首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membrane contact sites (MCSs) serve as a zone for nonvesicular lipid transport by oxysterol-binding protein (OSBP)-related proteins (ORPs). ORPs mediate lipid countertransport, in which two distinct lipids are transported counterdirectionally. How such lipid countertransport controls specific biological functions, however, remains elusive. We report that lipid countertransport by ORP10 at ER–endosome MCSs regulates retrograde membrane trafficking. ORP10, together with ORP9 and VAP, formed ER–endosome MCSs in a phosphatidylinositol 4-phosphate (PI4P)-dependent manner. ORP10 exhibited a lipid exchange activity toward its ligands, PI4P and phosphatidylserine (PS), between liposomes in vitro, and between the ER and endosomes in situ. Cell biological analysis demonstrated that ORP10 supplies a pool of PS from the ER, in exchange for PI4P, to endosomes where the PS-binding protein EHD1 is recruited to facilitate endosome fission. Our study highlights a novel lipid exchange at ER–endosome MCSs as a nonenzymatic PI4P-to-PS conversion mechanism that organizes membrane remodeling during retrograde membrane trafficking.  相似文献   

2.
The intracellular targeting determinants of oxysterol binding protein (OSBP)-related protein 3 (ORP3) were studied using a series of truncated and point mutated constructs. The pleckstrin homology (PH) domain of ORP3 binds the phosphoinositide-3-kinase (PI3K) products, PI(3,4)P2 and PI(3,4,5)P3. A functional PH domain and flanking sequences are crucial for the plasma membrane (PM) targeting of ORP3. The endoplasmic reticulum (ER) targeting of ORP3 is regulated the by a FFAT motif (EFFDAxE), which mediates interaction with VAMP-associated protein (VAP)-A. The targeting function of the FFAT motif dominates over that of the PH domain. In addition, the exon 10/11 region modulates interaction of ORP3 with the ER and the nuclear membrane. Analysis of a chimeric ORP3:OSBP protein suggests that ligand binding by the C-terminal domain of OSBP induces allosteric changes that activate the N-terminal targeting modules of ORP3. Notably, over-expression of ORP3 together with VAP-A induces stacked ER membrane structures also known as organized smooth ER (OSER). Moreover, lipid starvation promotes formation of dilated peripheral ER (DPER) structures dependent on the ORP3 protein. Based on the present data, we introduce a model for the inter-relationships of the functional domains of ORP3 in the membrane targeting of the protein.  相似文献   

3.
Heterogeneity in endosomal membrane phospholipid content is emerging as a regulator of endocytic trafficking pathways. Kawasaki et al. (2021. J. Cell. Biol. https://doi.org/10.1083/jcb.202103141) demonstrate exchange of endosomal PI4P for PS by ORP10 at ER–endosome contact sites, with the consequent recruitment of endosomal fission factors.

Most cellular lipids are synthesized in the ER, often undergoing rapid redistribution to other cellular membranes, thereby maintaining low concentrations at the ER. Consequently, lipids exiting the ER may need to be transported against their concentration gradient. Lipid flow along a gradient to the ER can drive countertransport of ER-derived lipid to membranes with a higher lipid concentration. This nonvesicular lipid exchange occurs at membrane contact sites (MCS), where different organelles are closely apposed, providing a platform for lipid transport proteins including oxysterol-binding protein (OSBP)-related proteins (ORPs). Lipid specificity, which varies between ORPs, is defined by the OSBP-related domain (ORD). The ORD of ORP10 shares phosphatidylinositol-4-phosphate (PI4P) and phosphatidylserine (PS) binding residues with ORP5/8 and can bind and extract PS from liposomes (1), suggesting a potential role in PI4P-PS counter transport, analogous to that of ORP5/8 at ER–plasma membrane MCS (2). ORPs are targeted to specific organelles by interaction between their PH domain and membrane phospholipids. Most ORPs also possess a FFAT motif (two phenylalanines in an acidic tract), which simultaneously targets the ORP to ER-localized VAMP-associated proteins (VAPs) at MCS between the ER and other organelles. ORP10, however, lacks a FFAT motif, yet was found to stabilize ER–Golgi MCSs (Fig. 1 A) for PI4P transport to the ER (2). Kawasaki et al. have now uncovered a novel function for ORP10 in PI4P–PS lipid exchange at the ER–endosome interface (Fig. 1 B), with downstream effects on endosomal fission and retrograde transport (3).Open in a separate windowFigure 1.Regulation of retrograde and secretory traffic by ORP10-mediated lipid exchange. (A) ORP10 interacts with VAP-bound ORP9 at ER–endosome and ER–Golgi MCSs, with downstream effects on retrograde transport of mannose 6-phosphate receptor (M6PR). Boxed region (detailed in B) depicts ORP10 at the ER–endosome interface. (B) ORP10 functions in lipid exchange between the ER and endosomes, transporting endosomal PI4P to the ER in exchange for ER-derived PS. Production of PI4P in endosomes by PI4KIIα-dependent phosphorylation of phosphatidylinositol (PI), coupled with its consumption in the ER by ER-localized Sac1, generates a PI4P concentration gradient from the endosome to the ER. Low membrane PS concentrations in the ER are maintained by PS inhibition of PS synthesis from phosphatidylcholine (PC) by Pss1 or from PE by Pss2, with PS synthesis at ER–endosome contact sites promoting rapid PS export from the ER in yeast (not yet known if a similar mechanism operates in mammalian cells). ORP10 mediates PI4P transport along its gradient to the ER, driving countertransport of PS by ORP10 against its concentration gradient to the endosome. PS enrichment at the endosome leads to recruitment of the ATPase EHD1 to facilitate endosome fission for retrograde transport. (C) Depletion of ORP10 prevents lipid exchange at ER–endosome contact sites, resulting in a loss of retrograde transport of M6PR. Additionally, ER–Golgi MCSs are diminished, and secretion of ApoB-100 is increased.The PH domain of ORP10 selectively binds PI4P and is required for ORP10 recruitment to the TGN (2) and endosomes (3), both home to PI4KIIα, a PI4P-producing kinase. Rapid PI4P degradation at the ER by the phosphatase Sac1 generates a PI4P gradient at the ER–endosome or TGN interface, with PI4P flow to the ER driving countertransport of PS to the endosome (as also predicted for the Golgi). Activity of endosomal PI4P phosphatase Sac2 (4) may hamper formation of an endosome–ER PI4P gradient, but since ORP10 did not colocalise well with Sac2 (3), they likely function at different endosome populations.PS synthesis at MCSs may also contribute to ORP10-mediated lipid exchange. Targeting PS synthase to ER:mitochondria contacts in yeast was found topromote PS transport out of the ER to mitochondria (5). Similarly, ER to endosome PS transport was increased when PS synthase was targeted to ER:endosome MCS. Localized PS gradients from PS synthesis in the ER at MCSs, coupled with rapid decarboxylation of PS to phosphatidylethanolamine (PE) in mitochondria/endosomes by yeast PS decarboxylases Psd1/Psd2, could contribute to lipid exchange. In mammalian cells, though, since no endosomal decarboxylase has been identified, ORP10-mediated lipid exchange is likely to be primarily driven by the PI4P gradient. Whether this process is facilitated by localized activation of PS synthase at MCS has not yet been demonstrated. Since PS synthase activity is negatively regulated by PS, exit from the ER is a key factor in its biogenesis. Recruitment of specific ORPs to endosomes/TGN by PI4P for ER tethering and consequent lipid exchange provides an elegant regulatory pathway for PI4P–PS homeostasis in cellular membranes.ORP10 shares functional similarities with ORP11: both proteins comprise an N-terminal PH domain and a C-terminal ORD, with a linker region in between harboring a coiled-coiled domain. Unlike other ORPs, ORP10 and ORP11 possess neither a FFAT motif nor a membrane spanning domain to enable ER interaction, but heterotypic interaction with ORP9, which does contain a FFAT motif, has been demonstrated for both proteins. Kawasaki et al. identified an ORP9-ORP10 interaction at ER–endosome MCSs that is dependent on the ORP10 linker region. ORP9 was also implicated in ORP10-mediated lipid exchange at the TGN, where it may play a redundant role with OSBP in maintaining ER contact. Similarly, ORP11 is also recruited to the TGN and, to a lesser extent, the endosome, by ORP9, with the interaction depending on the linker region of both proteins (6).The finely tuned regulation of PI4P/PS is emerging as an important determinant of endocytic traffic. Previous studies have shown that endosomal PI4P accumulation inhibits retrograde transport from endosomes to the TGN (7), while endosomal PS regulates endosome to Golgi retrograde traffic. As depicted in Fig. 1 B, Kawasaki et al. have built on this to show that through interaction with VAP-bound ORP9, ORP10 mediates lipid countertransport at ER–endosome MCSs, removing PI4P from, and supplying PS to, the endosome, with consequent recruitment of the membrane scission protein EHD1 to control endosomal fission and retrograde transport (3). Spatial and temporal regulation of endosome fission by ER–endosome MCSs involves recruitment of the ER membrane protein TMCC1 to the budding endosome by the actin regulator Coronin 1C, stabilizing the MCS (7), but the mechanism by which MCS might effect scission has remained elusive. The findings of Kawaski et al. present an explanation: by providing a platform for lipid exchange, MCS promote the recruitment of EHD1, which belongs to a conserved class of ATPases that can oligomerise in ring-like structures around tubules to mediate fission (8). VAP interaction with OSBP at ER–endosome MCSs is also required for retrograde transport (7), but potential redundancy between ORP9/OSBP in ORP10-mediated lipid exchange, or if ORP10 functions at Coronin 1C/TMCC1-regulated MCS is not yet established.Interestingly, ORP10 function at the TGN has been implicated in regulating ApoB-100 secretion (Fig. 1 C), with hypersecretion reported in ORP10-depleted cells (9). FFAP1, which promotes PI4P consumption by Sac1 at ER:TGN contacts, also negatively regulates ApoB-100 exit from the TGN in a PI4KIIIβ-dependent manner, suggesting direct regulation of ApoB-100 secretion by PI4P at the TGN (9). Could PI4P coordinate nutrient sensing with cargo sorting and secretion at the TGN? PI4P has been described as lipid biosensor of cytosolic pH, with protonation of its head group regulating protein interactions (10). The influence of cytosolic pH on ORP10-PI4P interaction may provide an additional layer of regulation of lipoprotein secretion in response to changes in cellular energy/pH.How ORP10 function is coordinated at Golgi and endosomal membranes and the significance of potential redundancy with ORP11 remains unclear. The regulation of Sac2 activity and how it relates to ER-endosome lipid exchange is also intriguing. While questions still remain, an important role for ORP10 is emerging in maintaining homoeostasis between endosome maturation, retrograde traffic and secretory transport.  相似文献   

4.
The PH domains of OSBP and FAPP1 fused to GFP were used to monitor PI(4)P distribution in COS-7 cells during manipulations of PI 4-kinase (PI4K) activities. Both domains were associated with the Golgi and small cytoplasmic vesicles, and a small fraction of OSBP-PH was found at the plasma membrane (PM). Inhibition of type-III PI4Ks with 10 microM wortmannin (Wm) significantly reduced but did not abolish Golgi localization of either PH domains. Downregulation of PI4KIIalpha or PI4KIIIbeta by siRNA reduced the localization of the PH domains to the Golgi and in the former case any remaining Golgi localization was eliminated by Wm treatment. PLC activation by Ca2+ ionophores dissociated the domains from all membranes, but after Ca2+ chelation, they rapidly reassociated with the Golgi, the intracellular vesicles and with the PM. PM association of the domains was significantly higher after the Ca2+ transient and was abolished by Wm pretreatment. PM relocalization was not affected by down-regulation of PI4KIIIbeta or -IIalpha, but was inhibited by down-regulation of PI4KIIIalpha, or by 10 microM PAO, which also inhibits PI4KIIIalpha. Our data suggest that these PH domains detect PI(4)P formation in extra-Golgi compartments under dynamic conditions and that various PI4Ks regulate PI(4)P synthesis in distinct cellular compartments.  相似文献   

5.
Many bacterial pathogens use specialized secretion systems to deliver virulence effector proteins into eukaryotic host cells. The function of these effectors depends on their localization within infected cells, but the mechanisms determining subcellular targeting of each effector are mostly elusive. Here, we show that the Salmonella type III secretion effector SteA binds specifically to phosphatidylinositol 4‐phosphate [PI(4)P]. Ectopically expressed SteA localized at the plasma membrane (PM) of eukaryotic cells. However, SteA was displaced from the PM of Saccharomyces cerevisiae in mutants unable to synthesize the local pool of PI(4)P and from the PM of HeLa cells after localized depletion of PI(4)P. Moreover, in infected cells, bacterially translocated or ectopically expressed SteA localized at the membrane of the Salmonella‐containing vacuole (SCV) and to Salmonella‐induced tubules; using the PI(4)P‐binding domain of the Legionella type IV secretion effector SidC as probe, we found PI(4)P at the SCV membrane and associated tubules throughout Salmonella infection of HeLa cells. Both binding of SteA to PI(4)P and the subcellular localization of ectopically expressed or bacterially translocated SteA were dependent on a lysine residue near the N‐terminus of the protein. Overall, this indicates that binding of SteA to PI(4)P is necessary for its localization within host cells.  相似文献   

6.
Phosphatidylinositol-4,5-bisphosphate (PI(4,5)P(2)), a minor component of the plasma membrane, is important in signal transduction, exocytosis, and ion channel activation. Thus fluorescent probes suitable for monitoring the PI(4,5)P(2) distribution in living cells are valuable tools for cell biologists. We report here three experiments that show neomycin labeled with either fluorescein or coumarin can be used to detect PI(4,5)P(2) in model phospholipid membranes. First, addition of physiological concentrations of PI(4,5)P(2) (2%) to lipid vesicles formed from mixtures of phosphatidylcholine (PC) and phosphatidylserine (PS) enhances the binding of labeled neomycin significantly (40-fold for 5:1 PC/PS vesicles). Second, physiological concentrations of inositol-1,4,5-trisphosphate (10 microM I(1,4,5)P(3)) cause little translocation of neomycin from PC/PS/PI(4,5)P(2) membranes to the aqueous phase, whereas the same concentrations of I(1,4,5)P(3) cause significant translocation of the green fluorescent protein/phospholipase C-delta pleckstrin homology (GFP-PH) constructs from membranes (Hirose et al., Science, 284 (1999) 1527). Third, fluorescence microscopy observations confirm that one can distinguish between PC/PS vesicles containing either 0 or 2% PI(4, 5)P(2) by exposing a mixture of the vesicles to labeled neomycin. Thus fluorescently labeled neomycin could complement GFP-PH constructs to investigate the location of PI(4,5)P(2) in cell membranes.  相似文献   

7.
Phosphatidylinositol-4-phosphate (PI4P) plays a crucial role in cellular functions, including protein trafficking, and is mainly located in the cytoplasmic surface of intracellular membranes, which include the trans-Golgi network (TGN) and the plasma membrane. However, many PI4P-binding domains of membrane-associated proteins are localized only to the TGN because of the requirement of a second binding protein such as ADP-ribosylation factor 1 (ARF1) in order to be stably localized to the specific membrane. In this study, we developed new probes that were capable of detecting PI4P at the plasma membrane using the known TGN-targeting PI4P-binding domains. The PI4P-specific binding pleckstrin homology (PH) domain of various proteins including CERT, OSBP, OSH1, and FAPP1 was combined with the N-terminal moderately hydrophobic domain of the short-form of Aplysia phosphodiesterase 4 (S(N30)), which aids in plasma membrane association but cannot alone facilitate this association. As a result, we found that the addition of S(N30) to the N-terminus of the GFP-fused PH domain of OSBP (S(N30)-GFP-OSBP-PH), OSH1 (S(N30)-GFP-OSH1-PH), or FAPP1 (S(N30)-GFP-FAPP1-PH) could induce plasma membrane localization, as well as retain TGN localization. The plasma membrane localization of S(N30)-GFP-FAPP1-PH is mediated by PI4P binding only, whereas those of S(N30)-GFP-OSBP-PH and S(N30)-GFP-OSH1-PH are mediated by either PI4P or PI(4,5)P2 binding. Taken together, we developed new probes that detect PI4P at the plasma membrane using a combination of a moderately hydrophobic domain with the known TGN-targeting PI4P-specific binding PH domain.  相似文献   

8.
Phosphatidylinositol-4-phosphate (PI(4)P) is the main phosphoinositide in the Golgi complex and has been reported to play a pleiotropic role in transport of cargo from the trans-Golgi network to the plasma membrane (PM) in polarized Madin-Darby canine kidney (MDCK) cells. Overexpression of the chimeric fluorescent protein encoding the pleckstrin homology domain, which is specific for PI(4)P, inhibited both apical and basolateral transport pathways. The transport of apical cargo from the Golgi was shown to be specifically decreased by adenovirus-mediated RNA interference directed against PI(4)P adaptor protein (FAPP) 2. FAPP1 depletion had no effect on transport. On the other hand, FAPP2 was not involved in the Golgi-to-PM transport of cargo that was targeted to the basolateral membrane domain. Thus, we conclude that FAPP2 plays a specific role in apical transport in MDCK cells.  相似文献   

9.
During the late phase of human immunodeficiency virus type-1 (HIV-1) replication, newly synthesized retroviral Gag proteins are targeted to lipid raft regions of specific cellular membranes, where they assemble and bud to form new virus particles. Gag binds preferentially to the plasma membrane (PM) of most hematopoietic cell types, a process mediated by interactions between the cellular PM marker phosphatidylinositol-(4,5)-bisphosphate (PI(4,5)P(2)) and Gag's N-terminally myristoylated matrix (MA) domain. We recently demonstrated that PI(4,5)P(2) binds to a conserved cleft on MA and promotes myristate exposure, suggesting a role as both a direct membrane anchor and myristyl switch trigger. Here we show that PI(4,5)P(2) is also capable of binding to MA proteins containing point mutations that inhibit membrane binding in vitro, and in vivo, including V7R, L8A and L8I. However, these mutants do not exhibit PI(4,5)P(2) or concentration-dependent myristate exposure. NMR studies of V7R and L8A MA reveal minor structural changes that appear to be responsible for stabilizing the myristate-sequestered (myr(s)) species and inhibiting exposure. Unexpectedly, the myristyl group of a revertant mutant with normal PM targeting properties (V7R,L21K) is also tightly sequestered and insensitive to PI(4,5)P(2) binding. This mutant binds PI(4,5)P(2) with twofold higher affinity compared with the native protein, suggesting a potential compensatory mechanism for membrane binding.  相似文献   

10.
Normal steady-state levels of the signalling lipids PI(3,5)P(2) and PI(5)P require the lipid kinase FAB1/PIKfyve and its regulators, VAC14 and FIG4. Mutations in the PIKfyve/VAC14/FIG4 pathway are associated with Charcot-Marie-Tooth syndrome and amyotrophic lateral sclerosis in humans, and profound neurodegeneration in mice. Hence, tight regulation of this pathway is critical for neural function. Here, we examine the localization and physiological role of VAC14 in neurons. We report that endogenous VAC14 localizes to endocytic organelles in fibroblasts and neurons. Unexpectedly, VAC14 exhibits a pronounced synaptic localization in hippocampal neurons, suggesting a role in regulating synaptic function. Indeed, the amplitude of miniature excitatory postsynaptic currents is enhanced in both Vac14(-/-) and Fig4(-/-) neurons. Re-introduction of VAC14 in postsynaptic Vac14(-/-) cells reverses this effect. These changes in synaptic strength in Vac14(-/-) neurons are associated with enhanced surface levels of the AMPA-type glutamate receptor subunit GluA2, an effect that is due to diminished regulated endocytosis of AMPA receptors. Thus, VAC14, PI(3,5)P(2) and/or PI(5)P play a role in controlling postsynaptic function via regulation of endocytic cycling of AMPA receptors.  相似文献   

11.
Low‐density lipoprotein (LDL)‐cholesterol delivery from late endosomes to the plasma membrane regulates focal adhesion dynamics and cell migration, but the mechanisms controlling it are poorly characterized. Here, we employed auxin‐inducible rapid degradation of oxysterol‐binding protein‐related protein 2 (ORP2/OSBPL2) to show that endogenous ORP2 mediates the transfer of LDL‐derived cholesterol from late endosomes to focal adhesion kinase (FAK)‐/integrin‐positive recycling endosomes in human cells. In vitro, cholesterol enhances membrane association of FAK to PI(4,5)P2‐containing lipid bilayers. In cells, ORP2 stimulates FAK activation and PI(4,5)P2 generation in endomembranes, enhancing cell adhesion. Moreover, ORP2 increases PI(4,5)P2 in NPC1‐containing late endosomes in a FAK‐dependent manner, controlling their tubulovesicular trafficking. Together, these results provide evidence that ORP2 controls FAK activation and LDL‐cholesterol plasma membrane delivery by promoting bidirectional cholesterol/PI(4,5)P2 exchange between late and recycling endosomes.  相似文献   

12.
Double C2 domain protein B (DOC2B) is a high‐affinity Ca2+ sensor that translocates from the cytosol to the plasma membrane (PM) and promotes vesicle priming and fusion. However, the molecular mechanism underlying its translocation and targeting to the PM in living cells is not completely understood. DOC2B interacts in vitro with the PM components phosphatidylserine, phosphatidylinositol (4, 5)‐bisphosphate [PI(4, 5)P2] and target SNAREs (t‐SNAREs). Here, we show that PI(4, 5)P2 hydrolysis at the PM of living cells abolishes DOC2B translocation, whereas manipulations of t‐SNAREs and other phosphoinositides have no effect. Moreover, we were able to redirect DOC2B to intracellular membranes by synthesizing PI(4, 5)P2 in those membranes. Molecular dynamics simulations and mutagenesis in the calcium and PI(4, 5)P2‐binding sites strengthened our findings, demonstrating that both calcium and PI(4, 5)P2 are required for the DOC2B–PM association and revealing multiple PI(4, 5)P2–C2B interactions. In addition, we show that DOC2B translocation to the PM is ATP‐independent and occurs in a diffusion‐like manner. Our data suggest that the Ca2+‐triggered translocation of DOC2B is diffusion‐driven and aimed at PI(4, 5)P2‐containing membranes.   相似文献   

13.
During the late phase of retroviral replication, newly synthesized Gag proteins are targeted to the plasma membrane (PM), where they assemble and bud to form immature virus particles. Membrane targeting by human immunodeficiency virus type 1 (HIV-1) Gag is mediated by the PM marker molecule phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2], which is capable of binding to the matrix (MA) domain of Gag in an extended lipid conformation and of triggering myristate exposure. Here, we show that, as observed previously for HIV-1 MA, the myristyl group of HIV-2 MA is partially sequestered within a narrow hydrophobic tunnel formed by side chains of helices 1, 2, 3, and 5. However, the myristate of HIV-2 MA is more tightly sequestered than that of the HIV-1 protein and does not exhibit concentration-dependent exposure. Soluble PI(4,5)P2 analogs containing truncated acyl chains bind HIV-2 MA and induce minor long-range structural changes but do not trigger myristate exposure. Despite these differences, the site of HIV-2 assembly in vivo can be manipulated by enzymes that regulate PI(4,5)P2 localization. Our findings indicate that HIV-1 and HIV-2 are both targeted to the PM for assembly via a PI(4,5)P2-dependent mechanism, despite differences in the sensitivity of the MA myristyl switch, and suggest a potential mechanism that may contribute to the poor replication kinetics of HIV-2.  相似文献   

14.
We characterize here ORP11, a member of the oxysterol-binding protein family. ORP11 is present at highest levels in human ovary, testis, kidney, liver, stomach, brain, and adipose tissue. Immunohistochemistry demonstrates abundant ORP11 in the epithelial cells of kidney tubules, testicular tubules, caecum, and skin. ORP11 in HEK293 cells resides on Golgi complex and LE, co-localizing with GFP-Rab9, TGN46, GFP-Rab7, and a fluorescent medial-trans-Golgi marker. Under electron microscopic observation, cells overexpressing ORP11 displayed lamellar lipid bodies associated with vacuolar structures or the Golgi complex, indicating a disturbance of lipid trafficking. N-terminal fragment of ORP11 (aa 1-292) localized partially to Golgi, but displayed enhanced localization on Rab7- and Rab9-positive LE, while the C-terminal ligand-binding domain (aa 273-747) was cytosolic, demonstrating that the membrane targeting determinants are N-terminal. Yeast two-hybrid screen revealed interaction of ORP11 with the related ORP9. The interacting region was delineated within aa 98-372 of ORP9 and aa 154-292 of ORP11. Overexpressed ORP9 was able to recruit EGFP-ORP11 to membranes, and ORP9 silencing inhibited ORP11 Golgi association. The results identify ORP11 as an OSBP homologue distributing at the Golgi-LE interface and define the ORP9-ORP11 dimer as a functional unit that may act as an intracellular lipid sensor or transporter.  相似文献   

15.
Many cytosolic proteins are recruited to the plasma membrane (PM) during cell signaling and other cellular processes. Recent reports have indicated that phosphatidylserine (PS), phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)), and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) that are present in the PM play important roles for their specific PM recruitment. To systematically analyze how these lipids mediate PM targeting of cellular proteins, we performed biophysical, computational, and cell studies of the Ca(2+)-dependent C2 domain of protein kinase Calpha (PKCalpha) that is known to bind PS and phosphoinositides. In vitro membrane binding measurements by surface plasmon resonance analysis show that PKCalpha-C2 nonspecifically binds phosphoinositides, including PtdIns(4,5)P(2) and PtdIns(3,4,5)P(3), but that PS and Ca(2+) binding is prerequisite for productive phosphoinositide binding. PtdIns(4,5)P(2) or PtdIns(3,4,5)P(3) augments the Ca(2+)- and PS-dependent membrane binding of PKCalpha-C2 by slowing its membrane dissociation. Molecular dynamics simulations also support that Ca(2+)-dependent PS binding is essential for membrane interactions of PKCalpha-C2. PtdIns(4,5)P(2) alone cannot drive the membrane attachment of the domain but further stabilizes the Ca(2+)- and PS-dependent membrane binding. When the fluorescence protein-tagged PKCalpha-C2 was expressed in NIH-3T3 cells, mutations of phosphoinositide-binding residues or depletion of PtdIns(4,5)P(2) and/or PtdIns(3,4,5)P(3) from PM did not significantly affect the PM association of the domain but accelerated its dissociation from PM. Also, local synthesis of PtdIns(4,5)P(2) or PtdIns(3,4,5)P(3) at the PM slowed membrane dissociation of PKCalpha-C2. Collectively, these studies show that PtdIns(4,5)P(2) and PtdIns(3,4,5)P(3) augment the Ca(2+)- and PS-dependent membrane binding of PKCalpha-C2 by elongating the membrane residence of the domain but cannot drive the PM recruitment of PKCalpha-C2. These studies also suggest that effective PM recruitment of many cellular proteins may require synergistic actions of PS and phosphoinositides.  相似文献   

16.
Stefan CJ  Manford AG  Baird D  Yamada-Hanff J  Mao Y  Emr SD 《Cell》2011,144(3):389-401
Sac1 phosphoinositide (PI) phosphatases are essential regulators of PI-signaling networks. Yeast Sac1, an integral endoplasmic reticulum (ER) membrane protein, controls PI4P levels at the ER, Golgi, and plasma membrane (PM). Whether Sac1 can act in trans and turn over PI4P at the Golgi and PM from the ER remains a paradox. We find that Sac1-mediated PI4P metabolism requires the oxysterol-binding homology (Osh) proteins. The PH domain-containing family member, Osh3, localizes to PM/ER membrane contact sites dependent upon PM PI4P levels. We reconstitute Osh protein-stimulated Sac1 PI phosphatase activity in vitro. We also show that the ER membrane VAP proteins, Scs2/Scs22, control PM PI4P levels and Sac1 activity in vitro. We propose that Osh3 functions at ER/PM contact sites as both a sensor of PM PI4P and an activator of the ER Sac1 phosphatase. Our findings further suggest that the conserved Osh proteins control PI metabolism at additional membrane contact sites.  相似文献   

17.
Myotubularin related protein 2 (MTMR2) is a member of the myotubularin family of phosphoinositide lipid phosphatases. Although MTMR2 dephosphorylates the phosphoinositides PI(3)P and PI(3,5)P2, the phosphoinositide binding proteins that are regulated by MTMR2 are poorly characterized. In this study, phosphoinositide affinity chromatography coupled to mass spectrometry identified receptor mediated endocytosis 8 (RME-8) as a novel PI(3)P binding protein. RME-8 co-localized with the PI(3)P marker DsRed-FYVE, while the N-terminal region of RME-8 is required for PI(3)P and PI(3,5)P(2) binding in vitro. Depletion of PI(3)P by MTMR2 S58A or wortmannin treatment attenuated RME-8 endosomal localization and co-localization with EGFR on early endosomes. Our results suggest a model in which the localization of RME-8 to endosomal compartments is spatially mediated by PI(3)P binding and temporally regulated by MTMR2 activity.  相似文献   

18.
Zhao Y  Yan A  Feijó JA  Furutani M  Takenawa T  Hwang I  Fu Y  Yang Z 《The Plant cell》2010,22(12):4031-4044
Using the tip-growing pollen tube of Arabidopsis thaliana and Nicotiana tabacum as a model to investigate endocytosis mechanisms, we show that phosphatidylinositol-4-phosphate 5-kinase 6 (PIP5K6) regulates clathrin-dependent endocytosis in pollen tubes. Green fluorescent protein-tagged PIP5K6 was preferentially localized to the subapical plasma membrane (PM) in pollen tubes where it apparently converts phosphatidylinositol 4-phosphate (PI4P) to phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)]. RNA interference-induced suppression of PIP5K6 expression impaired tip growth and inhibited clathrin-dependent endocytosis in pollen tubes. By contrast, PIP5K6 overexpression induced massive aggregation of the PM in pollen tube tips. This PM abnormality was apparently due to excessive clathrin-dependent membrane invagination because this defect was suppressed by the expression of a dominant-negative mutant of clathrin heavy chain. These results support a role for PI(4,5)P(2) in promoting early stages of clathrin-dependent endocytosis (i.e., membrane invagination). Interestingly, the PIP5K6 overexpression-induced PM abnormality was partially suppressed not only by the overexpression of PLC2, which breaks down PI(4,5)P(2), but also by that of PI4Kβ1, which increases the pool of PI4P. Based on these observations, we propose that a proper balance between PI4P and PI(4,5)P(2) is required for clathrin-dependent endocytosis in the tip of pollen tubes.  相似文献   

19.
The human OSBP related protein (ORP) family consists of 12 members, which can be divided into six subfamilies based on the genomic organization and amino acid homology. Here we performed basic characterization of subfamily III, which consists of three members: ORP3, ORP6, and ORP7. According to cDNA hybridization, the three genes are expressed in a tissue-specific manner. While ORP3 mRNA is most abundant in kidney, lymph nodes, and thymus, ORP6 shows highest expression in brain and skeletal muscle, and ORP7 in the gastrointestinal tract. Using monospecific peptide antibodies, we confirmed the presence of the three proteins in human and mouse tissues. ORP6 gene expression was induced upon differentiation of F9 embryonic carcinoma cells into parietal endoderm, while ORP3 and ORP7 mRNA levels were unchanged. In the F9 cells, endogenous ORP6 associated predominantly with the nuclear envelope. When expressed from the cDNA in cultured cells, the three proteins were distributed between the cytosol and endoplasmic reticulum (ER) membranes, with a minor portion found at the plasma membrane. Experiments with truncated constructs showed that the N-terminal portion of the proteins, containing a pleckstrin homology (PH) domain, has markedly strong plasma membrane targeting specificity, while the C-terminal half remains largely cytosolic. The expression data demonstrates that ORP3, -6, and -7 are not merely redundant gene products but show marked quantitative differences in tissue expression, suggesting tissue-specific aspects in their function. The dual targeting of the proteins indicates a putative role in communication between the ER and the plasma membrane.This study was supported by the Clinical Research Fund of Helsinki University Central Hospital (J.T.), the Academy of Finland (grant 51883 to M.L.; grants 49987, 50641, and 54301 to V.M.O.), the Sigrid Juselius Foundation, and the Finnish Cultural Foundation  相似文献   

20.
The 53-kDa insulin receptor substrate protein (IRSp53) organizes the actin cytoskeleton in response to stimulation of small GTPases, promoting the formation of cell protrusions such as filopodia and lamellipodia. IMD is the N-terminal 250 amino acid domain (IRSp53/MIM Homology Domain) of IRSp53 (also called I-BAR), which can bind to negatively charged lipid molecules. Overexpression of IMD induces filopodia formation in cells and purified IMD assembles finger-like protrusions in reconstituted lipid membranes. IMD was shown by several groups to bundle actin filaments, but other groups showed that it also binds to membranes. IMD binds to negatively charged lipid molecules with preference to clusters of PI(4,5)P2. Here, we performed a range of different in vitro fluorescence experiments to determine the binding properties of the IMD to phospholipids. We used different constructs of large unilamellar vesicles (LUVETs), containing neutral or negatively charged phospholipids. We found that IMD has a stronger binding interaction with negatively charged PI(4,5)P2 or PS lipids than PS/PC or neutral PC lipids. The equilibrium dissociation constant for the IMD–lipid interaction falls into the 78–170 μM range for all the lipids tested. The solvent accessibility of the fluorescence labels on the IMD during its binding to lipids is also reduced as the lipids become more negatively charged. Actin affects the IMD–lipid interaction, depending on its polymerization state. Monomeric actin partially disrupts the binding, while filamentous actin can further stabilize the IMD–lipid interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号