首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The latent period in the response of Mya to illumination varies inversely as the duration of the exposure to which it is subjected. The reciprocal of the latent period, measuring the velocity of the process which underlies it, is a linear function of the exposure period. Since the duration of the exposure represents the amount of photochemical activity, it is concluded that the substances formed at that time act to catalyze a chemical reaction which determines the duration of the latent period. This explanation is in accord with the previous work on the photochemical reaction and with the effect of temperature on the latent period. As a result of the combined investigations there is presented a concrete hypothesis for the mechanism of photic reception in Mya.  相似文献   

2.
1. In the photosensory process of Mya the latent period varies inversely as the intensity of the stimulating light. 2. Quantitative analysis of the data shows that the photochemical effect of the light is a logarithmic function of its intensity, the two variables being related to each other according to the well known "compound interest" law. 3. Comparison with previous experiments demonstrates that the Reciprocity Law of Bunsen and Roscoe applies to the photosensory process not only for the minimum energy required for a response, but for a much greater range of energy application as well.  相似文献   

3.
1. The effect of temperature on the reaction time of Mya to light is mainly confined to the latent period. The sensitization period, representing a photochemical process, is changed comparatively little. 2. The relation between the latent period and the temperature is adequately expressed by the Arrhenius equation, for temperatures below 21°C. Above this temperature, the latent period becomes increasingly longer than is required by the Arrhenius formula when µ = 19,680. 3. These deviations, occurring above the highest environmental temperature of Mya, are explained on the assumption that the principal product formed during the latent period is inactivated by heat. 4. Calculation of the velocity of the hypothetical inactivation reaction at different temperatures shows that it also follows the Arrhenius rule when µ = 48,500. This value of µ corresponds to those generally found for spontaneous inactivations and destructions.  相似文献   

4.
1. Data are presented for the dark adaptation of four species of animals. They show that during dark adaptation the reaction time of an animal to light of constant intensity decreases at first rapidly, then slowly, until it reaches a constant minimum. 2. On the assumption that at all stages of adaptation a given response to light involves a constant photochemical effect, it is possible to describe the progress of dark adaptation by the equation of a bimolecular reaction. This supposes, therefore, that dark adaptation represents the accumulation within the sense cells of a photosensitive material formed by the chemical combination of two other substances. 3. The chemical nature of the process is further borne out by the fact that the speed of dark adaptation is affected by the temperature. The velocity constant of the bimolecular process describing dark adaptation bears in Mya a relation to the temperature such that the Arrhenius equation expresses it with considerable exactness when µ = 17,400. 4. A chemical mechanism is suggested which can account not only for the data of dark adaptation here presented, but for many other properties of the photosensory process which have already been investigated in these animals. This assumes the existence of a coupled photochemical reaction of which the secondary, "dark" reaction is catalyzed by the products of the primary photochemical reaction proper. This primary photochemical reaction itself is reversible in that its main products combine to form again the photosensitive material, whose concentration controls the behavior of the system during dark adaptation.  相似文献   

5.
1. The reaction time of Mya to light is composed of two parts. The first, a sensitization period, is an exceedingly short interval of the order of magnitude associated with photographic processes. The second is a latent period of about 1.3 seconds, during which Mya need not remain exposed to the stimulating light. 2. The process of dark adaptation in Mya is orderly. Its progress may be represented by the formation of a photosensitive substance according to the dynamics of a bimolecular reaction. See PDF for Structure 3. Photosensory equilibrium as represented by the light- and dark-adapted conditions finds a rational explanation in terms of the "stationary state" of a reversible photochemical reaction involving a photosensitive substance and its two precursors. 4. There are two corollaries to this hypothesis. The first requires that the reaction time at sensory equilibrium for a given intensity should vary inversely with the temperature; the second, that the rate of dark adaptation should vary directly with the temperature. Experiments verified both of these requirements.  相似文献   

6.
1. Experiments are presented which show that the latent period in the photosensory response of Ciona is inversely proportional to the duration of the exposure period to light. From this it is found that the velocity of the chemical reaction which determines the latent period is directly proportional to the concentration of photochemical products formed during the exposure period. This is interpreted as showing that the two processes form a coupled photochemical reaction, of which the secondary reaction proceeds only in the presence of products from the primary reaction. This coupling may be a catalysis or a direct chemical relation. 2. Further experiments show that the relation between temperature and the latent period is accurately described by the Arrhenius equation in which µ = 16,200. The precise numerical value of µ tentatively identifies the latent period process as an oxidation reaction which is catalyzed by iron. 3. The photocatalytic properties of certain iron compounds are used as a model for the coupled photochemical reaction suggested for the photosensory mechanism of Ciona and Mya.  相似文献   

7.
1. The effect of temperature on the photosensory latent period in Pholas dactylus is accurately described by the Arrhenius equation when µ = 18,300. 2. The adequacy of this equation has already been found for two other photosensitive animals, Mya and Ciona, which are very similar in behavior to Pholas. The value of µ is different for each of the three species studied. 3. This is taken to mean that though the organization of the receptor process is the same for the three species, the chemical materials concerned are very likely different.  相似文献   

8.
Light-adapted sporangiophores of the fungus Phycomyces respond to sudden darkening by a temporary decrease in the rate of elongation, after a latent period of several minutes. The reaction time of this "dark growth" response is compound like that of the "light growth" response. It is, moreover, shorter the more intense the previous illumination. The rate of dark adaptation following adaptation to a very large range of light intensities is found to be proportional to the logarithm of the preceding light intensity. It is shown that a constant amount of dark adaptation takes place before the response occurs. On the assumption that changes in the rate of growth reflect changes in the concentration of a substance which at constant light intensity is in equilibrium with a light-sensitive material, possible equations for such a photostationary state are examined. The most reasonable formulation requires that the partial velocity of the "light" reaction be taken proportional to log I instead of to I directly.  相似文献   

9.
1. Experiments are described which measure the sensitivity of animals exposed to continued illumination to which they have become adapted. It is shown that the amount of outside light energy necessary to stimulate an adapted animal increases with the intensity of the adapting illumination. 2. The data are analyzed quantitatively in terms of the reversible reaction S ⇌ P + A shown previously to account for the photic sensitivity of these animals. This analysis demonstrates that, though the amount of incident energy necessary for a minimal response varies with the adapting intensity, the actual amount of photochemical decomposition required to set off the sensory mechanism is a constant quantity. 3. The ability of these animals to come into sensory equilibrium with any sustained illumination is accounted for quantitatively by the presence of a stationary state in the reversible photochemical reaction S ⇌ P + A during which the concentrations of the three components are constant. 4. It is shown that the concentrations of these substances at the stationary state are automatically controlled by the outside intensity. Therefore, given the sensory mechanism as a basis, the adaptation of the animals to light and the consequent changes in sensitivity, are determined entirely by the light to which the animals are exposed. 5. Because of the properties of the stationary state, and of the constancy of photochemical decomposition for a minimal effect, it is suggested that the sensory system is not only the traditional receptor system, but is also a protecting layer which stabilizes and buffers the relation between the nervous system and the environment.  相似文献   

10.
11.
Fructification in cultures of Cyathus stercoreus (Schw.) de Toni is a process in which photochemical reactions are involved. The amount of light energy required for fruiting to take place is a constant. This photoinductive constant is approximately 17200 foot-candle-hours considering optimum temperature (25 C) and light-saturation effect with reference to light intensity (240 ft-c). It is hypothesized that photoinduction becomes operative when a hypothetical “photoreceptive precursor” develops in the mycelium. The development of such a precursor is believed to occur when conditions unfavorable for good vegetative growth (e.g. shortage of food supply) develop in the culture. Internal metabolic pathways then shift to favor the production of the photoreceptive precursor. A linear function is derived which characterizes the biological photoinduction of fruit-body formation.  相似文献   

12.
Rhodopsin, the pigment of the retinal rods, can be bleached either by light or by high temperature. Earlier work had shown that when white light is used the bleaching rate does not depend on temperature, and so must be independent of the internal energy of the molecule. On the other hand thermal bleaching in the dark has a high temperature dependence from which one can calculate that the reaction has an apparent activation energy of 44 kg. cal. per mole. It has now been shown that the bleaching rate of rhodopsin becomes temperature-dependent in red light, indicating that light and heat cooperate in activating the molecule. Apparently thermal energy is needed for bleaching at long wave lengths where the quanta are not sufficiently energy-rich to bring about bleaching by themselves. The temperature dependence appears at 590 mµ. This is the longest wave length at which bleaching by light proceeds without thermal activation, and corresponds to a quantum energy of 48.5 kg. cal. per mole. This value of the minimum energy to bleach rhodopsin by light alone is in agreement with the activation energy of thermal bleaching in the dark. At wave lengths between 590 and 750 mµ, the longest wave length at which the bleaching rate was fast enough to study, the sum of the quantum energy and of the activation energy calculated from the temperature coefficients remains between 44 and 48.5 kg. cal. This result shows that in red light the energy deficit of the quanta can be made up by a contribution of thermal energy from the internal degrees of freedom of the rhodopsin molecule. The absorption spectrum of rhodopsin, which is not markedly temperature-dependent at shorter wave lengths, also becomes temperature-dependent in red light of wave lengths longer than about 570 to 590 mµ. The temperature dependence of the bleaching rate is at least partly accounted for by the temperature coefficient of absorption. There is some evidence that the temperature coefficient of bleaching is somewhat greater than the temperature coefficient of absorption at wave lengths longer than 590 mmicro;. This means that the thermal energy of the molecule is a more critical factor in bleaching than in absorption. It shows that some of the molecules which absorb energy-deficient quanta of red light are unable to supply the thermal component of the activation energy needed for bleaching, so bringing about a fall in the quantum efficiency. The experiments show that there is a gradual transition between the activation of rhodopsin by light and the activation by internal energy. It is suggested that energy can move freely between the prosthetic group and the protein moiety of the molecule. In this way a part of the large amount of energy in the internal degrees of freedom of rhodopsin could become available to assist in thermal activation. Assuming that the minimum energy required for bleaching is 48.5 kg. cal., an equation familiar in the study of unimolecular reaction has been used to estimate the number of internal degrees of freedom, n, involved in supplying the thermal component of the activation energy when rhodopsin is bleached in red light. It was found that n increases from 2 at 590 mµ to a minimum value of 15 at 750 mµ. One wonders what value n has at 1050 mµ, where vision still persists, and where rhodopsin molecules may supply some 16 kg. cal. of thermal energy per mole in order to make up for the energy deficit of the quanta.  相似文献   

13.
1. Ciona possesses two means of responding to an increase in the intensity of illumination. One is by means of a local reaction; the other is by a retraction reflex of the body as a whole. 2. The "ocelli" are not photoreceptors. The photosensitive area is in the intersiphonal region containing the neural mass. This area contains no pigment. 3. The reaction time to light is composed of a sensitization period during which Ciona must be exposed to the light, and of a latent period during which it need not be illuminated in order to react to the stimulus received during the sensitization period. 4. The duration of the reaction time varies inversely as the intensity. Analysis shows the latent period to be constant. The relation between the sensitization period and the intensity follows the Bunsen-Roscoe rule. 5. During dark adaptation the reaction time is at first large, then it decreases until a constant minimum is reached. 6. A photochemical system consisting of a reversible reaction is suggested in order to account for the phenomena observed. This system includes a photosensitive substance and its precursor, the dynamics of the reaction following closely the peculiarities of the photosensitivity of Ciona. 7. It is shown that in order to produce a reaction, a constant ratio must be reached between the amount of sensitive substance broken down by the stimulus and the amount previously broken down. 8. From the chemical system suggested certain experimental predictions were made. The actual experiments verified these predictions exactly. 9. The results obtained with regularly repeated stimulation not only fail to show any basis for a learning process or for the presence of a "higher behavior," but follow the requirements of the photochemical system suggested before.  相似文献   

14.
1. A theory of visual intensity discrimination is proposed in terms of the photochemical events which take place at the moment when a photosensory system already adapted to the intensity I is exposed to the just perceptibly higher intensity II. Unlike previous formulations this theory predicts that the fraction ΔI/I, after rapidly decreasing as I increases, does not increase again at high intensities, but reaches a constant value which is maintained even at the highest intensities. 2. The theory describes quantitatively the intensity discrimination data of Drosophila, of the bee, and of Mya. 3. With some carefully considered exceptions the intensity discrimination data of the human eye fall into two classes: those with small test areas or with red light, which form a single continuous curve describing the function of the retinal cones alone, and those with larger areas, and with white, orange, and yellow light, which form a double curve showing a clear inflection point, and represent the separate function of the rods at intensities below the inflection point and of the cones at intensities above it. 4. The theory describes all these data quantitatively by treating the rods and cones as two independently functioning photosensory systems in accordance with the well established duplicity idea. 5. In terms of the theory the data of intensity discrimination give critical information about the order of both the photochemical and dark reactions in each photosensory system. The reactions turn out to be variously monomolecular and bimolecular for the different animals.  相似文献   

15.
1. The negative phototropism of certain land isopods was investigated over a large range of intensities, especially low ones. The responses were determined quantitatively by measuring the angle through which an animal turned away from a line perpendicular to the rays of light. 2. In the absence of light the undirected movements set up by obscure stimuli were such as to compensate each other statistically, the average path being a movement in the direction in which the animal was headed. 3. Over a large range of intensities (0.0026 m.c. up) the average turning is maximal, about 55° (Oniscus). This maximal response is due to an anatomical peculiarity, in that the carapace cuts off the light on the eye after the animal has turned 50–60°. This peculiarity probably accounts for specific differences among land isopods. Any light, therefore, which is strong enough to turn an animal through this maximal angle in a radial distance of 10 cm. will give results whose mean will be maximal. 4. Below 0.0026 m.c. the amount of angular deflection becomes less and less, in proportion to the logarithm of the intensity, until at 0.00003 m.c. the movements are the same as in darkness. 5. This proportionality between amount of turning and the logarithm of the intensity indicates the photochemical nature of phototropism on the basis of Hecht''s work with Mya. As a result, Loeb''s theory of phototropism may then be stated in the mathematical form See PDF for Equation in which I 1 and I 2 are the two intensities, E 1 and E 2, their respective effects, and R, the muscular action set up by the difference in photochemical effect on the two sides.  相似文献   

16.
A method was devised for measuring the minimum visibile in different parts of the spectrum, as done by Langley in 1888. The results are generally in good agreement with those given by this author, although not as close on both sides of the wave length 0.55 µ; this may be due partly to the use of a rock salt prism, to the fact that the minimum was determined by looking at a beam of diffused transmitted, instead of diffused reflected light, and also to the fact that Langley experimented with the sun, through the earth''s atmosphere, and had to take into account the thickness of the atmosphere interposed and the brightness of the sky. Although his experiments were made with great care, the differences from one day to another are important. However, when he expresses the energy in absolute units, he always refers to the same mean amount of energy radiated by the sun on 1 sq. cm. This amount is certainly not constant, if one judges from the differences observed in two measurements of sensitivity of the eye of the same individual at different dates. On the contrary, for a given wave length, our measurements always agreed closely, as our source of radiation was very nearly constant, owing to the absence of a varying amount of water vapor interposed. This may in some way account for the discrepancies observed.  相似文献   

17.
1. This investigation has been concerned with an analysis of brightness discrimination as it is influenced by the duration of ΔI. The durations used extend from 0.002 second to 0.5 second. 2. ΔI/I values at constant intensity are highest for the shortest duration and decrease with an increase in duration up to the limits of a critical exposure time. At durations longer than the critical duration the ratio ΔI/I remains constant. 3. The Bunsen-Roscoe law holds for the photolysis due to ΔI. This is shown by the fact that, within the limits of a critical duration, the product of ΔI and exposure time is constant for any value of prevailing intensity, I. 4. At durations greater than the critical duration the Bunsen-Roscoe law is superseded by the relation ΔI = Constant. This change of relation is considered in the light of Hartline''s discussion (1934). 5. The critical duration is a function of intensity. As intensity increases the critical duration decreases. 6. Hecht''s theory (1935) accounts for the data of this experiment if it be assumed that brightness discrimination is determined by a constant amount of photolysis.  相似文献   

18.
In the autotrophic bacterium, Thiobacillus thiooxidans, the oxidation of sulfur is coupled to transfers of phosphate from the medium to the cells. CO2 fixation is coupled to transfers of inorganic phosphate from the cells to the medium and is dependent, in the absence of concomitant sulfur oxidation, upon the amount of phosphate previously taken up during sulfur oxidation. The energy reservoir, which is formed by sulfur oxidation in the absence of CO2 and which can be released for the fixation of CO2 under conditions which do not permit sulfur oxidation, is a phosphorylated compound and the data suggest that the energy is stored in the cell as phosphate bond energy. It is possible to oxidize sulfur at a constant rate for hours in the absence of CO2. The phosphate energy formed during this process is probably released by cell phosphotases. It is possible to inhibit these phosphotases by means of inorganic phosphate and thus to inhibit sulfur oxidation in the absence of CO2. In the presence of CO2, where alternative uses for the phosphate energy are available, the inhibition is relieved. Sulfur oxidation (energy input) is coupled, not to CO2 fixation, but to phosphate esterification. CO2 fixation (energy utilization) is coupled with phosphate release.  相似文献   

19.
THE PREPARATION AND PROPERTIES OF BACTERIAL CHROMATOPHORE FRACTIONS   总被引:7,自引:1,他引:6       下载免费PDF全文
Chromatophore material from the bacterium Rhodopseudomonas spheroides was freed of ribosomes by centrifugation in 27 per cent RbCl and then separated into "heavy" and "light" fractions by centrifugation through a sucrose gradient. The fractions differed from one another in the following ways. (a) The isopycnic density of the heavy fraction was between 1.15 and 1.18 gm/ml and that of the light fraction was 1.14 gm/ml. (b) The heavy fraction was able to bind ribosomes; the light fraction was not. (c) The light fraction was homogeneous in the ultracentrifuge and had a sedimentation constant, extrapolated to infinite dilution, of 153 s20,w. The heavy fraction was grossly heterogeneous. (d) Both the amount of bacteriochlorophyll relative to protein and the ratio of bacteriochlorophyll to carotenoids were greater in the light fraction. (e) The spectra of the two fractions in the near infra-red were different. Comparisons of the chromatophore fractions from cells with different amounts of bacteriochlorophyll showed that the specific bacteriochlorophyll contents of the two fractions did not change to the same extent as did that of the whole cells. The amount of heavy fraction from pigmented cells was roughly independent of the cellular pigment content and was about equal to that from pigment-free cells. The amount of light fraction depended on the pigment content of the cells; no light fraction was obtained from cells devoid of bacteriochlorophyll. The cytochrome complements of both fractions underwent quantitative as well as qualitative changes with varying growth conditions. The size of the photosynthetic unit in R. spheroides appeared to increase as the total cellular bacteriochlorophyll content increased; however, the number of units per light fraction particle remained constant.  相似文献   

20.
The most effective point in the visible spectrum for the stimulation of Pholas is 550 mµ. On the red side, the effectiveness drops rapidly to almost zero. On the violet side, the effectiveness drops to about half, and rises again in such a way as to indicate a possible second maximum in the near ultra-violet. On the basis of certain ideas these data are assumed to represent the properties of the absorption spectrum of the photosensitive system in Pholas. A comparison with Mya shows that the absorption spectra of the photosensitive systems in the animals are distinctly different. Nevertheless the way in which intensity and reaction time are related in the two animals are found to be identical. The conclusion is then drawn from this and from previous work, that although the fundamental properties of the photoreceptor process show an identical organization in several different animals, the materials which compose these processes are specific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号