首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to determine the effects of the semicircular canals and otolith organs on respiration in humans. On the basis of animal studies, we hypothesized that vestibular activation would elicit a vestibulorespiratory reflex. To test this hypothesis, respiratory measures, arterial blood pressure, and heart rate were measured during engagement of semicircular canals and/or otolith organs. Dynamic upright pitch and roll (15 cycles/min), which activate the otolith organs and semicircular canals, increased respiratory rate (Delta2 +/- 1 and Delta3 +/- 1 breaths/min, respectively; P < 0.05). Dynamic yaw and lateral pitch (15 cycles/min), which activate the semicircular canals, increased respiration similarly (Delta3 +/- 1 and Delta2 +/- 1, respectively; P < 0.05). Dynamic chair rotation (15 cycles/min), which mimics dynamic yaw but eliminates neck muscle afferent, increased respiration (Delta3 +/- 1; P < 0.05) comparable to dynamic yaw (15 cycles/min). Increases in respiratory rate were graded as greater responses occurred during upright (Delta5 +/- 2 breaths/min) and lateral pitch (Delta4 +/- 1) and roll (Delta5 +/- 1) performed at 30 cycles/min. Increases in breathing frequency resulted in increases in minute ventilation during most interventions. Static head-down rotation, which activates otolith organs, did not alter respiratory rate (Delta1 +/- 1 breaths/min). Collectively, these data indicate that semicircular canals, but not otolith organs or neck muscle afferents, mediate increased ventilation in humans and support the concept that vestibular activation alters respiration in humans.  相似文献   

2.
The effect of changes in static and dynamic gravity signals on the phase accuracy of the horizontal vestibulo-ocular reflex (HVOR) was studied in rats using chronically implanted scleral search coils to monitor eye movements. Rats were sinusoidally rotated using a range of different frequencies (0.035-2 Hz) in a plane which always activated the horizontal semicircular canals but in one of three different orientations with regard to gravity which differentially activated the otolith organs: 1) upright-normal static gravity signal, no dynamic otolith activation; 2) inverted-inverted static gravity signal, no dynamic otolith activation; 3) on-side-dynamic activation of the otolith organs. In the upright orientation, the HVOR shows a phase advance at 0.2 Hz and below but not at 0.5 Hz and above. Phase accuracy of the HVOR was further degraded in the inverted orientation with rats showing large phase leads at 0.2 Hz and below. In contrast, accuracy of the HVOR was significantly improved at 0.2 Hz and below in the on-side orientation with phase accurate eye movements down to the lowest frequency tested. The results further support the idea that otolith organs play an important role in VOR generation by supplementing the semicircular canals' response to angular head movements.  相似文献   

3.
Afferent signals from the otolith organs can produce compensatory eye position and velocity signals which has been described as linear vestibulo-ocular reflex (LVOR). The afferent otolith signals carry information about head orientation and changes of head orientation relative to gravity. A head orientation (tilt) related position signal can be obtained from population vector coding of tonic otolith afferent signals during static or dynamic head tilts, which in turn could produce compensatory eye position signals in the LVOR. On the other hand, eye angular velocity signals may be extracted, as proposed in this study, from the population response of tilt-velocity sensitive otolith afferents. Such afferents are shown to encode instantaneous head orientation relative to gravity at onset of a head movement and, as the movement continues, the projection of head angular velocity onto the earth-horizontal plane, indicating the instantaneous direction of movement relative to gravity. Angular velocity components along the earth-vertical direction which are not directly encoded by otolith afferents can be detected by central signal processing. Central reconstruction of 3D head angular velocity allows to obtain information about absolute head orientation in space even in the absence of semicircular canal related information. Such information is important for generating compensatory eye movements as well as for dynamic control of posture.  相似文献   

4.
A dimensionless measure of otolith mass asymmetry, χ, was calculated as the difference between the masses of the right and left paired otoliths divided by average otolith mass. Saccular otolith mass asymmetry was studied in eight flatfish species (110 otolith pairs) and compared with data from a previously published study on roundfishes. As in the case of symmetrical fishes, the absolute value of χin flatfishes does not depend on fish length and otolith growth rate, although otolith mass and the absolute value of otolith mass difference are correlated with fish length. The values of χwere between ?0·2 and +0·2 in 96·4% of flatfishes studied. The mean ±s .e . value of χin flatfishes was significantly larger than in standard bilaterally symmetrical marine fishes (‘roundfishes’), respectively 0·070 ± 0·006 and 0·040 ± 0·006. The most prominent distinction is the existence of downside prevalence of saccular otolith mass in flatfishes, which contrasts with no right–left prevalence in roundfishes found in a previous study. In the right‐eyed flatfishes (Soleidae), the left saccular otoliths are heavier than the right otoliths. In the left‐eyed flatfishes (Bothidae and Citharidae), the right saccular otoliths are heavier than the left otoliths. Not all flatfishes, however, fit in this design: 11·8% of flatfishes studied had the heavier saccular otoliths in the upside labyrinth and 5·4% of flatfishes had no otolith mass asymmetry (within the accuracy of the analysis). At the same time, the more mobile flatfishes (bothids and citharids) have more symmetrical and, hence, more precisely organized saccular otolith organs than the bottom‐associated flatfishes (soleids). It is possible to assume that the value of the otolith asymmetry is not only correlated with flatfish placement in a particular family, or position of eyes, but also may correlate with general aspects of their ecology. Mathematical modelling indicated that for most flatfishes one‐side saccular prevalence had no substantial significance for sound processing. On the other hand, calculations showed that 49% of flatfishes (but only 14·5% of roundfishes) have |χ| which exceed the critical level and, in principle, could sense the difference between the static displacement of the large and small paired otoliths. At that, the number of the soleids that could sense this difference is greater than the number of the bothids and citharids, 84 and 27%, respectively.  相似文献   

5.
A review is presented on the three-dimensional aspects of the vestibulo-oculomotor system and the current functional tests for unilateral examination of the individual receptors in the vestibular labyrinth. In the presentation, attention is directed towards the recently developed vestibular tests, which promise a more comprehensive examination of labyrinth function. More explicitly, unilateral tests for the utricle, saccule and the individual semicircular canals are discussed. Caloric irrigation and rotatory testing are widely used as tests for the integrity of the (horizontal) semicircular canals. Little useful diagnosis is made however on the vertical canals, not to mention the otolith organs. A promising approach to the examination of individual semicircular canal function has been described. This involves the perception of self-rotation in each of the planes of the semicircular canals. The patient/subject is rotated by an arbitrary amount on a standard Barany chair and then required to return the chair to its original position, by joystick control of the chair velocity. In order to test the vertical canals, the head of the subject/patient is positioned so that the plane of each canal lies in the plane of rotation. A promising unilateral test of saccular function involves the use of vestibular evoked myogenic potentials. Here it has been demonstrated that the saccules can be activated using brief, high-intensity acoustic clicks. The myogenic potential is measured using surface electrodes over the sternocleidomastoid muscles. Initial data from patients has indicated that the test is specific for unilateral saccule disorders. The unilateral test of utricle function is based on the eccentric displacement profile. Thus, eccentric displacement of the head to 3.5 cm during constant velocity rotation about the earth-vertical axis generates an adequate unilateral stimulation of the otolith organ, without involving the semicircular canals. This paradigm has also proved efficient in localizing peripheral otolith dysfunction by means of SVV estimation. This represents a novel test of otolith function that can be easily integrated into routine clinical testing. In contrast to the otolith-ocular response, the subjective visual vertical also reflects the processing of otolithic information in the higher brain centres (thalamus, vestibular cortex). Exploitation of the two complementary approaches therefore provides useful information for both experimental and clinical scientists. Of direct interest is the finding that testing with the subject rotating on-centre is sufficient to localize peripheral otolith dysfunction by means of SVV estimation. This represents a novel test of otolith function that can be easily integrated into routine clinical testing. In addition to caloric testing, which has remained the classical unilateral test of vestibular function, the newly developed tests should improve the differential diagnosis of vestibular disorders.  相似文献   

6.
7.
Otoliths, or ‘ear stones’, are calcium carbonate structures found in all vertebrates. In teleosts, they have a number of sensory functions, including hearing. Daily growth increments of these structures have permitted advanced age and population studies of teleosts. Whereas ‘normal’ otoliths are composed of crystals imbedded within a protein matrix as aragonite, a ‘crystalline’ form of calcium carbonate termed vaterite is also found. A review of the otolith literature demonstrates a significant level of understanding of the structure and function of otoliths, but the cause for crystalline otolith structure remains speculative. Pairs of otoliths from hatchery and wild juvenile and adult coho salmon (Oncorhynchus kisutch) were examined visually for determination of otolith microstructure type. The vateritic or crystalline otoliths were found in much higher percentages in juvenile hatchery-reared coho salmon than in juvenile wild coho salmon, supporting previous studies. There did not seem to be any negative impact on size or survival. There was also no correlation between crystalline otoliths and premature maturation in coho males. A preliminary study of adult coho salmon returning to Big Qualicum and Chilliwack hatcheries showed even higher ratios of vateritic otoliths than observed in juveniles.  相似文献   

8.
对蝉次目3个总科(蝉总科,沫蝉总科,角蝉总科)代表类群(12种成虫)的足、消化道和马氏管的形态结构及其分化进行了比较形态学研究,提出蝉次目昆虫消化道及马氏管整体结构可被划分为两种类型的观点(蝉总科和沫蝉总科消化道及马氏管整体结构为同一种类型,角蝉总科消化道及马氏管整体结构为另一种类型),并分别绘制了两种类型的模式结构图;基于成虫的马氏管比较形态学研究,提出蝉次目昆虫成虫马氏管可被划分为6部分的观点,并分别绘制了角蝉科、叶蝉科、蝉科和沫蝉科成虫的马氏管区域分化模式结构图。研究结果表明,蝉次目昆虫的足、消化道、马氏管的形态、功能分化与其生物学、行为生态学特性等密切相关,其形态学特征既为蝉次目各类群的单系性提供了重要支持证据,也为进一步从行为学、生态学、生物学等方面探讨蝉次目的系统演化历史提供了新的信息;研究结果支持蝉总科和沫蝉总科为姊妹群的观点,即蝉次目3个总科的系统关系为角蝉总科+(蝉总科+沫蝉总科)。  相似文献   

9.
The study of the inner ear of the guinea pig intended to give an explanation to what extent there are differences discernible in relation to the human labyrinth. Additional histological research should clarify the question, if structural differences exist in the osseous labyrinth capsule of the same animal. It has turned out that in normal headbearing the position of the semicircular canals deviates from the human vestibular apparatus. The semicircular canals are nearly vertical to each other, but in comparison to the human labyrinth they are shifted around the longitudinal axis of the utriculus caudal by ca. 30 degrees. In general the position of the vestibulo-cochlear organ is fixed to a great extent by the inclined course of the petrosal pyramid. This different position of the semicircular canals in man and animal is supposed to be due to the phylogenetic evolution and the adjustment to upright walk. Size and extension of the single semicircular canals are very different within the same animal. These differences in size indicate causalities of form and function. The relations in the build of the osseous labyrinth are extremely complicated. Compared to the other corporal regions the static parts of the petrosal pyramid are exceptional massive and of remarkable hard consistency. In the inner capsule of the ear there are three different bone strata to be seen. The characteristic lamel structure is most solid nearest to the semicircular canals. The fetal characteristics in the maturing process of the petrosal bone were traced a long while in the postnatal life. The typical building of the labyrinthal bone structures contributes to the mechanical stability of the capsule.  相似文献   

10.
Organizational structures intrinsic to nervous systems can be more precisely analyzed and compared with other logical structures once they are expressed in mathematical languages. A standard mathematical language for expressing organizational structure is that of groups. Groups are especially well suited to organizational structures involving multiple symmetries such as spatial structures. The vestibular system is widely believed to mediate many neural functions involving spatial structure. The vestibular nuclei receive direct projections from the vestibular endorgans, the semicircular canals and the otolith organs. The near-orthogonal directions of the semicircular canals are embedded in the bone. However, those canal directions are external to the nervous system. This study addresses the way the three-dimensional space of rotations is also embedded in the group structure of neural connectivity. Although we know a great deal about physical rotation, it is not clear that nervous systems organize rotations in the same way as physicists do. It would make sense for nervous systems to organize rotations in such a way as to provide physiologically relevant information about performing or compensating for rotations. The vestibular nuclei, which might be expected to display an organization that binds rotations into a rotation space, do not give a clear organization. This may be because of the multiplicity of spatial functions performed by the vestibular nuclei; rather than one spatial organization, the vestibular nuclei are likely to accommodate multiple, related spatial organizations. This study evaluates one particular data set from the literature that specifies the organization of the disynaptic canal-neck projection; other projections and neuronal populations may have other intrinsic organizations. The data are evaluated directly for their symmetry group. In the symmetry group, the vertebrate requirement that physiology have a right and left is found to be satisfied in two ways: (i) by a hexagonal symmetry arising from the right-left doubling of front and back, (ii) along with separate organizations on the two sides that may be required to operate independently to some extent. The eight observed muscle innervation patterns from the data are the complete set of possible combinations of inhibitory/excitatory polarities from three canal pairs. These eight innervation patterns are organized as the vertices of a cube. The two types of side muscles provide the vertical direction. As the head rotates in physical space, the cube rotates in sensorimotor space. Like the canal-neck projection, otolith projections and proprioceptive afferents contact both the vestibular nuclei and neck motoneurons. They may have a similar organization, perhaps with extensions of the same pattern. Otherwise, like a checkerboard superimposed over a paisley, they will form an overlapping organization with the disynaptic canal-neck projection. Further research is required to determine whether the sensorimotor spatial structure of the canal-neck projection is widespread in nervous systems or whether there are several complete structures that are fragmented and reintegrated.  相似文献   

11.
The ability to orient and navigate through the terrestrial environment represents a computational challenge common to all vertebrates. It arises because motion sensors in the inner ear, the otolith organs, and the semicircular canals transduce self-motion in an egocentric reference frame. As a result, vestibular afferent information reaching the brain is inappropriate for coding our own motion and orientation relative to the outside world. Here we show that cerebellar cortical neuron activity in vermal lobules 9 and 10 reflects the critical computations of transforming head-centered vestibular afferent information into earth-referenced self-motion and spatial orientation signals. Unlike vestibular and deep cerebellar nuclei neurons, where a mixture of responses was observed, Purkinje cells represent a homogeneous population that encodes inertial motion. They carry the earth-horizontal component of a spatially transformed and temporally integrated rotation signal from the semicircular canals, which is critical for computing head attitude, thus isolating inertial linear accelerations during navigation.  相似文献   

12.
Behavioral responses and eye movements of fish during linear acceleration were reviewed. It is known that displacement of otoliths in the inner ear leads to body movements and/or eye movements. On the ground, the utriculus of the vestibular system is stimulated by otolith displacement caused by gravitational and inertial forces during horizontal acceleration of whole body. When the acceleration is imposed on the fish's longitudinal axis, the fish showed nose-down and nose-up posture for tailward and noseward displacement of otolith respectively. These responses were understood that the fish aligned his longitudinal body axis in a plane perpendicular to the direction of resultant force vector acting on the otoliths. When the acceleration was sideward, the fish rolled around his longitudinal body axis so that his back was tilted against the direction in which the inertial force acted on the otoliths. Linear acceleration applied to fish's longitudinal body axis evoked torsional eye movement. Direction of torsion coincided with the direction of acceleration, which compensate the change of resultant force vector produced by linear acceleration and gravity. Torsional movement of left and right eye coordinated with each other. In normal fish, both sinusoidal and rectangular acceleration of 0.1G could evoke clear eye torsion. Though the amplitude of response increased with increasing magnitude of acceleration up to 0.5 G, the torsion angle did not fully compensate the angle calculated from gravity and linear acceleration. Removal of the otolith on one side reduced the response amplitude of both eyes. The torsion angle evoked by rectangular acceleration was smaller than that evoked by sinusoidal acceleration in both normal and unilaterally labyrinthectomized fish. These results suggest that eye torsion of fish include both static and dynamic components.  相似文献   

13.
Galvanic vestibular stimulation (GVS) is a simple, safe, and specific way to elicit vestibular reflexes. Yet, despite a long history, it has only recently found popularity as a research tool and is rarely used clinically. The obstacle to advancing and exploiting GVS is that we cannot interpret the evoked responses with certainty because we do not understand how the stimulus acts as an input to the system. This paper examines the electrophysiology and anatomy of the vestibular organs and the effects of GVS on human balance control and develops a model that explains the observed balance responses. These responses are large and highly organized over all body segments and adapt to postural and balance requirements. To achieve this, neurons in the vestibular nuclei receive convergent signals from all vestibular receptors and somatosensory and cortical inputs. GVS sway responses are affected by other sources of information about balance but can appear as the sum of otolithic and semicircular canal responses. Electrophysiological studies showing similar activation of primary afferents from the otolith organs and canals and their convergence in the vestibular nuclei support this. On the basis of the morphology of the cristae and the alignment of the semicircular canals in the skull, rotational vectors calculated for every mode of GVS agree with the observed sway. However, vector summation of signals from all utricular afferents does not explain the observed sway. Thus we propose the hypothesis that the otolithic component of the balance response originates from only the pars medialis of the utricular macula.  相似文献   

14.
Our inner ear is equipped with a set of linear accelerometers, the otolith organs, that sense the inertial accelerations experienced during self-motion. However, as Einstein pointed out nearly a century ago, this signal would by itself be insufficient to detect our real movement, because gravity, another form of linear acceleration, and self-motion are sensed identically by otolith afferents. To deal with this ambiguity, it was proposed that neural populations in the pons and midline cerebellum compute an independent, internal estimate of gravity using signals arising from the vestibular rotation sensors, the semicircular canals. This hypothesis, regarding a causal relationship between firing rates and postulated sensory contributions to inertial motion estimation, has been directly tested here by recording neural activities before and after inactivation of the semicircular canals. We show that, unlike cells in normal animals, the gravity component of neural responses was nearly absent in canal-inactivated animals. We conclude that, through integration of temporally matched, multimodal information, neurons derive the mathematical signals predicted by the equations describing the physics of the outside world.  相似文献   

15.
The normal reaction of the cœlomic fluid in Patiria miniata and Asterias ochraceus is pH 7.6, and of the cæca, 6.7, compared with sea water at 8.3, all without salt error correction. A medium at pH 6.7–7.0 is optimum for the cæca for ciliary survival and digestion of protein, and is maintained by carbon dioxide production. The optimum pH found for carbon dioxide production is a true one for the effect of hydrogen ion concentration on the tissue. It does not represent an elimination gradient for carbon dioxide. Because the normal excised cæca maintain a definite hydrogen ion concentration and change their internal environment toward that as an optimum during life, there exists a regulatory process which is an important vital function.  相似文献   

16.
Fish can sense a wide variety of sounds by means of the otolith organs of the inner ear. Among the incompletely understood components of this process are the patterns of movement of the otoliths vis-à-vis fish head or whole-body movement. How complex are the motions? How does the otolith organ respond to sounds from different directions and frequencies? In the present work we examine the responses of a dense rigid scatterer (representing the otolith) suspended in an acoustic fluid to low-frequency planar progressive acoustic waves. A simple mechanical model, which predicts both translational and angular oscillation, is formulated. The responses of simple shapes (sphere and hemisphere) are analyzed with an acoustic finite element model. The hemispherical scatterer is found to oscillate both in the direction of the propagation of the progressive waves and also in the plane of the wavefront as a result of angular motion. The models predict that this characteristic will be shared by other irregularly-shaped scatterers, including fish otoliths, which could provide the fish hearing mechanisms with an additional component of oscillation and therefore one more source of acoustical cues.  相似文献   

17.
The vertebrate vestibular system detects linear (otolith organs) and angular (semicircular canals) acceleration. The function of the otolith system is twofold, 1: perception of linear acceleration of the head, and 2: assessment of the spatial orientation of the head relative to the vector of gravity. Because of the latter function, a change of gravity will affect the vestibular input which, in turn, may have a wide range of serious physiological effects, for instance on ocular reflexes. The function of the vestibulo-ocular reflex (VOR) is to stabilize the visual image on the retina. Measurement of this VOR provides a method to investigate the (processing within the) vestibular system. Discrimination between gravity and linear acceleration, caused by movement of the head, is not possible. Therefore, information from the otolith system must be constantly compared with additional information from other sensory systems in order to solve the inherent ambiguity between tilt and translation. In this processing, cues from the semicircular canals also play a role. During parabolic flight, experiments can be performed at altered gravity levels for brief periods of time. On earth, the only effective possibility to manipulate gravity for longer periods of time is a centrifuge. Together with experiments in weightlessness during orbital flight, these methods form useful tools to investigate the influence of gravity on physiology. In our laboratory, rats have been kept inside a centrifuge at 2.5 g during their entire life-span (i.e. including gestation).  相似文献   

18.
Linear acceleration-evoked cardiovascular responses in awake rats.   总被引:1,自引:0,他引:1  
It has been well documented that vestibular-mediated cardiovascular regulation plays an important role in maintaining stable blood pressure (BP) during postural changes. But the underlying neural mechanisms remain to be elucidated. In particular, because the vestibular stimulation employed in previous animal studies activated both semicircular canals and otolith organs, the contributions of the otolith system has not been studied selectively. The goal of the present study was to characterize cardiovascular responses to natural otolith stimulation in awake rats that were subjected to pure linear motion. In any of the four directions tested, transient linear motion produced a short-latency ( approximately 520 ms) increase in mean BP with a peak of 8.27 +/- 0.66 mmHg and was followed by a decrease in BP. There was an initial small biphasic response in heart rate (HR) that was followed by a longer duration increase. The short-latency increase in BP was absent in rats that were pentobarbital sodium anesthetized or that were labyrinthectomized bilaterally, but it was unaffected by baroreceptor denervation, indicating that it was of otolith origin. The increase in BP was linear acceleration intensity dependent and was not affected by absence of visual cues. Furthermore, the BP response was attenuated by inactivation of the medial and inferior vestibular nuclei by microinjections of muscimol, indicating that the otolith-driven cardiovascular responses are mediated by the neurons in these areas. These results not only demonstrate the otolith specific influences on the cardiovascular system but also they establish the first rodent model for examining the neural mechanisms underlying the otolith-mediated cardiovascular regulation.  相似文献   

19.
The semicircular canals of the labyrinth of vertebrates provide one way of motion detection in three-dimensional space. The fully developed form of the vertebrate labyrinth consists of six semicircular canals, three on each side of the head, whose spatial arrangement (vertical canals are placed diagonally in the head, horizontal canals are oriented earth horizontally) follows three interconnected principles: 1) bilateral symmetry, 2) push-pull operational mode, and 3) mutual orthogonality. Other sensory and motor systems related to vestibular reflexes, such as the extraocular muscles or the "optokinetic" coordinate axes encoded in the activity of the visually driven cells of the accessory optic system, share the same geometrical framework. This framework is also reflected in the anatomical networks mediating compensatory eye movements, linking each of the semicircular canals to a particular set of extraocular muscles (so-called principal vestibuloocular reflex connections to yoke muscles). These classical vestibulo-oculomotor relationships have been verified at many levels of the vertebrate hierarchy, including lateral- and frontal-eyed animals. The particular spatial orientation of the semicircular canals requires further comment and phylogenetic evaluation. The spatial arrangement of the vertical canals is already present in fossil ostracoderms, and is also exemplified in lampreys, the modern forms of once abundant agnathan species that populated the Silurian and Devonian oceans. The lampreys and ostracoderms lack horizontal canals, which appear later in all descendent vertebrates. The fully developed vertebrate labyrinth with its six semicircular canals displays distinct differences that are obvious when comparing distant taxa (e.g. elasmobranchs versus other vertebrates). Whereas the common crus of the semicircular canals in teleosts through mammals is formed between the anterior and the posterior semicircular canal, it occurs between the anterior and the horizontal canal in elasmobranchs. However, despite this morphological difference, these two vertebrate labyrinth prototypes constitute a functionally identical solution. A similar analysis holds for certain invertebrate species (crab, octopus, squid), which display an even wider variety in the physical expressions of movement detection systems when compared to vertebrates. Although the physical expressions of motion detection systems differ in the animal kingdom, the functional solutions (providing the best signal-to-noise ratio) with adherence to bilateral symmetry, push-pull operational mode, and mutual orthogonality are identical.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
用鳞片和耳石鉴定鲫年龄的比较研究   总被引:21,自引:2,他引:21  
两观测者独立观测了分别采自洪湖的175尾和洞庭湖的168尾鲫样本的鲜片和耳石,结果显示鳞片适于鉴定年龄组成简单、生长较快的洞庭湖鲫种群的年龄,两观测者年轮读数的总吻合率可达90.5%,与耳石上年轮读数的吻合率也可高达91.7%;但用鳞片鉴定年龄结构复杂、生长缓慢的洪湖鲫种群年龄,两观测者总吻合率只有50.9%,各龄组吻合率随年龄上升而迅速下降。与耳石上年轮读数总吻合率也仅为56.6A%,存在比耳石低估高龄个体年龄的问题,用耳石鉴定鲫年龄具有易于识别、精确度高的优点,用之鉴定洪湖和洞庭湖鲫种群年龄,两观测者年轮读数的总吻合率都很高,分别为92.7%和97.0%,且随年龄上升,依然可保持较高的精确度,对洪湖鲫种群应用耳石为宜。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号