首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Orai1 is a plasma membrane protein that in its tetrameric form is responsible for calcium influx from the extracellular environment into the cytosol in response to interaction with the Ca2+-depletion sensor STIM1. This is followed by a fast Ca2+·calmodulin (CaM)-dependent inhibition, resulting from CaM binding to an Orai1 region called the calmodulin binding domain (CMBD). The interaction between Orai1 and CaM at the atomic level remains unknown. Here, we report the crystal structure of a CaM·Orai1-CMBD complex showing one CMBD bound to the C-terminal lobe of CaM, differing from other CaM-target protein complexes, in which both N- and C-terminal lobes of CaM (CaM-N and CaM-C) are involved in target binding. Orai1-CMBD binds CaM-C mainly through hydrophobic interactions, primarily involving residue Trp76 of Orai1-CMBD, which interacts with the hydrophobic pocket of CaM-C. However, NMR data, isothermal titration calorimetry data, and pulldown assays indicated that CaM-N and CaM-C both can bind Orai1-CMBD, with CaM-N having ∼4 times weaker affinity than CaM-C. Pulldown assays of a Orai1-CMBD(W76E) mutant, gel filtration chromatography data, and NOE signals indicated that CaM-N and CaM-C can each bind one Orai1-CMBD. Thus our studies support an unusual, extended 1:2 binding mode of CaM to Orai1-CMBDs, and quantify the affinity of Orai1 for CaM. We propose a two-step mechanism for CaM-dependent Orai1 inactivation initiated by binding of the C-lobe of CaM to the CMBD of one Orai1 followed by the binding of the N-lobe of CaM to the CMBD of a neighboring Orai1.  相似文献   

2.
CEACAM1, a homotypic transmembrane receptor with 12 or 72 amino acid cytosolic domain isoforms, is converted from inactive cis-dimers to active trans-dimers by calcium-calmodulin (Ca2+/CaM). Previously, the weak binding of Ca2+/CaM to the human 12 AA cytosolic domain was studied using C-terminal anchored peptides. We now show the binding of 15N labeled Phe-454 cytosolic domain peptides in solution or membrane anchored using NMR demonstrates a significant role for the lipid bilayer. Although binding is increased by the mutation Phe454Ala, this mutation was previously shown to abrogate actin binding. On the other hand, Ca2+/CaM binding is abrogated by phosphorylation of nearby Thr-457, a post-translation modification required for actin binding and subsequent in vitro lumen formation. Binding of Ca2+/CaM to a membrane proximal peptide from the long 72 AA cytosolic domain anchored to lipid nanodiscs was very weak compared to lipid free conditions, suggesting membrane specific effects between the two isoforms. NMR analysis of 15N labeled Ca2+/CaM with unlabeled peptides showed the C-lobe of Ca2+/CaM is involved in peptide interactions, and hydrophobic residues such as Met-109, Val-142 and Met-144 play important roles in binding peptide. This information was incorporated into transmembrane models of CEACAM1 binding to Ca2+/CaM. The lack of Ca2+/CaM binding to phosphorylated Thr-457, a residue we have previously shown to be phosphorylated by CaMK2D, also dependent on Ca2+/CaM, suggests stepwise binding of the cytosolic domain first to Ca2+/CaM and then to actin.  相似文献   

3.
We have shown previously that the Ca2+-dependent inhibition of lens epithelial cell-to-cell communication is mediated in part by the direct association of calmodulin (CaM) with connexin43 (Cx43), the major connexin in these cells. We now show that elevation of [Ca2+]i in HeLa cells transfected with the lens fiber cell gap junction protein sheep Cx44 also results in the inhibition of cell-to-cell dye transfer. A peptide comprising the putative CaM binding domain (aa 129-150) of the intracellular loop region of this connexin exhibited a high affinity, stoichiometric interaction with Ca2+-CaM. NMR studies indicate that the binding of Cx44 peptide to CaM reflects a classical embracing mode of interaction. The interaction is an exothermic event that is both enthalpically and entropically driven in which electrostatic interactions play an important role. The binding of the Cx44 peptide to CaM increases the CaM intradomain cooperativity and enhances the Ca2+-binding affinities of the C-domain of CaM more than twofold by slowing the rate of Ca2+ release from the complex. Our data suggest a common mechanism by which the Ca2+-dependent inhibition of the α-class of gap junction proteins is mediated by the direct association of an intracellular loop region of these proteins with Ca2+-CaM.  相似文献   

4.
A family of plant ligand gated nonselective cation channels (cngcs) can be activated by direct, and reversible binding of cyclic nucleotide. These proteins have a cytoplasm-localized cyclic nucleotide binding domain (CNBD) at the carboxy-terminus of the polypeptide. A portion of the cngc CNBD also acts as a calmodulin (CaM) binding domain (CaMBD). The objective of this work is to further characterize interaction of cyclic nucleotide and CaM in gating plant cngc currents. The three-dimensional structure of an Arabidopsis thaliana cngc (Atcngc2) CNBD was modeled, indicating cAMP binding to the Atcngc2 CNBD in a pocket formed by a β barrel structure appressing a shortened (relative to animal cngc CNBDs) αC helix. The Atcngc2 CaMBD was expressed as a fusion peptide linking blue and green fluorescent proteins, and used to quantify CaM (A. thaliana CaM isoform 4) binding. CaM bound the fusion protein in a Ca2+–dependent manner with a Kd of 7.6 nM and a Ca2+ binding Kd of 200 nM. Functional characterization (voltage clamp analysis) of Atcngc2 was undertaken by expression in human embryonic kidney cells. CaM reversed cAMP activation of Atcngc2 currents. This functional interaction was dependent on free cytosolic Ca2+. Increasing cytosolic Ca2+ was found to inhibit cAMP activation of the channel in the absence of added CaM. We conclude that the physical interaction of Ca2+/CaM with plant cngcs blocks cyclic nucleotide activation of these channels. Thus, the cytosolic secondary messengers CaM, cAMP, and Ca2+ can act in an integrated fashion to gate currents through these plant ion channels.  相似文献   

5.
The intracellular Ca2+ sensor calmodulin (CaM) regulates the cardiac Ca2+ release channel/ryanodine receptor 2 (RyR2), and mutations in CaM cause arrhythmias such as catecholaminergic polymorphic ventricular tachycardia (CPVT) and long QT syndrome. Here, we investigated the effect of CaM mutations causing CPVT (N53I), long QT syndrome (D95V and D129G), or both (CaM N97S) on RyR2-mediated Ca2+ release. All mutations increased Ca2+ release and rendered RyR2 more susceptible to store overload-induced Ca2+ release (SOICR) by lowering the threshold of store Ca2+ content at which SOICR occurred and the threshold at which SOICR terminated. To obtain mechanistic insights, we investigated the Ca2+ binding of the N- and C-terminal domains (N- and C-domain) of CaM in the presence of a peptide corresponding to the CaM-binding domain of RyR2. The N53I mutation decreased the affinity of Ca2+ binding to the N-domain of CaM, relative to CaM WT, but did not affect the C-domain. Conversely, mutations N97S, D95V, and D129G had little or no effect on Ca2+ binding to the N-domain but markedly decreased the affinity of the C-domain for Ca2+. These results suggest that mutations D95V, N97S, and D129G alter the interaction between CaM and the CaMBD and thus RyR2 regulation. Because the N53I mutation minimally affected Ca2+ binding to the C-domain, it must cause aberrant regulation via a different mechanism. These results support aberrant RyR2 regulation as the disease mechanism for CPVT associated with CaM mutations and shows that CaM mutations not associated with CPVT can also affect RyR2. A model for the CaM-RyR2 interaction, where the Ca2+-saturated C-domain is constitutively bound to RyR2 and the N-domain senses increases in Ca2+ concentration, is proposed.  相似文献   

6.
Ca2+ signalling in neurons through calmodulin (CaM) has a prominent function in regulating synaptic vesicle trafficking, transport, and fusion. Importantly, Ca2+–CaM binds a conserved region in the priming proteins Munc13‐1 and ubMunc13‐2 and thus regulates synaptic neurotransmitter release in neurons in response to residual Ca2+ signals. We solved the structure of Ca2+4–CaM in complex with the CaM‐binding domain of Munc13‐1, which features a novel 1‐5‐8‐26 CaM‐binding motif with two separated mobile structural modules, each involving a CaM domain. Photoaffinity labelling data reveal the same modular architecture in the complex with the ubMunc13‐2 isoform. The N‐module can be dissociated with EGTA to form the half‐loaded Munc13/Ca2+2–CaM complex. The Ca2+ regulation of these Munc13 isoforms can therefore be explained by the modular nature of the Munc13/Ca2+–CaM interactions, where the C‐module provides a high‐affinity interaction activated at nanomolar [Ca2+]i, whereas the N‐module acts as a sensor at micromolar [Ca2+]i. This Ca2+/CaM‐binding mode of Munc13 likely constitutes a key molecular correlate of the characteristic Ca2+‐dependent modulation of short‐term synaptic plasticity.  相似文献   

7.
Protein 4.1G (4.1G) is a widely expressed member of the protein 4.1 family of membrane skeletal proteins. We have previously reported that Ca2+-saturated calmodulin (Ca2+/CaM) modulates 4.1G interactions with transmembrane and membrane-associated proteins through binding to Four.one-ezrin–radixin–moesin (4.1G FERM) domain and N-terminal headpiece region (GHP). Here we identify a novel mechanism of Ca2+/CaM-mediated regulation of 4.1G interactions using a combination of small-angle X-ray scattering, nuclear magnetic resonance spectroscopy, and circular dichroism spectroscopy analyses. We document that GHP intrinsically disordered coiled structure switches to a stable compact structure upon binding of Ca2+/CaM. This dramatic conformational change of GHP inhibits in turn 4.1G FERM domain interactions due to steric hindrance. Based upon sequence homologies with the Ca2+/CaM-binding motif in protein 4.1R headpiece region, we establish that the 4.1G S71RGISRFIPPWLKKQKS peptide (pepG) mediates Ca2+/CaM binding. As observed for GHP, the random coiled structure of pepG changes to a relaxed globular shape upon complex formation with Ca2+/CaM. The resilient coiled structure of pepG, maintained even in the presence of trifluoroethanol, singles it out from any previously published CaM-binding peptide. Taken together, these results show that Ca2+/CaM binding to GHP, and more specifically to pepG, has profound effects on other functional domains of 4.1G.  相似文献   

8.
Calmodulin (CaM) binds to the FERM domain of 80 kDa erythrocyte protein 4.1R (R30) independently of Ca2+ but, paradoxically, regulates R30 binding to transmembrane proteins in a Ca2+-dependent manner. We have previously mapped a Ca2+-independent CaM-binding site, pep11 (A264KKLWKVCVEHHTFFR), in 4.1R FERM domain and demonstrated that CaM, when saturated by Ca2+ (Ca2+/CaM), interacts simultaneously with pep11 and with Ser185 in A181KKLSMYGVDLHKAKD (pep9), the binding affinity of Ca2+/CaM for pep9 increasing dramatically in the presence of pep11. Based on these findings, we hypothesized that pep11 induced key conformational changes in the Ca2+/CaM complex. By differential scanning calorimetry analysis, we established that the C-lobe of CaM was more stable when bound to pep11 either in the presence or absence of Ca2+. Using nuclear magnetic resonance spectroscopy, we identified 8 residues in the N-lobe and 14 residues in the C-lobe of pep11 involved in interaction with CaM in both of presence and absence of Ca2+. Lastly, Kratky plots, generated by small-angle X-ray scattering analysis, indicated that the pep11/Ca2+/CaM complex adopted a relaxed globular shape. We propose that these unique properties may account in part for the previously described Ca2+/CaM-dependent regulation of R30 binding to membrane proteins.  相似文献   

9.
The myristoylated alanine-rich C kinase substrate (MARCKS) and the MARCKS-related protein (MRP) are members of a distinct family of protein ki-nase C (PKC) substrates that bind calmodulin (CaM) in a manner regulated by Ca2+ and phosphorylation by PKC. The CaM binding region overlaps with the PKC phosphorylation sites, suggesting a potential coupling between Ca2+-CaM signalling and PKC-mediated phosphorylation cascades. We have studied Ca2+ binding of CaM complexed with CaM binding peptides from MARCKS and MRP using flow dialysis, NMR and circular dichroism (CD) spectroscopy. The wild-type MARCKS and MRP peptides induced significant increases in the Ca2+ affinity of CaM (pCa 6.1 and 5.8, respectively, compared to 5.2, for CaM in the absence of bound peptides), whereas a modified MARCKS peptide, in which the four serine residues susceptible to phosphorylation in the wild-type sequence have been replaced with aspartate residues to mimic phosphorylation, had smaller effect (pCa 5.6). These results are consistent with the notions that phosphorylation of MARCKS reduces its binding affinity for CaM and that the CaM binding affinity of the peptides is coupled to the Ca2+ affinity of CaM. All three MARCKS/MRP peptides perturbed the backbone NMR resonances of residues in both the N- and C-terminal domains of CaM and, in addition, the wild-type MARCKS and the MRP peptides induced strong positive cooperativity in Ca2+ binding by CaM, suggesting that the peptides interact with the amino- and carboxy-terminal domains of CaM simultaneously. NMR analysis of the Ca2+-CaM-MRP peptide complex, as well as CD measurements of Ca2+-CaM in the presence and absence of MARCKS/MRP peptides suggest that the peptide bound to CaM is non-helical, in contrast to the α-helical conformation found in the CaM binding regions of myosin light-chain kinase and CaM-dependent protein kinase II. The adaptation of the CaM molecule for binding the peptide requires disruption of its central helical linker between residues Lys-75 and Glu-82. Received: 26 September 1996 / 22 October 1996  相似文献   

10.
Membrane skeletal protein 4.1R80 plays a key role in regulation of erythrocyte plasticity. Protein 4.1R80 interactions with transmembrane proteins, such as glycophorin C (GPC), are regulated by Ca2+-saturated calmodulin (Ca2+/CaM) through simultaneous binding to a short peptide (pep11; A264KKLWKVCVEHHTFFRL) and a serine residue (Ser185), both located in the N-terminal 30 kDa FERM domain of 4.1R80 (H·R30). We have previously demonstrated that CaM binding to H·R30 is Ca2+-independent and that CaM binding to H·R30 is responsible for the maintenance of H·R30 β-sheet structure. However, the mechanisms responsible for the regulation of CaM binding to H·R30 are still unknown. To investigate this, we took advantage of similarities and differences in the structure of Coracle, the Drosophila sp. homologue of human 4.1R80, i.e. conservation of the pep11 sequence but substitution of the Ser185 residue with an alanine residue. We show that the H·R30 homologue domain of Coracle, Cor30, also binds to CaM in a Ca2+-independent manner and that the Ca2+/CaM complex does not affect Cor30 binding to the transmembrane protein GPC. We also document that both H·R30 and Cor30 bind to phosphatidylinositol-4,5 bisphosphate (PIP2) and other phospholipid species and that that PIP2 inhibits Ca2+-free CaM but not Ca2+-saturated CaM binding to Cor30. We conclude that PIP2 may play an important role as a modulator of apo-CaM binding to 4.1R80 throughout evolution.  相似文献   

11.
PEP-19 is a small, intrinsically disordered protein that binds to the C-domain of calmodulin (CaM) via an IQ motif and tunes its Ca2+ binding properties via an acidic sequence. We show here that the acidic sequence of PEP-19 has intrinsic Ca2+ binding activity, which may modulate Ca2+ binding to CaM by stabilizing an initial Ca2+-CaM complex or by electrostatically steering Ca2+ to and from CaM. Because PEP-19 is expressed in cells that exhibit highly active Ca2+ dynamics, we tested the hypothesis that it influences ligand-dependent Ca2+ release. We show that PEP-19 increases the sensitivity of HeLa cells to ATP-induced Ca2+ release to greatly increase the percentage of cells responding to sub-saturating doses of ATP and increases the frequency of Ca2+ oscillations. Mutations in the acidic sequence of PEP-19 that inhibit or prevent it from modulating Ca2+ binding to CaM greatly inhibit its effect on ATP-induced Ca2+ release. Thus, this cellular effect of PEP-19 does not depend simply on binding to CaM via the IQ motif but requires its acidic metal binding domain. Tuning the activities of Ca2+ mobilization pathways places PEP-19 at the top of CaM signaling cascades, with great potential to exert broad effects on downstream CaM targets, thus expanding the biological significance of this small regulator of CaM signaling.  相似文献   

12.
Neurogranin (Ng) is a member of the IQ motif class of calmodulin (CaM)-binding proteins, and interactions with CaM are its only known biological function. In this report we demonstrate that the binding affinity of Ng for CaM is weakened by Ca2+ but to a lesser extent (2–3-fold) than that previously suggested from qualitative observations. We also show that Ng induced a >10-fold decrease in the affinity of Ca2+ binding to the C-terminal domain of CaM with an associated increase in the Ca2+ dissociation rate. We also discovered a modest, but potentially important, increase in the cooperativity in Ca2+ binding to the C-lobe of CaM in the presence of Ng, thus sharpening the threshold for the C-domain to become Ca2+-saturated. Domain mapping using synthetic peptides indicated that the IQ motif of Ng is a poor mimetic of the intact protein and that the acidic sequence just N-terminal to the IQ motif plays an important role in reproducing Ng-mediated decreases in the Ca2+ binding affinity of CaM. Using NMR, full-length Ng was shown to make contacts largely with residues in the C-domain of CaM, although contacts were also detected in residues in the N-terminal domain. Together, our results can be consolidated into a model where Ng contacts residues in the N- and C-lobes of both apo- and Ca2+-bound CaM and that although Ca2+ binding weakens Ng interactions with CaM, the most dramatic biochemical effect is the impact of Ng on Ca2+ binding to the C-terminal lobe of CaM.  相似文献   

13.
Calmodulin (CaM) is a ubiquitous second messenger protein that regulates a variety of structurally and functionally diverse targets in response to changes in Ca2+ concentration. CaM-dependent protein kinase II (CaMKII) and calcineurin (CaN) are the prominent CaM targets that play an opposing role in many cellular functions including synaptic regulation. Since CaMKII and CaN compete for the available Ca2+/CaM, the differential affinity of these enzymes for CaM is crucial for achieving a balance in Ca2+ signaling. We used the computational protein design approach to modify CaM binding specificity for these two targets. Starting from the X-ray structure of CaM in complex with the CaM-binding domain of CaMKII, we optimized CaM interactions with CaMKII by introducing mutations into the CaM sequence. CaM optimization was performed with a protein design program, ORBIT, using a modified energy function that emphasized intermolecular interactions in the sequence selection procedure. Several CaM variants were experimentally constructed and tested for binding to the CaMKII and CaN peptides using the surface plasmon resonance technique. Most of our CaM mutants demonstrated small increase in affinity for the CaMKII peptide and substantial decrease in affinity for the CaN peptide compared to that of wild-type CaM. Our best CaM design exhibited an about 900-fold increase in binding specificity towards the CaMKII peptide, becoming the highest specificity switch achieved in any protein-protein interface through the computational protein design approach. Our results show that computational redesign of protein-protein interfaces becomes a reliable method for altering protein binding affinity and specificity.  相似文献   

14.
The ubiquitous mammalian Na+/H+ exchanger NHE1 has critical functions in regulating intracellular pH, salt concentration, and cellular volume. The regulatory C-terminal domain of NHE1 is linked to the ion-translocating N-terminal membrane domain and acts as a scaffold for signaling complexes. A major interaction partner is calmodulin (CaM), which binds to two neighboring regions of NHE1 in a strongly Ca2+-dependent manner. Upon CaM binding, NHE1 is activated by a shift in sensitivity toward alkaline intracellular pH. Here we report the 2.23 Å crystal structure of the NHE1 CaM binding region (NHE1CaMBR) in complex with CaM and Ca2+. The C- and N-lobes of CaM bind the first and second helix of NHE1CaMBR, respectively. Both the NHE1 helices and the Ca2+-bound CaM are elongated, as confirmed by small angle x-ray scattering analysis. Our x-ray structure sheds new light on the molecular mechanisms of the phosphorylation-dependent regulation of NHE1 and enables us to propose a model of how Ca2+ regulates NHE1 activity.  相似文献   

15.
The rubella virus (RUBV) nonstructural (NS) protease domain, a Ca2+- and Zn2+-binding papain-like cysteine protease domain within the nonstructural replicase polyprotein precursor, is responsible for the self-cleavage of the precursor into two mature products, P150 and P90, that compose the replication complex that mediates viral RNA replication; the NS protease resides at the C terminus of P150. Here we report the Ca2+-dependent, stoichiometric association of calmodulin (CaM) with the RUBV NS protease. Co-immunoprecipitation and pulldown assays coupled with site-directed mutagenesis demonstrated that both the P150 protein and a 110-residue minidomain within NS protease interacted directly with Ca2+/CaM. The specific interaction was mapped to a putative CaM-binding domain. A 32-mer peptide (residues 1152–1183, denoted as RUBpep) containing the putative CaM-binding domain was used to investigate the association of RUBV NS protease with CaM or its N- and C-terminal subdomains. We found that RUBpep bound to Ca2+/CaM with a dissociation constant of 100–300 nm. The C-terminal subdomain of CaM preferentially bound to RUBpep with an affinity 12.5-fold stronger than the N-terminal subdomain. Fluorescence, circular dichroism and NMR spectroscopic studies revealed a “wrapping around” mode of interaction between RUBpep and Ca2+/CaM with substantially more helical structure in RUBpep and a global structural change in CaM upon complex formation. Using a site-directed mutagenesis approach, we further demonstrated that association of CaM with the CaM-binding domain in the RUBV NS protease was necessary for NS protease activity and infectivity.  相似文献   

16.
Human endothelial nitric-oxide synthase (eNOS) is a complex enzyme, requiring binding of calmodulin (CaM) for electron transfer. The prevailing view is that calcium-activated CaM binds eNOS at the canonical binding site located at residues 493-510, which induces a conformational change to facilitate electron transfer. Here we demonstrated that the CaM enhances the rate of electron transfer from NADPH to FAD on a truncated eNOS FAD subdomain (residues 682-1204) purified from baculovirus-infected Sf9 cells, suggesting more complicated regulatory mechanism of CaM on eNOS. Metabolically 35S-labeled CaM overlay on fusion proteins spanning the entire linear sequence of eNOS revealed three positive 35S-CaM binding fragments: sequence 66-205, sequence 460-592, and sequence 505-759. Synthetic peptides derived from these fragments are tested for their effects on CaM binding and eNOS catalytic activities. Peptides corresponding to the proximal heme-binding site (E1, residues 174-193) and the CD1 linker connecting FAD/FMN subdomains (E4, residues 729-757) bind CaM at both high Ca2+ (Ca2+CaM) and low Ca2+ (apoCaM) concentrations, whereas peptide of the canonical CaM-binding helix (E2, residues 493-510) binds only Ca2+CaM. All three peptides E1, E2 and E4 significantly inhibit oxygenase activity in a concentration-dependent manner, but only E2 effectively inhibits reductase activity. Concurrent experiments with human iNOS showed major differences in the CaM binding properties between eNOS and iNOS. The results suggest that multiple regions of eNOS might interact with CaM with differential Ca2+ sensitivity in vivo. A possible mechanism in regulating eNOS activation and deactivation is proposed.  相似文献   

17.
Calmodulin (CaM) is a ubiquitous Ca2+ sensor regulating many biochemical processes in eukaryotic cells. Its interaction with a great variety of different target proteins has led to the fundamental question of its mechanism of action. CaM exhibits four “EF hand” type Ca2+ binding sites. One way to explain CaM functioning is to consider that the protein interacts differently with its target proteins depending on the number of Ca2+ ions bound to it. To test this hypothesis, the binding properties of three entities known to interact with CaM (a fluorescent probe and two peptide analogs to the CaM binding sites of death associated protein kinase (DAPK) and of EGFR) were investigated using a quantitative approach based on fluorescence polarization (FP). Probe and peptide interactions with CaM were studied using a titration matrix in which both CaM and calcium concentrations were varied. Experiments were performed with SynCaM, a hybrid CaM able to activate CaM dependent enzymes from mammalian and plant cells. Results show that the interaction between CaM and its targets is regulated by the number of calcium ions bound to the protein, namely one for the DAPK peptide, two for the probe and four for the EGFR peptide. The approach used provides a new tool to elaborate a typology of CaM-targets, based on their recognition by the various CaM-Can (n = 0-4) complexes. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   

18.
Ca2+ (calcium) homoeostasis and signalling rely on physical contacts between Ca2+ sensors in the ER (endoplasmic reticulum) and Ca2+ channels in the PM (plasma membrane). STIM1 (stromal interaction molecule 1) and STIM2 Ca2+ sensors oligomerize upon Ca2+ depletion in the ER lumen, contact phosphoinositides at the PM via their cytosolic lysine (K)-rich domains, and activate Ca2+ channels. Differential sensitivities of STIM1 and STIM2 towards ER luminal Ca2+ have been studied but responses towards elevated cytosolic Ca2+ concentration and the mechanism of lipid binding remain unclear. We found that tetramerization of the STIM1 K-rich domain is necessary for efficient binding to PI(4,5)P2-containing PM-like liposomes consistent with an oligomerization-driven STIM1 activation. In contrast, dimerization of STIM2 K-rich domain was sufficient for lipid binding. Furthermore, the K-rich domain of STIM2, but not of STIM1, forms an amphipathic α-helix. These distinct features of the STIM2 K-rich domain cause an increased affinity for PI(4,5)P2, consistent with the lower activation threshold of STIM2 and a function as regulator of basal Ca2+ levels. Concomitant with higher affinity for PM lipids, binding of CaM (calmodulin) inhibited the interaction of the STIM2 K-rich domain with liposomes in a Ca2+ and PI(4,5)P2 concentration-dependent manner. Therefore we suggest that elevated cytosolic Ca2+ concentration down-regulates STIM2-mediated ER–PM contacts via CaM binding.  相似文献   

19.
Ca2+ activates SK Ca2+-activated K+ channels through the protein Ca2+ sensor, calmodulin (CaM). To understand how SK channels operate, it is necessary to determine how Ca2+ regulates CaM binding to its target on SK. Tagless, recombinant SK peptide (SKp), was purified for binding studies with CaM at low and high Ca2+ concentrations. Composition gradient multi-angle light scattering accurately measures the molar mass, stoichiometry, and affinity of protein complexes. In 2 mM Ca2+, SKp and CaM bind with three different stoichiometries that depend on the molar ratio of SKp:CaM in solution. These complexes include 28 kD 1SKp/1CaM, 39 kD 2SKp/1CaM, and 44 kD 1SKp/2CaM. A 2SKp/2CaM complex, observed in prior crystallographic studies, is absent. At <5 nM Ca2+, 1SKp/1CaM and 2SKp/1CaM were observed; however, 1SKp/2CaM was absent. Analytical ultracentrifugation was used to characterize the physical properties of the three SKp/CaM stoichiometries. In high Ca2+, the sedimentation coefficient is smaller for a 1SKp:1CaM solution than it is for either 2SKp:1CaM or 1SKp:2CaM. At low Ca2+ and at >100 µM protein concentrations, a molar excess of SKp over CaM causes aggregation. Aggregation is not observed in Ca2+ or with CaM in molar excess. In low Ca2+ both 1SKp:1CaM and 1SKp:2CaM solutions have similar sedimentation coefficients, which is consistent with the absence of a 1SKp/2CaM complex in low Ca2+. These results suggest that complexes with stoichiometries other than 2SKp/2CaM are important in gating.  相似文献   

20.
Sphingosylphosphorylcholine (SPC), a lipid mediator with putative second messenger functions, has been reported to regulate ryanodine receptors (RyRs), Ca2+ channels of the sarco/endoplasmic reticulum. RyRs are also regulated by the ubiquitous Ca2+ sensor calmodulin (CaM), and we have previously shown that SPC disrupts the complex of CaM and the peptide corresponding to the CaM-binding domain of the skeletal muscle Ca2+ release channel (RyR1). Here we report that SPC also displaces Ca2+-bound CaM from the intact RyR1, which we hypothesized might lead to channel activation by relieving the negative feedback Ca2+CaM exerts on the channel. We could not demonstrate such channel activation as we have found that SPC has a direct, CaM-independent inhibitory effect on channel activity, confirmed by both single channel measurements and [3H]ryanodine binding assays. In the presence of Ca2+CaM, however, the addition of SPC did not reduce [3H]ryanodine binding, which we could explain by assuming that the direct inhibitory action of the sphingolipid was negated by the simultaneous displacement of inhibitory Ca2+CaM. Additional experiments revealed that RyRs are unlikely to be responsible for SPC-elicited Ca2+ release from brain microsomes, and that SPC does not exert detergent-like effects on sarcoplasmic reticulum vesicles. We conclude that regulation of RyRs by SPC involves both CaM-dependent and -independent mechanisms, thus, the sphingolipid might play a physiological role in RyR regulation, but channel activation previously attributed to SPC is unlikely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号