首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutations in the human ChlR1 (DDX11) gene are associated with a unique genetic disorder known as Warsaw breakage syndrome characterized by cellular defects in genome maintenance. The DNA triplex helix structures that form by Hoogsteen or reverse Hoogsteen hydrogen bonding are examples of alternate DNA structures that can be a source of genomic instability. In this study, we have examined the ability of human ChlR1 helicase to destabilize DNA triplexes. Biochemical studies demonstrated that ChlR1 efficiently melted both intermolecular and intramolecular DNA triplex substrates in an ATP-dependent manner. Compared with other substrates such as replication fork and G-quadruplex DNA, triplex DNA was a preferred substrate for ChlR1. Also, compared with FANCJ, a helicase of the same family, the triplex resolving activity of ChlR1 is unique. On the other hand, the mutant protein from a Warsaw breakage syndrome patient failed to unwind these triplexes. A previously characterized triplex DNA-specific antibody (Jel 466) bound triplex DNA structures and inhibited ChlR1 unwinding activity. Moreover, cellular assays demonstrated that there were increased triplex DNA content and double-stranded breaks in ChlR1-depleted cells, but not in FANCJ−/− cells, when cells were treated with a triplex stabilizing compound benzoquinoquinoxaline, suggesting that ChlR1 melting of triple-helix structures is distinctive and physiologically important to defend genome integrity. On the basis of our results, we conclude that the abundance of ChlR1 known to exist in vivo is likely to be a strong deterrent to the stability of triplexes that can potentially form in the human genome.  相似文献   

2.
The triplex form of DNA is of interest because of a possible biological role as well as the potential therapeutic use of this structure. In this paper the stabilizing effects of two intercalating drugs, ethidium and the quinoxaline derivative 9-OH-B220, on DNA triplexes have been studied by thermal denaturation measurements. The corresponding duplex structures of the DNA triplex systems investigated are either A-tract or normal B-DNA. The largest increases in the triplex melting temperatures caused by the intercalators were found for sequences having A-tract duplex structures. Inserting a single base pair with an N2-amino group in the minor groove, e.g. a G-C pair, breaks up the A-tract duplex structure and also reduces the stabilizing effect of the drugs on the triplex melting temperatures. The large drug-induced increase in triplex melting temperature for complexes having an original duplex A-tract structure is correlated with a low initial melting point of the triplex, not with the triplex being unusually stable in the presence of the drug. Hence, we conclude that the large thermal stabilizing effect exhibited by ethidium and 9-OH-B220 on dTn.dAn-dTn triplexes is partly caused by the intercalators breaking up the intrinsic A-tract structure of the underlying duplex.  相似文献   

3.
Triplex DNA has become one of the most useful recognition motifs in the design of new molecular biology tools, therapeutic agents and sophisticated DNA‐based nanomaterials because of its direct recognition of natural double‐stranded DNA. In this paper, we developed a sensitive and microscale method to study the formation and stability characterization of triplex DNA using fluorescence correlation spectroscopy (FCS). The principle of this method is mainly based on the excellent capacity of FCS for sensitively distinguishing between free single‐strand DNA (ssDNA) fluorescent probes and fluorescent probe–double‐strand DNA (dsDNA) hybridized complexes. First, we systematically investigated the experimental conditions of triplex DNA formation. Then, we evaluated the equilibrium association constants (Ka) under different ssDNA probe lengths, composition and pH. Finally, we used FCS to measure the hybridization fraction of a 20‐mer perfectly matched ssDNA probe and three single‐base mismatched ssDNA probes with 146‐mer dsDNA. Our data illustrated that FCS is a useful tool for the direct determination of the thermodynamic parameters of triplex DNA formation and discrimination of a single‐base mismatch of triplex DNA without denaturation. Compared with current methods, our method is characterized by high sensitivity, good universality and small sample and reagent requirements. More importantly, our method has the potential to become a platform for triplex DNA research in vitro. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
A synthetic DNA triple helix sequence was formed by annealing a pyrimidinic 21 mer single strand sequence onto the complementary purinic sequence centred on a 27 mer duplex DNA. Melting of the third strand was monitored by UV spectrophotometry in the temperature range 10-90 degrees C. The T(m) of the triplex, 37 degrees C, was well separated from the onset of duplex melting. When the same triple helix was formed on the duplex bearing one nick in the center of the pyrimidinic sequence the T(m) of the triplex was shifted to approximately 32 degrees C and overlapped the melting of the duplex. We have used fluorescence polarization anisotropy (FPA) measurements of ethidium bromide (EB) intercalated in duplex and triplex samples to determine the hydrodynamic parameters in the temperature range 10-40 degrees C. The fluorescence lifetime of EB in the samples of double and triple stranded DNA is the same (21.3 +/- 0.5 ns) at 20 degrees C, indicating that the geometries of the intercalation sites are similar. The values for the hydration radii of the duplex, normal triplex, and nicked triplex samples were 10.7 +/- 0.2, 12.2 +/- 0.2, and 12.0 +/- 0.2 A. FPA measurements on normal triplex DNA as a function of temperature gave a melting profile very similar to that derived by UV absorption spectroscopy. For the triplex carrying a nick, the melting curve obtained using FPA showed a clear shift compared with that obtained for the normal triplex sample. The torsional rigidity of the triplex forms was found to be higher than that of the duplex form.  相似文献   

5.
A Debin  C Malvy    F Svinarchuk 《Nucleic acids research》1997,25(10):1965-1974
In a previous work we showed that a short triple helix-forming oligonucleotide (TFO) targeted to the murine c-pim-1 proto-oncogene promoter gives a very stable triple helix under physiological conditions in vitro . Moreover, this triplex was stable inside cells when preformed in vitro . However, we failed to detect triplex formation for this sequence inside cells in DMS footprinting studies. In the present work, in order to determine whether our previous in vivo results are limited to this particular short triplex or can be generalized to other purine.(purine/pyrimidine) triplexes, we have tested three other DNA targets already described in the literature. All these purine.(purine/pyrimidine) triplexes are specific and stable at high temperature in vitro . In vivo studies have shown that the preformed triplexes are stable inside cells for at least 3 days. This clearly demonstrates that intracellular conditions are favourable for the existence of purine. (purine/pyrimidine) triplexes. The triplexes can also be formed in nuclei. However, for all the sequences tested, we were unable to detect any triple helix formation in vivo in intact cells by DMS footprinting. Our results show that neither (i) chromatinization of the DNA target, (ii) intracellular K+concentration nor (iii) cytoplasmic versus nuclear separation of the TFO and DNA target are responsible for the intracellular arrest of triplex formation. We suggest the existence of a cellular mechanism, based on a compartmentalization of TFOs and/or TFO trapping, which separates oligonucleotides from the DNA target. Further work is needed to find oligonucleotide derivatives and means for their delivery to overcome the problem of triplex formation inside cells.  相似文献   

6.
Optimisation of DNA triplex stability is of fundamental importance in the anti-gene strategy. In the present work, thermal denaturation studies by UV-spectrophotometry and structural and dynamical characterizations by NMR spectroscopy have been used systematically to investigate the effects on triplex stability of isolated insertions of different base triplets into an otherwise homogeneous 15-mer dT x dA-dT oligo-triplex. It is found that insertion of a single central C(+) x G-C or T x D-T triplet (D=2,6-diaminopurine) leads to a pronounced stabilization (up to 20 deg. C if the cytosine base is C5 methylated) at acidic as well as neutral pH. To a smaller degree, this is the case also for a C(+) x I-C triplet insertion.Using imino proton exchange measurements, it is shown that insertion of a DT base-pair in the underlying duplex perturbs the intrinsic A-tract structure in the same way as has been shown for a GC insert. We propose that the intrinsic properties of A-tract duplex DNA (e. g. high propeller twist and rigidity) are unfavourable for triplex formation and that GC- or DT-inserts stabilize the triplex by interfering with the A-tract features of the underlying duplex. The C(+) x I-C triplet without the N2 amino group in the minor groove is readily accommodated within the typical, highly propeller-twisted A-tract structure. This might be related to its smaller effect on the stability of the corresponding triplex.These results may be valuable for understanding DNA triplex formation in vivo as well as for the design of efficient triplex-forming oligonucleotides and in choosing suitable target sequences in the anti-gene strategy.  相似文献   

7.
8.
DNA triple helices: biological consequences and therapeutic potential   总被引:6,自引:0,他引:6  
Jain A  Wang G  Vasquez KM 《Biochimie》2008,90(8):1117-1130
  相似文献   

9.
Intramolecular triplex formation of the purine.purine.pyrimidine type   总被引:4,自引:0,他引:4  
F M Chen 《Biochemistry》1991,30(18):4472-4479
Six octadecamers with hairpin motifs have been synthesized and investigated for possible intramolecular triplex formation. Electrophoretic, hypochromic, and CD evidence suggest that d(CCCCTTTGGGGTTTGGGG) and d(GGGGTTTGGGGTTTCCCC) can form G.G.C intramolecular triplexes via double hairpin formation in neutral solutions, presumably with the terminal G tract folding back along the groove of the hairpin duplex. In contrast, d(GGGGTTTCCCCTTTGGGG) and the three corresponding 18-mers containing one G and two C tracts each forms a single hairpin duplex with a dangling single strand. The design of the sequences has led to the conclusion that the two G tracts are antiparallel to each other in such a triplex. Magnesium chloride titrations indicate that Mg2+ is not essential for such an intramolecular triplex formation. The main advantage of our constructs when compared to the intermolecular triplex formation is that the shorter triplex stem can be formed in a much lower DNA concentration. The merit of G.G.C triplex, in contrast to that of C+.G.C, lies in the fact that acidic condition is not required in its formation and will, thus, greatly expand our repertoire in the triplex strategy for the recognition and cleavage of duplex DNA. Spectral binding studies with actinomycin D (ACTD) and chromomycin A3 (CHR) as well as fluorescence lifetime measurements with ethidium bromide (EB) suggest that although hairpin duplexes bind these drugs quite well, the intramolecular triplexes bind poorly. Interestingly, the binding densities for the strong-binding hairpins obtained from Scatchard plots are about one ACTD molecule per oligomeric strand, whereas more than two drug molecules are found in the case of CHR, in agreement with the recent NMR studies indicating that CHR binds to DNA in the form of a dimer.  相似文献   

10.
How eukaryotic genomes encode the folding of DNA into nucleosomes and how this intrinsic organization of chromatin guides biological function are questions of wide interest. The physical basis of nucleosome positioning lies in the sequence-dependent propensity of DNA to adopt the tightly bent configuration imposed by the binding of the histone proteins. Traditionally, only DNA bending and twisting deformations are considered, while the effects of the lateral displacements of adjacent base pairs are neglected. We demonstrate, however, that these displacements have a much more important structural role than ever imagined. Specifically, the lateral Slide deformations observed at sites of local anisotropic bending of DNA define its superhelical trajectory in chromatin. Furthermore, the computed cost of deforming DNA on the nucleosome is sequence-specific: in optimally positioned sequences the most easily deformed base-pair steps (CA:TG and TA) occur at sites of large positive Slide and negative Roll (where the DNA bends into the minor groove). These conclusions rest upon a treatment of DNA that goes beyond the conventional ribbon model, incorporating all essential degrees of freedom of "real" duplexes in the estimation of DNA deformation energies. Indeed, only after lateral Slide displacements are considered are we able to account for the sequence-specific folding of DNA found in nucleosome structures. The close correspondence between the predicted and observed nucleosome locations demonstrates the potential advantage of our "structural" approach in the computer mapping of nucleosome positioning.  相似文献   

11.
介绍了碱基组成、碱基修饰或替代、DNA骨架的修饰、DNA配体的结合及反应体系中的盐离子和pH值等因素对三链DNA稳定性的影响。对三链DNA稳定性研究中应注意的几个问题也作了讨论。  相似文献   

12.
A DNA triplex is formed through binding of a third strand to the major groove of a duplex. Due to the high charge density of a DNA triplex, metal ions are critical for its stability. We recently developed the tightly bound ion (TBI) model for ion-nucleic acids interactions. The model accounts for the potential correlation and fluctuations of the ion distribution. We now apply the TBI model to analyze the ion dependence of the thermodynamic stability for DNA triplexes. We focus on two experimentally studied systems: a 24-base DNA triplex and a pair of interacting 14-base triplexes. Our theoretical calculations for the number of bound ions indicate that the TBI model provides improved predictions for the number of bound ions than the classical Poisson-Boltzmann (PB) equation. The improvement is more significant for a triplex, which has a higher charge density than a duplex. This is possibly due to the higher ion concentration around the triplex and hence a stronger ion correlation effect for a triplex. In addition, our analysis for the free energy landscape for a pair of 14-mer triplexes immersed in an ionic solution shows that divalent ions could induce an attractive force between the triplexes. Furthermore, we investigate how the protonated cytosines in the triplexes affect the stability of the triplex helices.  相似文献   

13.
14.
15.
Structural understanding of DNA triplexes is grossly inadequate despite their efficacy as therapeutic agents. Lack of structural similarity (isomorphism) of base triplets that figure in different DNA triplexes brings in an added complexity. Recently, we have shown that the residual twist (Deltat degrees ) and the radial difference (Deltar A) adequately define base triplet nonisomorphism in structural terms and allow assessment of their role in conferring stability as well as sequence-dependent structural variations in DNA triplexes. To further corroborate these, molecular dynamics (MD) simulations are carried out on DNA triplexes comprising nonisomorphic G* GC and A* AT base triplets under different sequential contexts. Base triplet nonisomorphism between G* GC and A* AT triplets is dominated by Deltat degrees (9.8 degrees ), in view of small Deltar (0.2 A), and is in contrast to G* GC and T* AT triplets where both Deltat degrees (10.6 degrees ) and Deltar (1.1A) are prominent. Results show that Deltat degrees alone enforces mechanistic influence on the triplex-forming purine strand so as to favor a zigzag conformation with alternating conformational features that include high (40 degrees ) and low (20 degrees ) helical twists, and high anti(G) and anti(A) glycosyl conformation. Higher thermal stability of this triplex compared to that formed with G* GC and T* AT triplets can be traced to enhanced base-stacking and counterion interactions. Surprisingly, it is found for the first time that the presence of a nonisomorphic G* GC or A* AT base triplet interrupting an otherwise mini A* AT or G* GC isomorphic triplex can induce a bend/curvature in a DNA triplex. These observations should prove useful in the design of triplex-forming oligonucleotides and in the understanding the binding affinities of this triplex with proteins.  相似文献   

16.
Suicidal nucleotide sequences for DNA polymerization.   总被引:4,自引:0,他引:4       下载免费PDF全文
G M Samadashwily  A Dayn    S M Mirkin 《The EMBO journal》1993,12(13):4975-4983
Studying the activity of T7 DNA polymerase (Sequenase) on open circular DNAs, we observed virtually complete termination within potential triplex-forming sequences. Mutations destroying the triplex potential of the sequences prevented termination, while compensatory mutations restoring triplex potential restored it. We hypothesize that strand displacement during DNA polymerization of double-helical templates brings three DNA strands (duplex DNA downstream of the polymerase plus a displaced overhang) into close proximity, provoking triplex formation, which in turn prevents further DNA synthesis. Supporting this idea, we found that Sequenase is unable to propagate through short triple-helical stretches within single-stranded DNA templates. Thus, DNA polymerase, by inducing triplex formation at specific sequences in front of the replication fork, causes self-termination. Possible biological implications of such 'conformational suicide' are discussed. Our data also provide a novel way to target DNA polymerases at specific sequences using triplex-forming oligonucleotides.  相似文献   

17.
Mukherjee A  Vasquez KM 《Biochimie》2011,93(8):1197-1208
Triplex-forming oligonucleotides (TFOs) can bind to the major groove of homopurine-homopyrimidine stretches of double-stranded DNA in a sequence-specific manner through Hoogsteen hydrogen bonding to form DNA triplexes. TFOs by themselves or conjugated to reactive molecules can be used to direct sequence-specific DNA damage, which in turn results in the induction of several DNA metabolic activities. Triplex technology is highly utilized as a tool to study gene regulation, molecular mechanisms of DNA repair, recombination, and mutagenesis. In addition, TFO targeting of specific genes has been exploited in the development of therapeutic strategies to modulate DNA structure and function. In this review, we discuss advances made in studies of DNA damage, DNA repair, recombination, and mutagenesis by using triplex technology to target specific DNA sequences.  相似文献   

18.
19.
Effective sequence-specific recognition of duplex DNA is possible by triplex formation with natural oligonucleotides via Hoogsteen H-bonding. However, triplex formation is in practice limited to pyrimidine oligonucleotides that bind duplex A-T or G-C base pair DNA sequences specifically at homopurine sites in the major groove as T·A-T and C+ ·G-C triplets. Here we report the successful modelling of novel unnatural nucleosides that recognize the C-G DNA base pair by Hoogsteen-like major groove interaction. These novel Hoogsteen nucleotides are examined within model A-type and B-type conformation triplex structures since the DNA triplex can be considered to incorporate A-type and/or B-type configurational properties. Using the same deoxyribose-phosphodiester and base-deoxyribose dihedral angle configuration, a triplet comprised of a C-G base pair and the novel Hoogsteen nucleotide, Y2, replaces the central T·A-T triplet in the triplex. The presence of any structural or energetic perturbations due to the central triplet in the energy-minimized triplex is assessed with respect to the unmodified energy minimized (T·A-T)11 starting structures. Incorporation of this novel triplet into both A-type and B-type natural triplex structures provokes minimal change in the configuration of the central and adjacent triplets.  相似文献   

20.
Polycation comb-type copolymer that is composed of polylysine backbone and dextran side chains (PLL-g-Dex) has previously been shown to stabilize duplex and triplex DNAs quite effectively. In this study, we have conjugated PLL-g-Dex with oligonucleotides (ODN) aiming to increase the triplex stabilizing efficiency of the copolymer. Here we have demonstrated that the copolymer-TFO conjugates selectively stabilize triplex DNA. Also its potential to form triplex DNA was found to be greater than PLL-g-Dex/ODN mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号