首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. When we plot the values of osmotic pressure, swelling, and viscosity of gelatin solutions as ordinates over the pH as abscissæ, practically identical curves are obtained for the effect of monobasic acids (HCl, HBr, HNO3, and acetic acid) on these properties. 2. The curves obtained for the effect of H2SO4 on gelatin are much lower than those obtained for the effect of monobasic acids, the ratio of maximal osmotic pressures of a 1 per cent solution of gelatin sulfate and gelatin bromide being about 3:8. The same ratio had been found for the ratio of maximal osmotic pressures of calcium and sodium gelatinate. 3. The curves representing the influence of other dibasic and tribasic acids, viz. oxalic, tartaric, succinic, citric, and phosphoric, upon gelatin are almost identical with those representing the effect of monobasic acids. 4. The facts mentioned under (2) and (3) permit us to decide between a purely chemical and a colloidal explanation of the influence of acids on the physical properties of gelatin. In the former case we should be able to prove, first, that twice as many molecules of HBr as of H2SO4 combine with a given mass of gelatin; and, second, that the same number of molecules of phosphoric, citric, oxalic, tartaric, and succinic acids as of HNO3 or HCl combine with the same mass of gelatin. It is shown in the present paper that this is actually the case. 5. It is shown that gelatin sulfate and gelatin bromide solutions of the same pH have practically the same conductivity. This disproves the assumption of colloid chemists that the difference in the effect of bromides and sulfates on the physical properties of gelatin is due to a different ionizing and hydratating effect of the two acids upon the protein molecule.  相似文献   

2.
1. Amphoteric electrolytes form salts with both acids and alkalies. It is shown for two amphoteric electrolytes, Al(OH)3 and gelatin, that in the presence of an acid salt water diffuses through a collodion membrane into a solution of these substances as if its particles were negatively charged, while water diffuses into solutions of these electrolytes, when they exist as monovalent or bivalent metal salts, as if the particles of water were positively charged. The turning point for the sign of the electrification of water seems to be near or to coincide with the isoelectric point of these two ampholytes which is a hydrogen ion concentration of about 2 x 10–5 N for gelatin and about 10–7 for Al(OH)3. 2. In conformity with the rules given in a preceding paper the apparently positively charged water diffuses with less rapidity through a collodion membrane into a solution of Ca and Ba gelatinate than into a solution of Li, Na, K, or NH4 gelatinate of the same concentration of gelatin and of hydrogen ions. Apparently negatively charged water diffuses also with less rapidity through a collodion membrane into a solution of gelatin sulfate than into a solution of gelatin chloride or nitrate of the same concentration of gelatin and of hydrogen ions. 3. If we define osmotic pressure as that additional pressure upon the solution required to cause as many molecules of water to diffuse from solution to the pure water as diffuse simultaneously in the opposite direction through the membrane, it follows that the osmotic pressure cannot depend only on the concentration of the solute but must depend also on the electrostatic effects of the ions present and that the influence of ions on the osmotic pressure must be the same as that on the initial velocity of diffusion. This assumption was put to a test in experiments with gelatin salts for which a collodion membrane is strictly semipermeable and the tests confirmed the expectation.  相似文献   

3.
1. Our results show clearly that the Hofmeister series is not the correct expression of the relative effect of ions on the swelling of gelatin, and that it is not true that chlorides, bromides, and nitrates have "hydrating," and acetates, tartrates, citrates, and phosphates "dehydrating," effects. If the pH of the gelatin is taken into considertion, it is found that for the same pH the effect on swelling is the same for gelatin chloride, nitrate, trichloracetate, tartrate, succinate, oxalate, citrate, and phosphate, while the swelling is considerably less for gelatin sulfate. This is exactly what we should expect on the basis of the combining ratios of the corresponding acids with gelatin since the weak dibasic and tribasic acids combine with gelatin in molecular proportions while the strong dibasic acid H2SO4 combines with gelatin in equivalent proportions. In the case of the weak dibasic acids he anion in combination with gelatin is therefore monovalent and in the case of the strong H2SO4 it is bivalent. Hence it is only the valency and not the nature of the ion in combination with gelatin which affects the degree of swelling. 2. This is corroborated in the experiments with alkalies which show that LiOH, NaOH, KOH, and NH4OH cause the same degree of swelling at the same pH of the gelatin solution and that this swelling is considerably higher than that caused by Ca(OH)2 and Ba(OH)2 for the same pH. This agrees with the results of the titration experiments which prove that Ca(OH)2 and Ba(OH)2 combine with gelatin in equivalent proportions and that hence the cation in combination with the gelatin salt with these two latter bases is bivalent. 3. The fact that proteins combine with acids and alkalies on the basis of the forces of primary valency is therefore not only in full agreement with the influence of ions on the physical properties of proteins but allows us to predict this influence qualitatively and quantitatively. 4. What has been stated in regard to the influence of ions on the swelling of the different gelatin salts is also true in regard to the influence of ions on the relative solubility of gelatin in alcohol-water mixtures. 5. Conductivity measurements of solutions of gelatin salts do not support the theory that the drop in the curves for swelling, osmotic pressure, or viscosity, which occurs at a pH 3.3 or a little less, is due to a drop in the concentration of ionized protein in the solution; nor do they suggest that the difference between the physical properties of gelatin sulfate and gelatin chloride is due to differences in the degree of ionization of these two salts.  相似文献   

4.
1. This paper contains experiments on the influence of acids and alkalies on the osmotic pressure of solutions of crystalline egg albumin and of gelatin, and on the viscosity of solutions of gelatin. 2. It was found in all cases that there is no difference in the effects of HCl, HBr, HNO3, acetic, mono-, di-, and trichloracetic, succinic, tartaric, citric, and phosphoric acids upon these physical properties when the solutions of the protein with these different acids have the same pH and the same concentration of originally isoelectric protein. 3. It was possible to show that in all the protein-acid salts named the anion in combination with the protein is monovalent. 4. The strong dibasic acid H2SO4 forms protein-acid salts with a divalent anion SO4 and the solutions of protein sulfate have an osmotic pressure and a viscosity of only half or less than that of a protein chloride solution of the same pH and the same concentration of originally isoelectric protein. Oxalic acid behaves essentially like a weak dibasic acid though it seems that a small part of the acid combines with the protein in the form of divalent anions. 5. It was found that the osmotic pressure and viscosity of solutions of Li, Na, K, and NH4 salts of a protein are the same at the same pH and the same concentration of originally isoelectric protein. 6. Ca(OH)2 and Ba(OH)2 form salts with proteins in which the cation is divalent and the osmotic pressure and viscosity of solutions of these two metal proteinates are only one-half or less than half of that of Na proteinate of the same pH and the same concentration of originally isoelectric gelatin. 7. These results exclude the possibility of expressing the effect of different acids and alkalies on the osmotic pressure of solutions of gelatin and egg albumin and on the viscosity of solutions of gelatin in the form of ion series. The different results of former workers were probably chiefly due to the fact that the effects of acids and alkalies on these proteins were compared for the same quantity of acid and alkali instead of for the same pH.  相似文献   

5.
1. It had been shown in previous publications that the osmotic pressure of a 1 per cent solution of a protein-acid salt varies in a characteristic way with the hydrogen ion concentration of the solution, the osmotic pressure having a minimum at the isoelectric point, rising steeply with a decrease in pH until a maximum is reached at pH of 3.4 or 3.5 (in the case of gelatin and crystalline egg albumin), this maximum being followed by a steep drop in the osmotic pressure with a further decrease in the pH of the gelatin or albumin solution. In this paper it is shown that (aside from two minor discrepancies) we can calculate this effect of the pH on the osmotic pressure of a protein-acid salt by assuming that the pH effect is due to that unequal distribution of crystalloidal ions (in particular free acid) on both sides of the membrane which Donnan''s theory of membrane equilibrium demands. 2. It had been shown in preceding papers that only the valency but not the nature of the ion (aside from its valency) with which a protein is in combination has any effect upon the osmotic pressure of the solution of the protein; and that the osmotic pressure of a gelatin-acid salt with a monovalent anion (e.g. Cl, NO3, acetate, H2PO4, HC2O4, etc.) is about twice or perhaps a trifle more than twice as high as the osmotic pressure of gelatin sulfate where the anion is bivalent; assuming that the pH and gelatin concentrations of all the solutions are the same. It is shown in this paper that we can calculate with a fair degree of accuracy this valency effect on the assumption that it is due to the influence of the valency of the anion of a gelatin-acid salt on that relative distribution of the free acid on both sides of the membrane which Donnan''s theory of membrane equilibrium demands. 3. The curves of the observed values of the osmotic pressure show two constant minor deviations from the curves of the calculated osmotic pressure. One of these deviations consists in the fact that the values of the ascending branch of the calculated curves are lower than the corresponding values in the curves for the observed osmotic pressure, and the other deviation consists in the fact that the drop in the curves of calculated values occurs at a lower pH than the drop in the curves of the observed values.  相似文献   

6.
1. The action of a number of acids on four properties of gelatin (membrane potentials, osmotic pressure, swelling, and viscosity) was studied. The acids used can be divided into three groups; first, monobasic acids (HCl, HBr, HI, HNO3, acetic, propionic, and lactic acids); second, strong dibasic acids (H2SO4 and sulfosalicylic acid) which dissociate as dibasic acids in the range of pH between 4.7 and 2.5; and third, weak dibasic and tribasic acids (succinic, tartaric, citric) which dissociate as monobasic acids at pH 3.0 or below and dissociate increasingly as dibasic acids, according to their strength, with pH increasing above 3.0. 2. If the influence of these acids on the four above mentioned properties of gelatin is plotted as ordinates over the pH of the gelatin solution or gelatin gel as abscissæ, it is found that all the acids have the same effect where the anion is monovalent; this is true for the seven monobasic acids at all pH and for the weak dibasic and tribasic acids at pH below 3.0. The two strong dibasic acids (the anion of which is divalent in the whole range of pH of these experiments) have a much smaller effect than the acids with monovalent anion. The weak dibasic and tribasic acids act, at pH above 3.0, like acids the anion of which is chiefly monovalent but which contain also divalent anions increasing with pH and with the strength of the acid. 3. These experiments prove that only the valency but not the other properties of the anion of an acid influences the four properties of gelatin mentioned, thus absolutely contradicting the Hofmeister anion series in this case which were due to the failure of the earlier experimenters to measure properly the pH of their protein solutions or gels and to compare the effects of acids at the same pH of the protein solution or protein gel after equilibrium was established. 4. It is shown that the validity of the valency rule and the non-validity of the Hofmeister anion series for the four properties of proteins mentioned are consequences of the fact that the influence of acids on the membrane potentials, osmotic pressure, swelling, and viscosity of gelatin is due to the Donnan equilibrium between protein solutions or gels and the surrounding aqueous solution. This equilibrium depends only on the valency but not on any other property of the anion of an acid. 5. That the valency rule is determined by the Donnan equilibrium is strikingly illustrated by the ratio of the membrane potentials for divalent and monovalent anions of acids. Loeb has shown that the Donnan equilibrium demands that this ratio should be 0.66 and the actual measurements agree with this postulate of the theory within the limits of accuracy of the measurements. 6. The valency rule can be expected to hold for only such properties of proteins as depend upon the Donnan equilibrium. Properties of proteins not depending on the Donnan equilibrium may be affected not only by the valency but also by the chemical nature of the anion of an acid.  相似文献   

7.
1. The method of removing the excess of hydrobromic acid after it has had a chance to react chemically with gelatin has permitted us to measure the amount of Br in combination with the gelatin. It is shown that the curves representing the amount of bromine bound by the gelatin are approximately parallel with the curves for the osmotic pressure, the viscosity, and swelling of the gelatin solution. This proves that the curves for osmotic pressure are an unequivocal function of the number of gelatin bromide molecules formed under the influence of the acid. The cc. of 0.01 N Br in combination with 0.25 gm, of gelatin we call the bromine number. 2. The explanation of this influence of the acid on the physical properties of gelatin is based on the fact that gelatin is an amphoteric electrolyte, which at its isoelectric point is but sparingly soluble in water, while its transformation into a salt with a univalent anion like gelatin Br makes it soluble. The curve for the bromine number thus becomes at the same time the numerical expression for the number of gelatin molecules rendered soluble, and hence the curve for osmotic pressure must of necessity be parallel to the curve for the bromine number. 3. Volumetric analysis shows that gelatin treated previously with HBr is free from Br at the isoelectric point as well as on the more alkaline side from the isoelectric point (pH ≧ 4.7) of gelatin. This is in harmony with the fact that gelatin (like any other amphoteric electrolyte) can dissociate on the alkaline side of its isoelectric point only as an anion. On the more acid side from the isoelectric point gelatin is found to be in combination with Br and the Br number rises with the pH. 4. When we titrate gelatin, treated previously with HBr but possessing a pH = 4,7, with NaOH we find that 25 cc. of a 1 per cent solution of isoelectric gelatin require about 5.25 to 5.5 cc. of 0.01 N NaOH for neutralization (with phenolphthalein as an indicator). This value which was found invariably is therefore a constant which we designate as "NaOH (isoelectric)." When we titrate 0.25 gm. of gelatin previously treated with HBr but possessing a pH < 4.7 more than 5.5 cc. of 0.01 N NaOH are required for neutralization. We will designate this value of NaOH as "(NaOH)n," where n represents the value of pH. If we designate the bromine number for the same pH as "Brn" then we can show that the following equation is generally true: (NaOH)n = NaOH (isoelectric) + Brn. In other words, titration with NaOH of gelatin (previously treated with HBr) and being on the acid side of its isoelectric point results in the neutralization of the pure gelatin (NaOH isoelectric) with NaOH and besides in the neutralization of the HBr in combination with the gelatin. This HBr is set free as soon as through the addition of the NaOH the pH of the gelatin solution becomes equal to 4.7. 5. A comparison between the pH values and the bromine numbers found shows that over 90 per cent of the bromine or HBr found was in our experiments in combination with the gelatin.  相似文献   

8.
1. When a 1 per cent solution of a metal gelatinate, e.g. Na gelatinate, of pH = 8.4 is separated from distilled water by a collodion membrane, water will diffuse into the solution with a certain rate which can be measured by the rise of the level of the liquid in a manometer. When to such a solution alkali or neutral salt is added the initial rate with which water will diffuse into the solution is diminished and the more so the more alkali or salt is added. This depressing effect of the addition of alkali and neutral salt is greater when the cation of the electrolyte added is bivalent than when it is monovalent. This seems to indicate that the depressing effect is due to the cation of the electrolyte added. 2. When a neutral M/256 solution of a salt with monovalent cation (e.g. Na2SO4 or K4Fe(CN)6, etc.) is separated from distilled water by a collodion membrane, water will diffuse into the solution with a certain initial rate. When to such a solution alkali or neutral salt is added, the initial rate with which water will diffuse into the solution is diminished and the more so the more alkali or salt is added. The depressing effect of the addition of alkali or neutral salt is greater when the cation of the electrolyte added is bivalent than when it is monovalent. This seems to indicate that the depressing effect is due to the cation of the electrolyte added. The membranes used in these experiments were not treated with gelatin. 3. It can be shown that water diffuses through the collodion membrane in the form of positively charged particles under the conditions mentioned in (1) and (2). In the case of diffusion of water into a neutral solution of a salt with monovalent or bivalent cation the effect of the addition of electrolyte on the rate of diffusion can be explained on the basis of the influence of the ions on the electrification and the rate of diffusion of electrified particles of water. Since the influence of the addition of electrolyte seems to be the same in the case of solutions of metal gelatinate, the question arises whether this influence of the addition of electrolyte cannot also be explained in the same way, and, if this be true, the further question can be raised whether this depressing effect necessarily depends upon the colloidal character of the gelatin solution, or whether we are not dealing in both cases with the same property of matter; namely, the influence of ions on the electrification and rate of diffusion of water through a membrane. 4. It can be shown that the curve representing the influence of the concentration of electrolyte on the initial rate of diffusion of water from solvent into the solution through the membrane is similar to the curve representing the permanent osmotic pressure of the gelatin solution. The question which has been raised in (3) should then apply also to the influence of the concentration of ions upon the osmotic pressure and perhaps other physical properties of gelatin which depend in a similar way upon the concentration of electrolyte added; e.g., swelling. 5. When a 1 per cent solution of a gelatin-acid salt, e.g. gelatin chloride, of pH 3.4 is separated from distilled water by a collodion membrane, water will diffuse into the solution with a certain rate. When to such a solution acid or neutral salt is added—taking care in the latter case that the pH is not altered—the initial rate with which water will diffuse into the solution is diminished and the more so the more acid or salt is added. Water diffuses into a gelatin chloride solution through a collodion membrane in the form of negatively charged particles. 6. When we replace the gelatin-acid salt by a crystalloidal salt, which causes the water to diffuse through the collodion membrane in the form of negatively charged particles, e.g. M/512 Al2Cl6, we find that the addition of acid or of neutral salt will diminish the initial rate with which water diffuses into the M/512 solution of Al2Cl6, in a similar way as it does in the case of a solution of a gelatin-acid salt.  相似文献   

9.
1. It has been shown in this paper that while non-ionized gelatin may exist in gelatin solutions on both sides of the isoelectric point (which lies for gelatin at a hydrogen ion concentration of CH = 2.10–5 or pH = 4.7), gelatin, when it ionizes, can only exist as an anion on the less acid side of its isoelectric point (pH > 4.7), as a cation only on the more acid side of its isoelectric point (pH < 4.7). At the isoelectric point gelatin can dissociate practically neither as anion nor as cation. 2. When gelatin has been transformed into sodium gelatinate by treating it for some time with M/32 NaOH, and when it is subsequently treated with HCl, the gelatin shows on the more acid side of the isoelectric point effects of the acid treatment only; while the effects of the alkali treatment disappear completely, showing that the negative gelatin ions formed by the previous treatment with alkali can no longer exist in a solution with a pH < 4.7. When gelatin is first treated with acid and afterwards with alkali on the alkaline side of the isoelectric point only the effects of the alkali treatment are noticeable. 3. On the acid side of the isoelectric point amphoteric electrolytes can only combine with the anions of neutral salts, on the less acid side of their isoelectric point only with cations; and at the isoelectric point neither with the anion nor cation of a neutral salt. This harmonizes with the statement made in the first paragraph, and the experimental results on the effect of neutral salts on gelatin published in the writer''s previous papers. 4. The reason for this influence of the hydrogen ion concentration on the stability of the two forms of ionization possible for an amphoteric electrolyte is at present unknown. We might think of the possibility of changes in the configuration or constitution of the gelatin molecule whereby ionized gelatin can exist only as an anion on the alkaline side and as a cation on the acid side of its isoelectric point. 5. The literature of colloid chemistry contains numerous statements which if true would mean that the anions of neutral salts act on gelatin on the alkaline side of the isoelectric point, e.g. the alleged effect of the Hofmeister series of anions on the swelling and osmotic pressure of common gelatin in neutral solutions, and the statement that both ions of a neutral salt influence a protein simultaneously. The writer has shown in previous publications that these statements are contrary to fact and based on erroneous methods of work. Our present paper shows that these claims of colloid chemists are also theoretically impossible. 6. In addition to other physical properties the conductivity of gelatin previously treated with acids has been investigated and plotted, and it was found that this conductivity is a minimum in the region of the isoelectric point, thus confirming the conclusion that gelatin can apparently not exist in ionized condition at that point. The conductivity rises on either side of the isoelectric point, but not symmetrically for reasons given in the paper. It is shown that the curves for osmotic pressure, viscosity, swelling, and alcohol number run parallel to the curve of the conductivity of gelatin when the gelatin has been treated with acid, supporting the view that these physical properties are in this case mainly or exclusively a function of the degree of ionization of the gelatin or gelatin salt formed. It is pointed out, however, that certain constitutional factors, e.g. the valency of the ion in combination with the gelatin, may alter the physical properties of the gelatin (osmotic pressure, etc.) without apparently altering its conductivity. This point is still under investigation and will be further discussed in a following publication. 7. It is shown that the isoelectric point of an amphoteric electrolyte is not only a point where the physical properties of an ampholyte experience a sharp drop and become a minimum, but that it is also a turning point for the mode of chemical reactions of the ampholyte. It may turn out that this chemical influence of the isoelectric point upon life phenomena overshadows its physical influence. 8. These experiments suggest that the theory of amphoteric colloids is in its general features identical with the theory of inorganic hydroxides (e.g. aluminum hydroxide), whose behavior is adequately understood on the basis of the laws of general chemistry.  相似文献   

10.
1. When a solution of a salt of gelatin or crystalline egg albumin is separated by a collodion membrane from a watery solution (free from protein) a potential difference is set up across the membrane in which the protein is positively charged in the case of protein-acid salts and in which the protein is negatively charged in the case of metal proteinates. The turning point is the isoelectric point of the protein. 2. Measurements of the pH of the (inside) protein solution and of the outside watery solution show that when equilibrium is established the value pH inside minus pH outside is positive in the case of protein-acid salts and negative in the case of metal proteinates. This is to be expected when the P.D. is caused by the establishment of a Donnan equilibrium, since in that case the pH should be lower outside than inside in the case of a protein-acid salt and should be higher outside than inside in the case of a metal proteinate. 3. At the isoelectric point where the electrical charge is zero the value of pH inside minus pH outside becomes also zero. 4. It is shown that a P.D. is established between suspended particles of powdered gelatin and the surrounding watery solution and that the sign of charge of the particles is positive when they contain gelatin-acid salts, while it is negative when the powdered particles contain metal gelatinate. At the isoelectric point the charge is zero. 5. Measurements of the pH inside the powdered particles and of the pH in the outside watery solution show that when equilibrium is established the value pH inside minus pH outside is positive when the powdered particles contain a gelatin-acid salt, while the value pH inside minus pH outside is negative when the powdered particles contain Na gelatinate. At the isoelectric point the value pH inside minus pH outside is zero. 6. The addition of neutral salts depresses the electrical charge of the powdered particles of protein-acid salts. It is shown that the addition of salts to a suspension of powdered particles of gelatin chloride also diminishes the value of pH inside minus pH outside. 7. The agreement between the values 58 (pH inside minus pH outside) and the P. D. observed by the Compton electrometer is not only qualitative but quantitative. This proves that the difference in the concentration of acid (or alkali, as the case may be) in the two phases is the only cause for the observed P.D. 8. The Donnan theory demands that the P.D. of a gelatin chloride solution should be 1½ times as great as the P.D. of a gelatin sulfate solution of the same pH and the same concentration (1 per cent) of originally isoelectric gelatin. This is found to be correct and it is also shown that the values of pH inside minus pH outside for the two solutions possess the ratio of 3:2. 9. All these measurements prove that the electrical charges of suspended particles of protein are determined exclusively by the Donnan equilibrium.  相似文献   

11.
A detailed study was made on the influence of salts on those physicochemical properties of sodium gelatinate which are regulated by Donnan''s law of membrane equilibria; namely, osmotic pressure, membrane potentials, and swelling. It was found that the influence of salts on these properties in the case of sodium gelatinate obeys the same rules of valency as in the case of the influence of salts on gelatin chloride as discussed in a previous publication. The rules state that when a salt is added to an ionized protein, without causing a change in the hydrogen ion concentration of the protein, the general effect is a depression of the mentioned properties. The degree of depression depends not only on the concentration of the salt but on the electrical properties of the ions constituting the salt. Of the two or more oppositely charged ions of which a salt consists, only the valency of those ions which carry charges opposite to those carried by the protein ions affects the degree of depression which increases with the valency of the ions. It was also found that the phenomenon of swelling of gelatin becomes modified by solubility of the gelatin when salts are added in concentrations higher than N/4. Emphasis is laid on the point that the valency rule holds perfectly also in relation to swelling as long as the phenomenon is pure swelling which is the case when salt solutions of concentrations lower than N/4 are added to gelatin.  相似文献   

12.
1. It is well known that neutral salts depress the osmotic pressure, swelling, and viscosity of protein-acid salts. Measurements of the P.D. between gelatin chloride solutions contained in a collodion bag and an outside aqueous solution show that the salt depresses the P.D. in the same proportion as it depresses the osmotic pressure of the gelatin chloride solution. 2. Measurements of the hydrogen ion concentration inside the gelatin chloride solution and in the outside aqueous solution show that the difference in pH of the two solutions allows us to calculate the P.D. quantitatively on the basis of the Nernst formula See PDF for Equation if we assume that the P.D. is due to a difference in the hydrogen ion concentration on the two sides of the membrane. 3. This difference in pH inside minus pH outside solution seems to be the consequence of the Donnan membrane equilibrium, which only supposes that one of the ions in solution cannot diffuse through the membrane. It is immaterial for this equilibrium whether the non-diffusible ion is a crystalloid or a colloid. 4. When acid is added to isoelectric gelatin the osmotic pressure rises at first with increasing hydrogen ion concentration, reaches a maximum at pH 3.5, and then falls again with further fall of the pH. It is shown that the P.D. of the gelatin chloride solution shows the same variation with the pH (except that it reaches its maximum at pH of about 3.9) and that the P.D. can be calculated from the difference of pH inside minus pH outside on the basis of Nernst''s formula. 5. It was found in preceding papers that the osmotic pressure of gelatin sulfate solutions is only about one-half of that of gelatin chloride or gelatin phosphate solutions of the same pH and the same concentration of originally isoelectric gelatin; and that the osmotic pressure of gelatin oxalate solutions is almost but not quite the same as that of the gelatin chloride solutions of the same pH and concentration of originally isoelectric gelatin. It was found that the curves for the values for P.D. of these four gelatin salts are parallel to the curves of their osmotic pressure and that the values for pH inside minus pH outside multiplied by 58 give approximately the millivolts of these P.D. In this preliminary note only the influence of the concentration of the hydrogen ions on the P.D. has been taken into consideration. In the fuller paper, which is to follow, the possible influence of the concentration of the anions on this quantity will have to be discussed.  相似文献   

13.
1. It was shown that the high viscosity of gelatin solutions as well as the character of the osmotic pressure-concentration curves indicates that gelatin is hydrated even at temperatures as high as 50°C. 2. The degree of hydration of gelatin was determined by means of viscosity measurements through the application of the formula See PDF for Equation. 3. When the concentration of gelatin was corrected for the volume of water of hydration as obtained from the viscosity measurements, the relation between the osmotic pressure of various concentrations of gelatin and the corrected concentrations became linear, thus making it possible to determine the apparent molecular weight of gelatin through the application of van''t Hoff''s law. The molecular weight of gelatin at 35°C. proved to be 61,500. 4. A study was made of the mechanism of hydration of gelatin and it was shown that the experimental data agree with the theory that the hydration of gelatin is a pure osmotic pressure phenomenon brought about by the presence in gelatin of a number of insoluble micellæ containing a definite amount of a soluble ingredient of gelatin. As long as there is a difference in the osmotic pressure between the inside of the micellæ and the outside gelatin solution the micellæ swell until an equilibrium is established at which the osmotic pressure inside of the micellæ is balanced by the total osmotic pressure of the gelatin solution and by the elasticity pressure of the micellæ. 5. On addition of HCl to isoelectric gelatin the total activity of ions inside of the micellæ is greater than in the outside solution due to a greater concentration of protein in the micellæ. This brings about a further swelling of the micellæ until a Donnan equilibrium is established in the ion distribution accompanied by an equilibrium in the osmotic pressure. Through the application of the theory developed here it was possible actually to calculate the osmotic pressure difference between the inside of the micellæ and the outside solution which was brought about by the difference in the ion distribution. 6. According to the same theory the effect of pH on viscosity of gelatin should diminish with increase in concentration of gelatin, since the difference in the concentration of the protein inside and outside of the micellæ also decreases. This was confirmed experimentally. At concentrations above 8 gm. per 100 gm. of H2O there is very little difference in the viscosity of gelatin of various pH as compared with that of isoelectric gelatin.  相似文献   

14.
1. The swelling and the osmotic pressure of gelatin at pH 4.7 have been measured in the presence of a number of salts. 2. The effect of the salts on the swelling is closely paralleled by the effect on the osmotic pressure, and the bulk modulus of the gelatin particles calculated from these figures is constant up to an increase in volume of about 800 per cent. As soon as any of the salts increase the swelling beyond this point, the bulk. modulus decreases. This is interpreted as showing that the elastic limit has been exceeded. 3. Gelatin swollen in acid returns to its original volume after removal of the acid, while gelatin swollen in salt solution does not do so. This is the expected result if, as stated above, the elastic limit had been exceeded in the salt solution. 4. The modulus of elasticity of gelatin swollen in salt solutions varies in the same way as the bulk modulus calculated from the osmotic pressure and the swelling. 5. The increase in osmotic pressure caused by the salt is reversible on removal of the salt. 6. The observed osmotic pressure is much greater than the osmotic pressure calculated from the Donnan equilibrium except in the case of AlCl3, where the calculated and observed pressures agree quite closely. 7. The increase in swelling in salt solutions is due to an increase in osmotic pressure. This increase is probably due to a change in the osmotic pressure of the gelatin itself rather than to a difference in ion concentration.  相似文献   

15.
1. It is shown that when part of the gelatin in a solution of gelatin chloride is replaced by particles of powdered gelatin (without change of pH) the membrane potential of the solution is influenced comparatively little. 2. A measurement of the hydrogen ion concentration of the gelatin chloride solution and the outside aqueous solution with which the gelatin solution is in osmotic equilibrium, shows that the membrane potential can be calculated from this difference of hydrogen ion concentration with an accuracy of half a millivolt. This proves that the membrane potential is due to the establishment of a membrane equilibrium and that the powdered particles participate in this membrane equilibrium. 3. It is shown that a Donnan equilibrium is established between powdered particles of gelatin chloride and not too strong a solution of gelatin chloride. This is due to the fact that the powdered gelatin particles may be considered as a solid solution of gelatin with a higher concentration than that of the weak gelatin solution in which they are suspended. It follows from the theory of membrane equilibria that this difference in concentration of protein ions must give rise to potential differences between the solid particles and the weaker gelatin solution. 4. The writer had shown previously that when the gelatin in a solution of gelatin chloride is replaced by powdered gelatin (without a change in pH), the osmotic pressure of the solution is lowered the more the more dissolved gelatin is replaced by powdered gelatin. It is therefore obvious that the powdered particles of gelatin do not participate in the osmotic pressure of the solution in spite of the fact that they participate in the establishment of the Donnan equilibrium and in the membrane potentials. 5. This paradoxical phenomenon finds its explanation in the fact that as a consequence of the participation of each particle in the Donnan equilibrium, a special osmotic pressure is set up in each individual particle of powdered gelatin which leads to a swelling of that particle, and this osmotic pressure is measured by the increase in the cohesion pressure of the powdered particles required to balance the osmotic pressure inside each particle. 6. In a mixture of protein in solution and powdered protein (or protein micellæ) we have therefore two kinds of osmotic pressure, the hydrostatic pressure of the protein which is in true solution, and the cohesion pressure of the aggregates. Since only the former is noticeable in the hydrostatic pressure which serves as a measure of the osmotic pressure of a solution, it is clear why the osmotic pressure of a protein solution must be diminished when part of the protein in true solution is replaced by aggregates.  相似文献   

16.
1. Collodion bags coated with gelatin on the inside were filled with a M/256 solution of neutral salt (e.g., NaCl, CaCl2, CeCl3, or Na2SO4) made up in various concentrations of HNO3 (varying from N/50,000 to N/100). Each collodion bag was put into an HNO3 solution of the same concentration as that inside the bag but containing no salt. In this case water diffuses from the outside solution (containing no salt) into the inside solution (containing the salt) with a relative initial velocity which can be expressed by the following rules: (a) Water diffuses into the salt solution as if the particles of water were negatively charged and as if they were attracted by the cation and repelled by the anion of the salt with a force increasing with the valency of the ion. (b) The initial rate of the diffusion of water is a minimum at the hydrogen ion concentration of about N/50,000 HCl (pH 4.7, which is the point at which gelatin is not ionized), rises with increasing hydrogen ion concentration until it reaches a maximum and then diminishes again with a further rise in the initial hydrogen ion concentration. 2. The potential differences between the salt solution and the outside solution (originally free from salt) were measured after the diffusion had been going on for 1 hour; and when these values were plotted as ordinates over the original pH as abscissae, the curves obtained were found to be similar to the osmotic rate curves. This confirms the view expressed by Girard) Bernstein, Bartell, and Freundlich that these cases of anomalous osmosis are in reality cases of electrical endosmose where the driving force is a P.D. between the opposite sides of the membrane. 3. The question arose as to the origin of these P. D. and it was found that the P.D. has apparently a double origin. Certain features of the P.D. curve, such as the rise and fall with varying pH, seem to be the consequence of a Donnan equilibrium which leads to some of the free HNO3 being forced from the solution containing salt into the outside solution containing no (or less) salt. This difference of the concentration of HNO3, on the opposite sides of the membrane leads to a P.D. which in conformity with Nernst''s theory of concentration cells should be equal to 58 x (pH inside minus pH outside) millivolts at 18°C. The curves of the values of (pH inside minus pH outside) when plotted as ordinates over the original pH as abscissae lead to curves resembling those for the P. D. in regard to location of minimum and maximum. 4. A second source of the P.D. seems to be diffusion potentials, which exist even if no membranes are present and which seem to be responsible for the fact that the rate of diffusion of negatively charged water into the salt solution increases with the valency of the cation and diminishes with the valency of the anion of the salt. 5. The experiments suggest the possibility that the establishment of a Donnan equilibrium between membrane and solution is one of the factors determining the Helmholtzian electrical double layer, at least in the conditions of our experiments.  相似文献   

17.
1.25 per cent gelatin solutions containing enough NaOH to bring them to pH 7.367 (or KOH to pH 7.203) were made up with various concentrations of NaCl, KCl and MgCl2, alone and in mixtures, up to molar ionic strength. The effects of these salts on the pH were observed. MgCl2 and NaCl alone lower the pH of the Na gelatinate or the K gelatinate, in all amounts of these salts. KCl first lowers the pH (up to 0.01 M K+), then raises the pH. Mixtures of NaCl and KCl (up to 0.09 M of the salt whose concentration is varied) raise the pH; then (up to 0.125 M Na+ or K+) lower the pH; and finally (above 0.125 M) behave like KCl alone. Mixtures of MgCl2 and NaCl raise the pH up to 0.10 M Na+, and lower it up to 0.15 M Na+ regardless of the amount of MgCl 2. Higher concentrations of NaCl have little effect, but the pH in this range of NaCl concentration is lowered with increase of MgCl2. Mixtures of MgCl2 and KCl behave as above described (for MgCl2 and NaCl) and the addition of NaCl plus KCl to gelatin containing MgCl2 produces essentially the same effect as the addition of either alone, except that the first two breaks in this curve come at 0.07 M and 0.08 M [Na+ + K+] and there is a third break at 0.12 M. In this pH range the free groups of the dicarboxylic acids and of lysine are essentially all ionized and the prearginine and histidine groups are essentially all non-ionized. The arginine group is about 84 per cent ionized. Hence we are studying a solution with two ionic species in equilibrium, one with the arginine group ionized, and one with it non-ionized. It is shown that the effect of each salt alone depends upon the effect of the cation on the activity of these two species due to combination. The anomalous effects of cation mixtures may be qualitatively accounted for if one or both of these species fail to combine with the cations in a mixture in proportion to the relative combination in solutions of each cation alone. Special precautions were taken to ensure accuracy in the pH measurements. The mother solutions gave identical readings to 0.001 pH and the readings with salts were discarded when not reproducible to 0.003 pH. All doubtful data were discarded.  相似文献   

18.
The swelling of isoelectric gelatin in water has been found to be in agreement with the following assumptions. Gelatin consists of a network of insoluble material containing a solution of a more soluble substance. Water therefore enters owing to the osmotic pressure of the soluble material and thereby puts the network under elastic strain. The process continues until the elastic force is equal to the osmotic pressure. If the temperature is raised or the blocks of gelatin remain swollen over a period of time, the network loses its elasticity and more water enters. In large blocks this secondary swelling overlaps the initial process and so no maximum can be observed. The swelling of small blocks or films of isoelectric gelatin containing from .14 to .4 gm. of dry gelatin per gm. of water is defined by the equation See PDF for Equation in which Ke = the bulk modulus See PDF for Equation. Ve = gm. water per gm. gelatin at equilibrium; Vf = gm. water per gm. gelatin when the gelatin solidified.  相似文献   

19.
1. Cooper''s gelatin purified according to Northrop and Kunitz exhibited a minimum of osmotic pressure and a maximum of opacity at pH 5.05 ±0.05. The pH of solutions of this gelatin in water was also close to this value. It is inferred that such gelatin is isoelectric at this pH and not at pH 4.70. 2. Hydrogen electrode measurements with KCl-agar junctions were made with concentrated solutions of this gelatin in HCl up to 0.1 M. The combination curve calculated from these data is quite exactly horizontal between pH 2 and 1, indicating that 1 gm. of this gelatin can combine with a maximum of 9.35 x 10–4 equivalents of H+. 3. Conductivity titrations of this gelatin with HCl gave an endpoint at 9.41 (±0.05) x 10–4 equivalents of HCl per gram gelatin. 4. E.M.F. measurements of the cell without liquid junction, Ag, AgCl, HCl + gelatin, H2, lead to the conclusion that this gelatin in 0.1 M HCl combines with a maximum of 9.4 x 10–4 equivalents of H+ and 1.7 x 10–4 equivalents of Cl- per gram gelatin.  相似文献   

20.
1. When solid blocks of isoelectric gelatin are placed in cold distilled water or dilute buffer of pH 4.7, only those of a gelatin content of more than 10 per cent swell, while those of a lower gelatin content not only do not swell but actually lose water. 2. The final quantity of water lost by blocks of dilute gelatin is the same whether the block is immersed in a large volume of water or whether syneresis has been initiated in the gel through mechanical forces such as shaking, pressure, etc., even in the absence of any outside liquid, thus showing that syneresis is identical with the process of negative swelling of dilute gels when placed in cold water, and may be used as a convenient term for it. 3. Acid- or alkali-containing gels give rise to greater syneresis than isoelectric gels, after the acid or alkali has been removed by dialysis. 4. Salt-containing gels show greater syneresis than salt-free gels of the same pH, after the salt has been washed away. 5. The acid and alkali and also the salt effect on syneresis of gels disappears at a gelatin concentration above 8 per cent. 6. The striking similarity in the behavior of gels with respect to syneresis and of gelatin solutions with respect to viscosity suggests the probability that both are due to the same mechanism, namely the mechanism of hydration of the micellæ in gelatin by means of osmosis as brought about either by diffusible ions, as in the presence of acid or alkali, or by the soluble gelatin present in the micellæ. The greater the pressures that caused swelling of the micellæ while the gelatin was in the sol state, the greater is the loss of water from the gels when the pressures are removed. 7. A quantitative study of the loss of water by dilute gels of various gelatin content shows that the same laws which have been found by Northrop to hold for the swelling of gels of high concentrations apply also to the process of losing water by dilute gels, i.e. to the process of syneresis. The general behavior is well represented by the equations: See PDF for Equation and See PDF for Equation where P 1 = osmotic pressure of the soluble gelatin in the gel, P 2 = stress on the micellæ in the gelatin solution before setting, Ke = bulk modulus of elasticity, Vo = volume of water per gram of dry gelatin at setting and Ve = volume of water per gram of gelatin at equilibrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号