首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The wound healing process is a highly orchestrated process, which includes inflammation, re-epithelialization, granulation tissue formation, matrix formation and re-modeling. In this paper, we attempt to determine if bio-active ceramic resource powder particles had an effect on cutaneous wound healing. Furthermore, we investigated its related mechanism and the expression of Smads of cutaneous wound healing, which can be accelerated by bio-active ceramic ointment. Topically applied lesions of 5%, 10% and 15% bio-active ceramic ointment (AO) showed accelerated wound closure, re-epithelialization, and the related immediate down stream of TGF-β (p-Smad2/3 and Smad3) was suppressed. In particular, 10% and 15% AO lesions became closed faster at Days 3 and 4 of post-wound and p-Smad2/3 was also suppressed. All AO lesions showed accelerated mild wound closure at Day 6, but there were no significant difference. Several papers reported that Smad3 may mediate the signaling pathways that is inhibitory to wound healing, as the deletion of Smad3 leads to enhanced re-epithelialization and contraction of the wound area. This study showed that topical, bio-active ceramic ointment applications accelerated wound closure, re-epithelialization and the suppression of Smad proteins (p-Smad2/3, Smad3). The data revealed that the suppression of Smad3, which was induced by bio-active ceramic resources powder particles affected re-epithelialization and cutaneous wound closure. At the end of this paper, we concluded that bio-active ceramic resources affect cutaneous wound healing by accelerating the re-epithelialization of keratinocytes and that is mediated by the suppression of related protein, Smad3.  相似文献   

3.
Impaired wound healing can lead to scarring, and aesthetical and functional problems. The cytoprotective haem oxygenase (HO) enzymes degrade haem into iron, biliverdin and carbon monoxide. HO‐1 deficient mice suffer from chronic inflammatory stress and delayed cutaneous wound healing, while corneal wound healing in HO‐2 deficient mice is impaired with exorbitant inflammation and absence of HO‐1 expression. This study addresses the role of HO‐2 in cutaneous excisional wound healing using HO‐2 knockout (KO) mice. Here, we show that HO‐2 deficiency also delays cutaneous wound closure compared to WT controls. In addition, we detected reduced collagen deposition and vessel density in the wounds of HO‐2 KO mice compared to WT controls. Surprisingly, wound closure in HO‐2 KO mice was accompanied by an inflammatory response comparable to WT mice. HO‐1 induction in HO‐2 deficient skin was also similar to WT controls and may explain this protection against exaggerated cutaneous inflammation but not the delayed wound closure. Proliferation and myofibroblast differentiation were similar in both two genotypes. Next, we screened for candidate genes to explain the observed delayed wound closure, and detected delayed gene and protein expression profiles of the chemokine (C‐X‐C) ligand‐11 (CXCL‐11) in wounds of HO‐2 KO mice. Abnormal regulation of CXCL‐11 has been linked to delayed wound healing and disturbed angiogenesis. However, whether aberrant CXCL‐11 expression in HO‐2 KO mice is caused by or is causing delayed wound healing needs to be further investigated.  相似文献   

4.
Transient receptor potential ankyrin 1 (TRPA1), a membrane protein ion channel, is known to mediate itch and pain in skin. The function of TRPA1, however, in psoriasiform dermatitis (PsD) is uncertain. Herein, we found that expression of TRPA1 is highly up‐regulated in human psoriatic lesional skin. To study the role of TRPA1 in PsD, we assessed Psoriasis Severity Index (PSI) scores, transepidermal water loss (TEWL), skin thickness and pathology, and examined dermal inflammatory infiltrates, Th17‐related genes and itch‐related genes in c57BL/6 as wild‐type (WT) and TRPA1 gene knockout (KO) mice following daily application of topical IMQ cream for 5 days. Compared with WT mice, clinical scores, skin thickness change and TEWL scores were similar on day 3, but were significantly decreased on day 5 in IMQ‐treated TRPA1 KO mice (vs WT mice), suggesting reduced inflammation and skin barrier defects. Additionally, the relative area of epidermal Munro's microabscesses and mRNA levels of neutrophil inducible chemokines (S100A8, S100A9 and CXCL1) were decreased in the treated skin of TRPA1 KO mice, suggesting that neutrophil recruitment was impaired in the KO mice. Furthermore, mast cells, CD31+ blood vascular cells, CD45+ leukocytes and CD3+ T cells were all reduced in the treated skin of TRPA1 KO mice. Lastly, mRNA expression levels of IL‐1β, IL‐6, IL‐23, IL‐17A, IL‐17F and IL‐22 were decreased in TRPA1 KO mice. In summary, these results suggest a key role for TRPA1 in psoriasiform inflammation and raising its potential as a target for therapeutic intervention.  相似文献   

5.
Skin wound healing involves Notch/Jagged1 signaling. However, little is known how Jag1 expression level in epidermal stem cells (ESCs) contributes to wound healing and scar formation. We applied multiple cellular and molecular techniques to examine how Jag1 expression in ESCs modulates ESCs differentiation to myofibroblasts (MFB) in vitro, interpret how Jag1 expression in ESCs is involved in wound healing and scar formation in mice, and evaluate the effects of porcine acellular dermal matrix (ADM) treatment on wound healing and scar formation. We found that Jag1, Notch1 and Hes1 expression was up-regulated in the wound tissue during the period of wound healing. Furthermore, Jag1 expression level in the ESCs was positively associated with the level of differentiation to MFB. ESC-specific knockout of Jag1 delayed wound healing and promoted scar formation in vivo. In addition, we reported that porcine ADM treatment after skin incision could accelerate wound closure and reduce scar formation in vivo. This effect was associated with decreased expression of MFB markers, including α-SMA Col-1 and Col-III in wound tissues. Finally, we confirmed that porcine ADM treatment could increase Jag1, Notch1 and Hesl expression in wound tissues. Taken together, our results suggested that ESC-specific Jag1 expression levels are critical for wound healing and scar formation, and porcine ADM treatment would be beneficial in promoting wound healing and preventing scar formation by enhancing Notch/Jagged1 signaling pathway in ESCs.  相似文献   

6.
Protein phosphatase magnesium-dependent 1A (PPM1A), a protein serine/threonine phosphatase, controls several signal pathways through cleavage of phosphate from its substrates. However, the in vivo function of Ppm1a in mammals remains unknown. Here we reported that mice lacking Ppm1a developed normally but were impaired in re-epithelialization process during cutaneous wound healing. Specifically, complete or keratinocyte-specific deletion of Ppm1a led to delayed re-epithelialization with reduced keratinocyte migration upon wounding. We showed that this effect was the result of an increase in Smad2/3 phosphorylation in keratinocytes. Keratinocyte-specific Smad2 deficient mice displayed accelerated re-epithelialization with enhanced keratinocyte migration. Importantly, Smad2 and Ppm1a double mutant mice also exhibited accelerated re-epithelialization, demonstrating that the effect of Ppm1a on promoting re-epithelialization is mediated by Smad2 signaling. Furthermore, the decreased expression of specific integrins and matrix metalloproteinases (MMPs) may contribute to the retarded re-epithelialization in Ppm1a mutant mice. These data indicate that Ppm1a, through suppressing Smad2 signaling, plays a critical role in re-epithelialization during wound healing.  相似文献   

7.
During the wound-healing process, macrophages, fibroblasts, and myofibroblasts play a leading role in shifting from the inflammation phase to the proliferation phase, although little is known about the cell differentiation and molecular control mechanisms underlying these processes. Previously, we reported that Tsukushi (TSK), a member of the small leucine-rich repeat proteoglycan family, functions as a key extracellular coordinator of multiple signalling networks. In this study, we investigated the contribution of TSK to wound healing. Analysis of wound tissue in heterozygous TSK-lacZ knock-in mice revealed a pattern of sequential TSK expression from macrophages to myofibroblasts. Quantitative PCR and in vitro cell induction experiments showed that TSK controls macrophage function and myofibroblast differentiation by inhibiting TGF-β1 secreted from macrophages. Our results suggest TSK facilitates wound healing by maintaining inflammatory cell quiescence.  相似文献   

8.
Summary Wound contraction results from the contractile activity of modified fibroblasts, termed myofibroblasts, which are present in the granulation tissue of the healing wound. This study examines the relative role of mechanical tension (stretching) and wound healing as events capable of stimulating the formation of myofibroblasts in mouse skin. The skin of hairless mice was subjected to mechanical stretching and to a small incisional wound either separately or in combination. Animals were killed at intervals between 1 and 6 days and the dermis examined with the electron microscope. Stretching alone produced little evidence of inflammation at any time interval but cells with the ultrastructural characteristics of myofibroblasts were present at 4 days and abundant at 6 days. Skin that had been both stretched and wounded showed a marked inflammatory response and also contained myofibroblasts, but they were less frequent than in the skin subjected to stretching alone. Very few myofibroblasts were evident in skin that had only been wounded. It is suggested that the effect of mechanical tension alone may initiate formation of myofibroblasts in a tissue.  相似文献   

9.
Antimicrobial peptides (AMPs) are part of the innate immune system and are generally defined as cationic, amphipathic peptides, with less than 50 amino acids, including multiple arginine and lysine residues. The human cathelicidin antimicrobial peptide LL37 can be found at different concentrations in many different cells, tissues and body fluids and has a broad spectrum of antimicrobial and immunomodulatory activities. The healing of wound is a complex process that involves different steps: hemostasis, inflammation, remodeling/granulation tissue formation and re-epithelialization. Inflammation and angiogenesis are two fundamental physiological conditions implicated in this process. We have recently developed a new method for the expression and purification of recombinant LL37. In this work, we show that the recombinant peptide P-LL37 with a N-terminus proline preserves its immunophysiological properties in vitro and in vivo. P-LL37 neutralized the activation of macrophages by lipopolysaccharide (LPS). Besides, the peptide induced proliferation, migration and tubule-like structures formation by endothelial cells. Wound healing experiments were performed in dexamethasone-treated mice to study the effect of LL37 on angiogenesis and wound regeneration. The topical application of synthetic and recombinant LL37 increased vascularization and re-epithelialization. Taken together, these results clearly demonstrate that LL37 may have a key role in wound regeneration through vascularization.  相似文献   

10.
The role of sensory nociceptor nerves in cutaneous wound healing was investigated following full-thickness 4-mm diameter dorsal cutaneous excision wounding of rats on postnatal day 12. In rats with intact innervation, wounds at 3 days contained large numbers of TUNEL- and BRDU-labeled nuclei, consistent with inflammatory cell death and granulation cell proliferation. Wound area and volume decreased through 11 days in concert with a transient appearance of alpha-smooth muscle actin-immunoreactive myofibroblasts, declining rates of cell division, and increased occurrence of apoptotic cells. Sensory denervation by capsaicin injections on postnatal days 2 and 9 reduced calcitonin gene-related peptide-immunoreactive wound innervation persistently by up to 43%. This was associated with increased wound surface area and volume, and delays in scab loss and re-epithelialization. Relative to control wounds, granulation tissue showed increased myofibroblast content at 5-7 days. Capsaicin-treated rats had more BRDU-labeled cells, including myofibroblasts, through day 7. Numbers of TUNEL apoptotic cells per unit area of tissue section were reduced by denervation in both early and late stages of healing. We conclude that partial loss of sensory innervation impairs cutaneous wound healing in developing rats, as manifested by delayed re-epithelialization and failure of the wound area to decrease normally through at least 21 days. This is associated with an abnormally enlarged wound tissue volume resulting from increased granulation cell proliferation without proportionate increases in apoptosis. These findings suggest that nociceptor innervation plays a critical role in wound healing by regulating wound cellularity.  相似文献   

11.
The Nod-like receptor protein (NLRP)-3 inflammasome/IL-1β pathway is involved in the pathogenesis of various inflammatory skin diseases, but its biological role in wound healing remains to be elucidated. Since inflammation is typically thought to impede healing, we hypothesized that loss of NLRP-3 activity would result in a downregulated inflammatory response and accelerated wound healing. NLRP-3 null mice, caspase-1 null mice and C57Bl/6 wild type control mice (WT) received four 8 mm excisional cutaneous wounds; inflammation and healing were assessed during the early stage of wound healing. Consistent with our hypothesis, wounds from NLRP-3 null and caspase-1 null mice contained lower levels of the pro-inflammatory cytokines IL-1β and TNF-α compared to WT mice and had reduced neutrophil and macrophage accumulation. Contrary to our hypothesis, re-epithelialization, granulation tissue formation, and angiogenesis were delayed in NLRP-3 null mice and caspase-1 null mice compared to WT mice, indicating that NLRP-3 signaling is important for early events in wound healing. Topical treatment of excisional wounds with recombinant IL-1β partially restored granulation tissue formation in wounds of NLRP-3 null mice, confirming the importance of NLRP-3-dependent IL-1β production during early wound healing. Despite the improvement in healing, angiogenesis and levels of the pro-angiogenic growth factor VEGF were further reduced in IL-1β treated wounds, suggesting that IL-1β has a negative effect on angiogenesis and that NLRP-3 promotes angiogenesis in an IL-1β-independent manner. These findings indicate that the NLRP-3 inflammasome contributes to the early inflammatory phase following skin wounding and is important for efficient healing.  相似文献   

12.
Several lines of in vitro evidence suggest the potential role of IFN-gamma in angiogenesis and collagen deposition, two crucial steps in the wound healing process. In this report, we examined the role of IFN-gamma in the skin wound healing process utilizing WT and IFN-gamma KO mice. In WT mice, excisional wounding induced IFN-gamma mRNA and protein expression by infiltrating macrophages and T cells, with a concomitant enhancement of IL-12 and IL-18 gene expression. Compared with WT mice, IFN-gamma KO mice exhibited an accelerated wound healing as evidenced by rapid wound closure and granulation tissue formation. Moreover, IFN-gamma KO mice exhibited enhanced angiogenesis with augmented vascular endothelial growth factor mRNA expression in wound sites, compared with WT mice, despite a reduction in the infiltrating neutrophils, macrophages, and T cells. IFN-gamma KO mice also exhibited accelerated collagen deposition with enhanced production of TGF-beta1 protein in wound sites, compared with WT mice. Furthermore, the absence of IFN-gamma augmented the TGF-beta1-mediated signaling pathway, as evidenced by increases in the levels of total and phosphorylated Smad2 and a reciprocal decrease in the levels of Smad7. These results demonstrate that there is crosstalk between the IFN-gamma/Stat1 and TGF-beta1/Smad signaling pathways in the wound healing process.  相似文献   

13.
Wound healing consists of sequential steps of tissue repair, and cell migration is particularly important. In order to analyze the potential function of growth arrest and DNA damage inducible protein 34 (GADD34) in tissue repair, we performed in vitro and in vivo wound healing experiments. In an in vitro scratch assay, GADD34 knockout (KO) mouse embryonic fibroblasts (MEFs) had higher migration rates than did wild type (WT) MEFs. Furthermore, the rate of wound closure was faster in GADD34 KO MEFs than in WT MEFs. Using in vivo punch biopsy assays, GADD34 KO mice had accelerated wound healing compared to WT mice. WT mice expressed higher amounts of myosin IIA in migrating macrophages and myofibroblasts than did GADD34 KO mice. These results indicate that GADD34 negatively regulates cell migration in wound healing via expression of myosin IIA.  相似文献   

14.
In addition to their well-known antinociceptive action, opioids can modulate non-neuronal functions, such as immune activity and physiology of different cell types. Several findings suggest that the delta-opioid receptor (DOR) and its endogenous ligands (enkephalins) are important players in cell differentiation and proliferation. Here we show the expression of DOR in mouse skin and human skin cultured fibroblasts and keratinocytes using RT-PCR. In DOR knock-out (KO) mice, a phenotype of thinner epidermis and higher expression of cell differentiation marker cytokeratin 10 (CK 10) were observed compared with wild type (WT). Using a burn wound model, significant wound healing delay (about 2 days) and severe epidermal hypertrophy were shown at the wound margin of DOR KO mice. This wound healing delay was further investigated by immunohistochemistry using markers for proliferation, differentiation, re-epithelialization, and dermal repair (CK 6, CK 10, and collagen IV). The levels of all these markers were increased in wounds of KO mice compared with WT. During the wound healing, the epidermal thickness in KO mice augments faster and exceeds that of the WT by day 3. These results suggest an essential role of DOR in skin differentiation, proliferation, and migration, factors that are important for wound healing.  相似文献   

15.
Wound healing in a pre-existing Th2-dominated skin milieu was assessed by using an epidermal specific interleukin-4 (IL-4) transgenic (Tg) mouse model, which develops a pruritic inflammatory skin condition resembling human atopic dermatitis. Our results demonstrated that IL-4 Tg mice had delayed wound closure and re-epithelialization even though these mice exhibited higher degrees of epithelial cell proliferation. Wounds in IL-4 Tg mice also showed a marked enhancement in expression of inflammatory cytokines/chemokines, elevated infiltration of inflammatory cells including neutrophils, macrophages, CD3+ lymphocytes, and epidermal dendritic T lymphocytes. In addition, these mice exhibited a significantly higher level of angiogenesis as compared to wild type mice. Furthermore, wounds in IL-4 Tg mice presented with larger amounts of granulation tissue, but had less expression and deposition of collagen. Taken together, an inflamed skin condition induced by IL-4 has a pronounced negative influence on the healing process. Understanding more about the pathogenesis of wound healing in a Th2- dominated environment may help investigators explore new potential therapeutic strategies.  相似文献   

16.
Similar to mammalian fetuses FOXN1 deficient (nude) mice are able to restore the structure and integrity of injured skin in a scarless healing process by mechanisms independent of the genetic background. Matrix metalloproteinases (MMPs) are required for regular skin wound healing and the distinctive pattern of their expression has been implicated to promote scarless healing. In this study, we analyzed the temporal and spatial expression patterns of these molecules during the incisional skin wounds in adult nude mice. Macroscopic and histological analyses of skin wounds revealed an accelerated wound healing process, minimal granulation tissue formation and markedly diminished scarring in nude mice. Quantitative RT-PCR (Mmp-2, -3, -8, -9, -10, -12, -13, -14 and Timp-1, -2, -3), Western blots (MMP-13) and gelatin zymography (MMP-9) revealed that MMP-9 and MMP-13 showed a unique, bimodal pattern of up-regulation during the early and late phases of wound healing in nude mice. Immunohistochemically MMP-9 and MMP-13 were generally detected in epidermis during the early phase and in dermis during the late (remodeling) phase. Consistent with these in vivo observations, dermal fibroblasts cultured from nude mice expressed higher levels of types I and III collagen, MMP-9 and MMP-13 mRNA levels and higher MMP enzyme activity than wild type controls. Collectively, these finding suggest that the bimodal pattern of MMP-9 and MMP-13 expression during skin repair process in nude mice could be a major component of their ability for scarless healing.  相似文献   

17.
Granulation tissue fibroblasts (myofibroblasts) develop several ultrastructural and biochemical features of smooth muscle (SM) cells, including the presence of microfilament bundles and the expression of alpha-SM actin, the actin isoform typical of vascular SM cells. Myofibroblasts have been proposed to play a role in wound contraction and in retractile phenomena observed during fibrotic diseases. We show here that the subcutaneous administration of transforming growth factor- beta 1 (TGF beta 1) to rats results in the formation of a granulation tissue in which alpha-SM actin expressing myofibroblasts are particularly abundant. Other cytokines and growth factors, such as platelet-derived growth factor and tumor necrosis factor-alpha, despite their profibrotic activity, do not induce alpha-SM actin in myofibroblasts. In situ hybridization with an alpha-SM actin probe shows a high level of alpha-SM actin mRNA expression in myofibroblasts of TGF beta 1-induced granulation tissue. Moreover, TGF beta 1 induces alpha-SM actin protein and mRNA expression in growing and quiescent cultured fibroblasts and preincubation of culture medium containing whole blood serum with neutralizing antibodies to TGF beta 1 results in a decrease of alpha-SM actin expression by fibroblasts in replicative and non-replicative conditions. These results suggest that TGF beta 1 plays an important role in myofibroblast differentiation during wound healing and fibrocontractive diseases by regulating the expression of alpha-SM actin in these cells.  相似文献   

18.
The function of the endogenous angiogenesis inhibitor thrombospondin-1 (TSP-1) in tissue repair has remained controversial. We established transgenic mice with targeted overexpression of TSP-1 in the skin, using a keratin 14 expression cassette. TSP-1 transgenic mice were healthy and fertile, and did not show any major abnormalities of normal skin vascularity, cutaneous vascular architecture, or microvascular permeability. However, healing of full-thickness skin wounds was greatly delayed in TSP-1 transgenic mice and was associated with reduced granulation tissue formation and highly diminished wound angiogenesis. Moreover, TSP-1 potently inhibited fibroblast migration in vivo and in vitro. These findings demonstrate that TSP-1 preferentially interfered with wound healing-associated angiogenesis, rather than with the angiogenesis associated with normal development and skin homeostasis, and suggest that therapeutic application of angiogenesis inhibitors might potentially be associated with impaired wound vascularization and tissue repair.  相似文献   

19.
To investigate a role of thrombospondin-1 (TSP-1), a multifunctional extracellular matrix protein, in corneal epithelial wound healing, we analyzed the expression of TSP-1 in the normal and wounded mouse corneal epithelia and the effect of exogenous TSP-1 on the wound healing. In immunohistochemical analyses of unwounded corneas, TSP-1 was only detectable in endothelial cells. In contrast, TSP-1 appeared on the wounded corneal surface and on the corneal stroma, at 30 min and 8-16 h, respectively, after making an abrasion on the corneal epithelium. This expression of TSP-1 disappeared after 36-48 h, when re-epithelialization was completed. The TSP-1 mRNA level in the wounded corneas increased as much as three fold compared with that in the unwounded corneas. In organ culture, exogenous TSP-1 stimulated the re-epithelialization of corneal epithelial wounds whereas anti-TSP-1 antibody significantly inhibited the re-epithelialization. These findings suggest the possibility that epithelial defects in the corneas stimulate the expression of TSP-1 in the wound area, resulting in the accelerated re-epithelialization of the cornea.  相似文献   

20.
Wound healing is a multistep phenomenon that relies on complex interactions between various cell types. Calpains are ubiquitously expressed proteases regulating several processes including cellular adhesion and motility as well as inflammation and angiogenesis. Calpains can be targeted by inhibitors, and their inhibition was shown to reduce organ damage in various disease models. We aimed to assess the role of calpains in skin healing and the potential benefit of calpain inhibition on scar formation. We used a pertinent model where calpain activity is inhibited only in lesional organs, namely transgenic mice overexpressing calpastatin (CPST), a specific natural calpain inhibitor. CPST mice showed a striking delay in wound healing particularly in the initial steps compared to wild types (WT). CPST wounds displayed reduced proliferation in the epidermis and delayed re-epithelization. Granulation tissue formation was impaired in CPST mice, with a reduction in CD45+ leukocyte infiltrate and in CD31+ blood vessel density. Interestingly, wounds on WT skin grafted on CPST mice (WT/CPST) showed a similar delayed healing with reduced angiogenesis and inflammation compared to wounds on WT/WT mice demonstrating the implication of calpain activity in distant extra-cutaneous cells during wound healing. CPST wounds showed a reduction in alpha-smooth muscle actin (αSMA) expressing myofibroblasts as well as αSMA RNA expression suggesting a defect in granulation tissue contraction. At later stages of skin healing, calpain inhibition proved beneficial by reducing collagen production and wound fibrosis. In vitro, human fibroblasts exposed to calpeptin, a pan-calpain inhibitor, showed reduced collagen synthesis, impaired TGFβ-induced differentiation into αSMA-expressing myofibroblasts, and were less efficient in a collagen gel contraction assay. In conclusion, calpains are major players in granulation tissue formation. In view of their specific effects on fibroblasts a late inhibition of calpains should be considered for scar reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号