It is at least probable that in the amphibians the parathyroids play the same rôle. Larvæ of anuran amphibians, which develop their parathyroids soon after hatching, never show tetanic convulsions if they are fed on thymus, but in certain species of salamanders, whose parathyroids develop only during metamorphosis, the larvæ invariably have tetanic convulsions upon thymus feeding, while the metamorphosed animals never show tetany. But in addition to the parathyroids the salamanders must possess still another mechanism which during the larval period inhibits the production of tetany by the animal''s own thymus glands. In the larvæ of Ambystoma opacum and Ambystoma maculatum this mechanism is sufficient only to prevent tetany from the animal''s own thymus, while in the larvæ of Ambystoma tigrinum it is capable of preventing tetany even when the larvæ are fed with thymus. If the thymus is the organ by whose action tetany is produced, we can understand why tetany in human beings occurs far more frequently in children than in adults, since in the latter the thymus gland is replaced, at least to a great extent, by connective tissue. The relation of thymus to tetany may also possibly explain the occurrence of tetany during pregnancy; while the parathyroids of the mother may be sufficient to prevent tetany from her largely atrophied thymus, they may not be sufficient to prevent tetany from the excess of thymus substance furnished by the fetus to the blood of the mother.  相似文献   

2.
1. Two substances are involved in amphibian metamorphosis as studied in Ambystoma opacum: first, iodine, which is taken up by the food, and second, an excretor substance, which is evolved during the processes of growth and serves to induce the excretory function of the thyroid gland. 2. This explains why in larvæ, whose metamorphosis is inhibited by lack of iodine, growth is checked at the time when metamorphosis should occur; for at this time the excretor substance commences to act and this results, if iodine is absent, in the excretion by the thyroid of toxic substances which cause the breakdown of proteins and consequently a decrease in size of the larvæ. 3. Larvæ whose metamorphosis is inhibited by extirpation of the thyroid or by the hereditary lack of a thyroid (as is the case in Typhlomolge) can grow normally, since in them the action of the excretor substance cannot result in the excretion by the thyroid of a toxic growth-inhibiting substance. 4. At low temperature less excretor substance is produced than at high temperature during an equal rate of growth; therefore larvæ kept at low temperature reach a larger size than larvæ kept at high temperature, before they metamorphose.  相似文献   

3.
1. Amphibian metamorphosis depends upon the amount of iodine secured by the larvæ; the greater the quantity the more rapid the differentiation. 2. Bromine is physiologically inert when fed even in large quantities to frog larvæ, hence it cannot be substituted for iodine. Bromine feeding has no effect on the thyroid. 3. Iodine is the active constituent of the thyroid gland, in the Anura at any rate, and functions within the body by stimulating intracellular oxidations; it is apparently specific in its action. 4. The basal metabolism of patients suffering from athyreosis, whose metabolism is 40 per cent below normal, is very likely held at this figure and prevented from sinking lower to the death point by the introduction of iodine into the body through food and water. 5. The thyroid gland is an organ the function of which is the extraction from the circulation, storage, and supplying to the organism, under the pressure of its needs, the small quantities of iodine taken into the body. The chief function of this gland then is the utilization of iodine in small quantities.  相似文献   

4.
The experiments reported in this article are in full agreement with the facts known about the action of Ca and Mg salts in tetanic animals. In the concentrations used here both Ca lactate and Mg lactate suppressed the muscular convulsions in the tetanic salamander larvæ. The Mg lactate, however, appears to be more effective than the Ca lactate. At any rate the suppression of the tetanic convulsions does not seem to be a specific action of the calcium. The most important result seems to be the fact that the salts used, though they prevented the muscular convulsions, did not prevent the other symptoms of tetany which in the salamander larvæ are very definite and constant. The permanent spasmodic contractions and the paralysis of the muscles developed in spite of the presence of the Ca and Mg, Furthermore, the muscular contractions and the paralysis developed even in such thymus-fed animals in which the convulsions had been suppressed completely; this was the case in one of the animals of the Mg series. From the experiments of Biedl and others it is likely that the tetanic convulsions are due to lesions of the central nervous system, since convulsions of a leg can be prevented by isolating it from the central nervous system by cutting the nerves which connect the muscles with the central nervous system. Evidently these lesions of the central nervous system are the chief factor in tetany, while the convulsions of the muscles are only an effect. In the larvæ of salamanders these lesions find a definite expression in the permanent paralysis of almost the entire muscular system. In the writer''s opinion, MacCallum''s hypothesis that the tetany toxin has a special affinity for Ca, thereby diminishing the Ca content of the organism, cannot be disproved at present. But the present experiments seem to prove, first, that the tetany-producing substance causes permanent lesions of the nervous system, which lead to permanent spasmodic contractions and paralysis of the muscle even in the absence of tetanic convulsions, and second, that these cannot be prevented by either Ca or Mg. For the most part they result in an early death of the animals no matter whether or not Ca or Mg has been applied. In connection with this fact we wish to mention Biedl''s claim that no one has yet succeeded in prolonging the life of parathyroidectomized animals by the application of Ca. From MacCallum''s paper, on account of the lack of controls, it cannot be seen whether his parathyroidectomized dogs lived longer with Ca treatment than without. That in spontaneous tetany Ca treatment may effect a cure, as is evident from the report by Howland and Marriott, does not prove that in this case Ca has inhibited tetany as a disease. In spontaneous tetany the period of the action of the tetany-producing substance may be a very short one and the mere prevention of the tetanic convulsions may keep the patient alive until normal function of the glands involved has been restored. The pathological changes which the central nervous system undergoes in this short period may not be severe enough to endanger the life of the patient after the cessation of the action of the tetany toxin. In the light of the facts presented our experiments lead to the following conclusions: 1. The thymus gland excretes a tetany-producing substance which in the normal animal is antagonized in an unknown way by the parathyroids. 2. In animals devoid of parathyroids (salamander larvæ, parathyroidectomized mammals) this substance may, according to MacCallum, reduce the Ca content of the organism; but by far the most dangerous and important quality of this substance is its highly injurious effect upon the central nervous system, which causes permanent spasmodic contractions of the muscles and paralysis of almost the entire muscular system. 3. It is possible to prevent the muscular contractions by introducing Ca salts into the body, though this can be done more effectively by means of Mg salts. 4. No substance, however, has been found so far to antagonize the tetany toxin and to prevent the development of the lesions of the central nervous system caused by the tetany toxin. 5. This explains why in spite of the application of Ca or Mg and in spite of the suppression by these substances of the tetanic convulsions the other symptoms of tetany develop and frequently lead to the death of the animal. 6. Accordingly the most important function of the parathyroids is to prevent the tetany toxin, by antagonizing it, from coming into contact with the central nervous system.  相似文献   

5.
Experiments were made to compare the stimulating effectiveness of vertically and horizontally polarized lights and non-polarized lights of equal intensity upon phototropic movements of the beetle Tetraopes tetraopthalmus; and to compare the effectiveness of two light beams polarized at right angles to one another upon phototropic orientation of the land isopod Cylisticus convexus. Tetraopes is positively, and Cylisticus, negatively phototropic. Tests were also made of the intensities of horizontally and of vertically polarized light required to inhibit stereotropism in larvæ of Tenebrio. Under the conditions of the tests, no certain qualitative effect connected with polarization could be detected.  相似文献   

6.
The experiments seem to indicate that the toxicity of HCN and KCN for amebæ is due to their effect on the cell membrane and not on the internal protoplasm. Concentrated solutions (N/10–N/300) of HCN or KCN produce an initial increase in viscosity of the protoplasm of amebæ (immersed) which is followed by liquefaction and disintegration of the cell. Dilute solutions of HCN or KCN decrease the viscosity of the protoplasm of amebæ. Injections of HCN or KCN into amebæ produce a reversible decrease in viscosity of the protoplasm.  相似文献   

7.
Three strains of the bar-eyed mutant of Drosophila melanogaster Meig have been reared at constant temperatures over a range of 15–31°C. The mean facet number in the bar-eyed mutant varies inversely with the temperature at which the larvæ develop. The temperature coefficient (Q10) is of the same order as that for chemical reactions. The facet-temperature relations may be plotted as an exponential curve for temperatures from 15–31°. The rate of development of the immature stages gives a straight line temperature curve between 15 and 29°. Beyond 29° the rate decreases again with a further rise in temperature. The facet curve may be readily superimposed on the development curve between 15 and 27°. The straight line feature of the development curve is probably due to the flattening out of an exponential curve by secondary factors. Since both the straight line and the exponential curve appear simultaneously in the same living material, it is impractical to locate the secondary factors in enzyme destruction, differences in viscosity, or in the physical state of colloids. Differential temperature coefficients for the various separate processes involved in development furnish the best basis for an explanation of the straight line feature of the curve representing the effect of temperature on the rate of physiological processes. Facet number in the full-eyed wild stock is not affected by temperature to a marked degree. The mean facet number for fifteen full-eyed females raised at 27° is 859.06. The mean facet number for the Low Selected Bar females at 27° is 55.13; for the Ultra-bar females at 27° it is 21.27. A consistent sexual difference appears in all the bar stocks, the females having fewer facets. This relation may be expressed by the sex coefficient, the average value of which is 0.791. The average observed difference in mean facet number for a difference of 1°C. in the environment in which the flies developed is 3.09 for the Ultra-bar stock and 14.01 for the Low Selected stock. The average proportional differences in the mean for a difference of 1°C. are 9.22 per cent for Ultra-bar, and 14.51 for Low Selected. The differences in the number of facets per °C. are greatest at the low and least at the high temperatures. The difference in the number of facets per °C. varies with the mean. The proportional differences in the mean per °C. are greatest at the lower (15–17.5°) and higher (29–31°) temperatures and least at the intermediate temperatures. Temperature is a factor in determining facet number only during a relatively short period in larval development. This effective period, at 27°, comes between the end of the 3rd and the end of the 4th day. At 15°, this period is initiated at the end of 8 days following a 1st day at 27°. At 27° this period is approximately 18 hours long. At 15° it is approximately 72 hours long. The number of facets and the length of the immature stage (egg-larval-pupal) appear related when the whole of development is passed at one temperature. That the number of facets is not dependent upon the length of the immature stage is shown by experiments in which only a part of development was passed at one temperature and the remainder at another. Temperature affects the reaction determining the number of facets in approximately the same way that it affects the other developmental reactions, hence the apparent correlation between facet number and the length of the immature stage. Variability as expressed by the coefficient of variability has a tendency to increase with temperature. Standard deviation, on the other hand, appears to decrease with rise in temperature. Neither inheritance nor induction effects are exhibited by this material. This study shows that environment may markedly affect the somatic expression of one Mendelian factor (bar eye), while it has no visible influence on another (white eye).  相似文献   

8.
A definite intensity of white light is required (about 136 m.c.) to produce negative phototropic orientation of creeping Tenebrio larvæ away from contact with a vertical glass surface. This gives a measure of stereotropism in terms of phototropism, or reciprocally. The effectiveness of light for the suppression of stereotropism varies with wave length. It is therefore simple to obtain a measure of the relation between wave length and stimulating efficiency in this case of phototropic orientation. By determinations of the minimal energy required to inhibit stereotropism with different regions of the spectrum, it is found that the maximum effectiveness is sharply localized in the neighborhood of 535µµ. The curve connecting stimulating efficiency with wave length, while giving a picture of the effective absorption by the photosensory receptors, probably does not permit accurate characterization of the essential photosensitive material.  相似文献   

9.
1. After a consideration of the existing data and of the sources of error involved, an arrangement of apparatus, free from these errors, is described for measuring the relative energy necessary in different portions of the spectrum in order to produce a colorless sensation in the eye. 2. Following certain reasoning, it is shown that the reciprocal of this relative energy at any wave-length is proportional to the absorption coefficient of a sensitive substance in the eye. The absorption spectrum of this substance is then mapped out. 3. The curve representing the visibility of the spectrum at very low intensities has exactly the same shape as that for the visibility at high intensities involving color vision. The only difference between them is their position in the spectrum, that at high intensities being 48 µµ farther toward the red. 4. The possibility is considered that the sensitive substances responsible for the two visibility curves are identical, and reasons are developed for the failure to demonstrate optically the presence of a colored substance in the cones. The shift of the high intensity visibility curve toward the red is explained in terms of Kundt''s rule for the progressive shift of the absorption maximum of a substance in solvents of increasing refractive index and density. 5. Assuming Kundt''s rule, it is deduced that the absorption spectrum of visual purple as measured directly in water solution should not coincide with its position in the rods, because of the greater density and refractive index of the rods. It is then shown that, measured by the position of the visibility curve at low intensities, this shift toward the red actually occurs, and is about 7 or 8 µµ in extent. Examination of the older data consistently confirms this difference of position between the curves representing visibility at low intensities and those representing the absorption spectrum of visual purple in water solution. 6. It is therefore held as a possible hypothesis, capable of direct, experimental verification, that the same substance—visual purple—whose absorption maximum in water solution is at 503 µµ, is dissolved in the rods where its absorption maximum is at 511 µµ, and in the cones where its maximum is at 554 µµ (or at 540 µµ, if macular absorption is taken into account, as indeed it must be).  相似文献   

10.
1. A dogfish from which all six ampullæ have been removed maintains its equilibrium; the righting reactions occur promptly; compensatory movements of the eyes occur in response to rotations in all planes except the horizontal; the compensatory position of the eyes is retained if the animal is held in an abnormal position. Both the static and dynamic functions of equilibrium continue, therefore, after complete removal of all the semicircular canals and all the ampullæ. 2. After complete removal of the otoliths from the vestibules without injury to the ampullæ the animal maintains its equilibrium in the water, rights itself promptly, and makes compensatory motions to rotations in all planes. If held in an abnormal position the compensatory position of the eyes is maintained. Both static and dynamic functions of equilibrium continue. 3. Destruction of both the semicircular canals and the otolith organs completely abolishes all compensatory movements and equilibrium reactions of labyrinthine origin. 4. It is pointed out that these observations do not justify the theory of Mach and Breuer that the ampullæ and semicircular canals are the organs for the dynamic functions of equilibrium, and that the otoliths are the organs for the static functions of equilibrium. 5. The new experiments recorded in this paper show that the ampullæ alone (without the otoliths) suffice for all the dynamic and all the static functions of equilibrium of the ear; and that the otolith organs (without the ampullæ) suffice for all the static and for all the dynamic functions of equilibrium of the ear with the exception of the response to a rotation of the animal in a horizontal plane.  相似文献   

11.
The normal reaction of the cœlomic fluid in Patiria miniata and Asterias ochraceus is pH 7.6, and of the cæca, 6.7, compared with sea water at 8.3, all without salt error correction. A medium at pH 6.7–7.0 is optimum for the cæca for ciliary survival and digestion of protein, and is maintained by carbon dioxide production. The optimum pH found for carbon dioxide production is a true one for the effect of hydrogen ion concentration on the tissue. It does not represent an elimination gradient for carbon dioxide. Because the normal excised cæca maintain a definite hydrogen ion concentration and change their internal environment toward that as an optimum during life, there exists a regulatory process which is an important vital function.  相似文献   

12.
The luminescence of Cypridina luciferin-luciferase solution is inhibited by illumination from a carbon arc of 15,000 foot candles in between 1 and 2 seconds. The blue to violet rays are the effective ones, the limits lying somewhere around 4,600 Å. u. to 3,800 Å. u. The luciferin, not the luciferase, is the substance affected by the light. The effect is partially reversible in the dark. The chemiluminescences obtained by oxidizing phosphorus, lophin, and chlorphenylmagnesium bromide are not inhibited by light under the above conditions.  相似文献   

13.
In a species of Oscillatoria exhibiting movement of type suitable for exact measurement the velocity of linear translatory motion is found to be controlled by the temperature (6 – 36°C.) in accordance with Arrhenius'' equation for irreversible reactions. The value of the critical increment (µ) is 9,240. The extreme variates in series of measurements at different temperatures yield the same value of µ. The velocity of movement is therefore regarded as determined by the velocity of an underlying chemical process, controlled by the temperature and by the amount of a substance (? catalyst) whose effective quantity at any moment varies within definite limits in different filaments of the alga. On the basis of its temperature characteristic the locomotion of Oscillatoria is compared with certain other processes for which this constant is calculated.  相似文献   

14.
I. Plasmalemma. 1. The order of toxicity of the salts used in these experiments on the surface membrane of a cell, taking as a criterion viability of amebæ immersed in solutions for 1 day, is HgCl2, FeCl3> AlCl3> CuCl2> PbCl2> FeCl2. Using viability for 5 days as a criterion, the order of toxicity is PbCl2> CuCl2> HgCl2> AlCl3> FeCl3> FeCl2. 2. The rate of toxicity is in the order FeCl3> HgCl2> AlCl3> FeCl2> CuCl2> PbCl2. 3. The ability of amebæ to recover from a marked tear of the plasmalemma in the solutions of the salts occurred in the following order: AlCl3> PbCl2> FeCl2> CuCl2> FeCl3> HgCl2. II. Internal Protoplasm. 4. The relative toxicity of the salts on the internal protoplasm, judged by the recovery of the amebæ from large injections and the range over which these salts can cause coagulation of the internal protoplasm, is in the following order: PbCl2> CuCl2> FeCl3> HgCl2> FeCl2> AlCl3. 5. AlCl3 in concentrations between M/32 and M/250 causes a marked temporary enlargement of the contractile vacuole. FeCl2, FeCl3, and CuCl3 produce a slight enlargement of the vacuole. 6. PbCl2, in concentrations used in these experiments, appears to form a different type of combination with the internal protoplasm than do the other salts. III. Permeability. 7. Using the similarity in appearance of the internal protoplasm after injection and after immersion to indicate that the surface is permeable to a substance in which the ameba is immersed, it is concluded that AlCl3 can easily penetrate the intact plasmalemma. CuCl2 also seems to have some penetrating power. None of the other salts studied give visible internal evidence of penetrability into the ameba. IV. Toxicity. 8. The toxic action of the chlorides of the heavy metals used in these experiments, and of aluminum, is exerted principally upon the surface of the cell and is due not only to the action of the metal cation but also to acid which is produced by hydrolysis.  相似文献   

15.
The rate of swelling of Arbacia eggs in dilute sea water, studied by Lillie and by Lucke and McCutcheon, may be expressed by the formulæ derived for the rate of increase in volume of a solution enclosed in a collodion sac. The rate of swelling of slices of carrot in distilled water, measured by Stiles and Jørgensen, may be expressed by the equation derived previously for the swelling of similarly shaped blocks of gelatin.  相似文献   

16.
17.
1. It was shown that the high viscosity of gelatin solutions as well as the character of the osmotic pressure-concentration curves indicates that gelatin is hydrated even at temperatures as high as 50°C. 2. The degree of hydration of gelatin was determined by means of viscosity measurements through the application of the formula See PDF for Equation. 3. When the concentration of gelatin was corrected for the volume of water of hydration as obtained from the viscosity measurements, the relation between the osmotic pressure of various concentrations of gelatin and the corrected concentrations became linear, thus making it possible to determine the apparent molecular weight of gelatin through the application of van''t Hoff''s law. The molecular weight of gelatin at 35°C. proved to be 61,500. 4. A study was made of the mechanism of hydration of gelatin and it was shown that the experimental data agree with the theory that the hydration of gelatin is a pure osmotic pressure phenomenon brought about by the presence in gelatin of a number of insoluble micellæ containing a definite amount of a soluble ingredient of gelatin. As long as there is a difference in the osmotic pressure between the inside of the micellæ and the outside gelatin solution the micellæ swell until an equilibrium is established at which the osmotic pressure inside of the micellæ is balanced by the total osmotic pressure of the gelatin solution and by the elasticity pressure of the micellæ. 5. On addition of HCl to isoelectric gelatin the total activity of ions inside of the micellæ is greater than in the outside solution due to a greater concentration of protein in the micellæ. This brings about a further swelling of the micellæ until a Donnan equilibrium is established in the ion distribution accompanied by an equilibrium in the osmotic pressure. Through the application of the theory developed here it was possible actually to calculate the osmotic pressure difference between the inside of the micellæ and the outside solution which was brought about by the difference in the ion distribution. 6. According to the same theory the effect of pH on viscosity of gelatin should diminish with increase in concentration of gelatin, since the difference in the concentration of the protein inside and outside of the micellæ also decreases. This was confirmed experimentally. At concentrations above 8 gm. per 100 gm. of H2O there is very little difference in the viscosity of gelatin of various pH as compared with that of isoelectric gelatin.  相似文献   

18.
The branchial plumes of Chromodoris respond, by contraction, to a decrease in light intensity. This response is obliterated by high temperatures (above 32°) and by direct sunlight, and is possible only within a limited range of alkalinity of the sea water. A concealing retraction of the whole gill-crown is reflexly determined by the self-contraction of the individual plumes under "optimal" conditions of light, temperature, and alkalinity. This protective response of the branchiæ is superimposed upon their simple system of fundamental activities (protrusion, retraction) apparently concerned with regulating the respiratory exchange of the nudibranch.  相似文献   

19.
1. When Fucus eggs which have been fertilized for a sufficient length of time are irradiated unilaterally with monochromatic ultraviolet light (λ2804 Å) of adequate dosage, 97–100 per cent form rhizoids on the halves of the eggs away from the source of radiation (see Figs. 1 and 2). 2. The responsiveness of the eggs increases gradually after fertilization and does not reach a maximum until about 7 hours at 15°C. (see Fig. 3). The first rhizoids begin to form in a population at about 12 hours after fertilization. The responsiveness remains maximal until at least 11 hours after fertilization. 3. It is suggested that the low responsiveness of a population of eggs at an earlier period is due to recovery from the effects of irradiation before the rhizoids begin to form. 4. The response of eggs to λ2804 Å is proportional, over a wide range, to the logarithm of the dosage (see Fig. 1). Dosage was regulated by the duration of exposure during the period of maximum response. 5. High dosages of λ2804 Å, of the order of 10,000 ergs per mm.2, cause the rhizoids to form fairly precisely away from the source of radiation (see Fig. 2). Twice this dosage inhibits rhizoid formation altogether without causing cytolysis. 6. Other wave-lengths which have also been shown to be effective are: 3660, 3130, 2654, 2537, 2482, and 2345 Å. Only exploratory measurements have been made to test the effectiveness of these wave-lengths, but they show that much greater energy is necessary to obtain a strong response with λ3130 and 3660 Å, especially the latter. The wave-lengths shorter than 2804 Å, on the other hand, show the same order of effectiveness as λ2804 Å. Some may be more effective. 7. A beam of λ2804 Å which is incident on a single layer of Fucus eggs is completely extinguished at 2, 3, 6, or 6½ hours after fertilization. About 85 per cent of a beam of λ3660 Å is extinguished. The wave-length 3660 Å is thus not so completely absorbed as λ2804 Å, but the difference in proportion absorbed by the egg is not nearly so great as the difference in effectiveness.  相似文献   

20.
A study has been made of those proteins which might offer exceptions to the law that the fluidity of a protein solution is a linear function of the volume concentration; viz., egg albumin, serum albumin, pseudoglobulin, euglobulin, gelatin, and sodium caseinogenate. Solutions of egg albumin below 20 per cent by weight obey the above law but somewhat below 30 per cent the fluidities begin to be too high, presumably due to the contribution to the fluidity made by the deformation of the particles as they come into contact, as the fluidity approaches zero. The fluidity of serum albumin solutions shows a similar behavior, being exceptional above 15 per cent in weight. Pseudoglobulin and euglobulin give fluidity-concentration curves (Fig. 4) which are linear up to about 2.5 per cent each in a total range of 20 and 14 per cent respectively. From this singular point both compounds show a second range which is linear. Pseudoglobulin is the only substance whose solutions seem to show a third linear range. We have also used the data of Chick and Martin for sodium caseinogenate and found evidence for two linear régimes. It is desirable at this time to call attention to the measurements of the flow of glycogen solutions by Botazzi and d''Errico (14) which in Fluidity and See PDF for Structure plasticity, page 207, are expressed in rhes. The data show two linear fluidity curves of different slopes. In this case it was definitely known that the data for each curve were measured with different viscometers which suggested the possibility of an error in viscometry entering in to confuse the issue. We have no suspicions as to the reliability of the data studied in this paper; we only wish to caution the readers that our hypotheses based on these data must be regarded with due reserve until confirmed. We have found a formula (11) based on the supposed linear relation between logarithmic fluidities and concentration which is convenient to use within the range, but close examination reveals that it does not reproduce the data for the higher concentrations at 25° nor does it permit extrapolation to pure water It is not realistic enough because it does not contemplate any change of régime in going from viscous to non-Newtonian or plastic flow. The formula does not apply to any other of the proteins studied in this paper nor to the great majority of proteins already reported as following the linear law. These are serious objections. We have therefore offered as an alternative a simple formula (24) according to which the fluidities are additive in the viscous régime. When the emulsoid particles approach close packing, they are deformed and this deformation contributes to the flow and the fluidity volume concentration curve is again linear. In fact, there may be one or more additional changes of régime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号