首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
ABSTRACT The growth of cell numbers in a normal embryonic population of ncural retinal cells is described. the numbers were estimated from a time shortly after the neural retina first becomes recognizable to a time when numbers of retinal cells have become steady. Cell numbers were estimated in preparations of an entire neural retina dispersed into a suspension of single nuclei which were then counted in a Coulter counter. the growth curve of the In numbers of cells has three phases of growth: an exponential phase during which there is steady-state exponential growth, a differentiative phase during which cell proliferation ceases and an end phase when no further change in cell numbers can be detected. the variances of the In numbers of cells were highest during the exponential phase. the variances decreased during the differentiative phase and were at their lowest during the end phase. For variances to decrease requires mechanisms which control the final numbers of cells in the neural retina very precisely. the implications of mechanisms which operate by controlling cell lineages are explored.  相似文献   

2.
Growth curves of the retinal cell population of embryonic chicks were fitted by a branching-process model of cell population growth, thereby estimating the proliferative ratios and mean cell-cycle times of the generations of cell cycles that underlie retinal growth. The proliferative ratio determines the proportion of cells that divides in the next generation, so the numbers of proliferative and non-proliferative cells in each generation of cell cycles were obtained. The mean cell-cycle times determine the times over which the generations are extant. Assuming growth starts from one cell in generation 0, the proliferative cells reach 3.6 × 106 and the non-proliferative cells reach 1.1 × 106 by generation 23. The next four generations increase the proliferative cell numbers to 13.9 × 106 and produce 20.1 × 106 non-proliferative cells. In the next five generations in the end phase of growth, non-proliferative cells are produced in large numbers at an average of 13.9 × 106 cells per generation as the retinal lineages are completed. The retinal cell population reaches a maximum estimated here at 98.2 × 106 cells. The mean cell-cycle time estimates range between 6.8 and 10.1 h in generations before the end phase of growth and between 10.6 and 17.2 h in generations in the end phase. The retinal cell population growth is limited by the depletion of the proliferative cell population that the production of non-proliferative cells entails. The proliferative ratios and the cell-cycle-time distribution parameters are the likely determinants of retinal growth rates. The results are discussed in relation to other results of spatial and temporal patterns of the cessation of cell cycling in the embryonic chick retina.  相似文献   

3.
There are several common features between the pineal organ and the lateral eye in their developmental and evolutionary aspects. The avian pineal is a photoendocrine organ that originates from the diencephalon roof and represents a transitional type between the photosensory organ of lower vertebrates and the endocrine gland of mammals. Previous cell culture studies have shown that embryonic avian pineal cells retain a wide spectrum of differentiative capacities, although little is known about the mechanisms involved in their fate determination. In the present study, we investigated the effects of various cell growth factors on the differentiation of photoreceptor and neural cell types using pineal cell cultures from quail embryos. The results show that IGF-1 promotes differentiation of rhodopsin-immunoreactive cells, but had no effect on neural cell differentiation. Simultaneous administration of EGF and IGF-1 further enhanced differentiation of rhodopsin-immunoreactive cells, although the mechanism of the synergistic effect is unknown. FGF-1 did not stimulate proliferation of neural progenitor cells, but intensively promoted and maintained expression of a neural cell phenotype. FGF-1 appeared to lead to the conversion from an epithelial (endocrinal) to a neuronal type. It also enhanced phenotypic expression of retinal ganglion cell markers but rather suppressed expression of an amacrine cell marker. These results indicate that growth factors are important regulatory cues for pineal cell differentiation and suggest that they play roles in determining the fate of the pineal organ and the eye. It can be speculated that the differences in environmental cues between the retina and pineal may result in the transition of the pineal primordium from a potentially ocular (retinal) organ to a photoendocrine organ.  相似文献   

4.
Amongst the many cell types that differentiate from migratory neural crest cells are the Schwann cells of the peripheral nervous system. While it has been demonstrated that Schwann cells will not fully differentiate unless in contact with neurons, the factors that cause neural crest cells to enter the differentiative pathway that leads to Schwann cells are unknown. In a previous paper (Development 105: 251, 1989), we have demonstrated that a proportion of morphologically undifferentiated neural crest cells express the Schwann cell markers 217c and NGF receptor, and later, as they acquire the bipolar morphology typical of Schwann cells in culture, express S-100 and laminin. In the present study, we have grown axons from embryonic retina on neural crest cultures to see whether this has an effect on the differentiation of neural crest cells into Schwann cells. After 4 to 6 days of co-culture, many more cells had acquired bipolar morphology and S-100 staining than in controls with no retinal explant, and most of these cells were within 200 microns of an axon, though not necessarily in contact with axons. However, the number of cells expressing the earliest Schwann cell markers 217c and NGF receptor was not affected by the presence of axons. We conclude that axons produce a factor, which is probably diffusible, and which makes immature Schwann cells differentiate. The factor does not, however, influence the entry of neural crest cells into the earliest stages of the Schwann cell differentiative pathway.  相似文献   

5.
The dynamics of a cell population whose numbers are growing exponentially have been described well by a mathematical model based on the theory of age-dependent branching processes. Such a model, however, does not cover the period following exponential growth when cell differentiation curtails population size. This paper offers an extension to the branching process model to remedy this deficiency. The extended model is ideal for describing embryonic growth; its use is illustrated with data from embryonic retina. The model offers a better computational framework for the interpretation of a variety of data (growth curves of cell numbers, DNA histograms, thymidine labelling indices, FLM curves, BUdR-labelled mitoses curves) because age-distributions can be calculated at any stage of development, not just during exponential growth. Proportions of cells in the various phases of the cell cycle can be computed as growth slows. Such calculations show the gradual transition from a population dominated by cells which are young with respect to cell cycle age to one dominated by those which are old, and the effects such biases have on the proportions of cells in each phase.  相似文献   

6.
Pearson RA  Dale N  Llaudet E  Mobbs P 《Neuron》2005,46(5):731-744
The retinal pigment epithelium (RPE) plays an essential role in the normal development of the underlying neural retina, but the mechanisms by which this regulation occurs are largely unknown. Ca2+ transients, induced by the neurotransmitter ATP acting on purinergic receptors, both increase proliferation and stimulate DNA synthesis in neural retinal progenitor cells. Here, we show that the RPE regulates proliferation in the underlying neural retina by the release of a soluble factor and identify that factor as ATP. Further, we show that this ATP is released by efflux through gap junction connexin 43 hemichannels, the opening of which is evoked by spontaneous elevations of Ca2+ in trigger cells in the RPE. This release mechanism is localized within the RPE cells to the membranes facing the neural retina, a location ideally positioned to influence neural retinal development. ATP released from RPE hemichannels speeds both cell division and proliferation in the neural retina.  相似文献   

7.
Our previous studies of the role of cell adhesion in retinal development have focused on the expression and function of N-cadherin, the predominant calcium-dependent intercellular adhesion protein of neural tissues. During the course of retinal development, N-cadherin expression undergoes significant qualitative and quantitative changes in its pattern of expression, most prominently a sharp down-regulation of expression throughout most of the retina. The present studies were directed at investigating the epigenetic mechanisms that could mediate this loss of N-cadherin from the retina. Using an in vitro intact retinal organ culture system, results were obtained which suggest that insulin enhances the down-regulation of N-cadherin expression in a protein-synthesis-dependent fashion. Furthermore, the metalloprotease inhibitor 1,10-phenanthroline inhibits the loss of N-cadherin from the retina. While N-cadherin is down-regulated in organ culture, other cell adhesion molecules, which are not down-regulated in vivo, are also not down-regulated in organ culture. The defined organ culture medium conditioned by the retina accumulates both a soluble 90 x 10(3) M(r) N-terminal fragment of N-cadherin as well as a number of secreted proteases. Both of these components are also shown to be present in vivo in the vitreous humor. Northern blot analysis indicates a single mRNA encoding N-cadherin in the retina and no evidence for a second message that could encode the 90 x 10(3) M(r) fragment. However, the amount of N-cadherin mRNA detectable on northern blots decreases during development. The results reported here suggest that the down-regulation of N-cadherin that occurs during retinal development is possibly mediated by multiple mechanisms, which include turnover at the cell surface mediated by endogenous proteolysis, reduced levels of N-cadherin mRNA and modulation by growth factors.  相似文献   

8.
Diabetes is associated with increased neural damage after transient cerebral ischemia. Recently, leukocytes, which are thought to play a central role in ischemia-reperfusion injury, have been suggested to be involved in exacerbated damage after transient ischemia in diabetic animals. The present study was designed to clarify whether the anticipated worse outcome after transient cerebral ischemia in diabetic animals was due to augmented leukocyte-mediated neural injury. Using rats with streptozotocin-induced diabetes of 4-wk duration, we investigated leukocyte-endothelial cell interactions during reperfusion after a transient 60-min period of retinal ischemia. Unexpectedly, postischemic diabetic retina showed no active leukocyte-endothelial cell interactions during reperfusion. The maximal numbers of rolling and accumulating leukocytes in diabetic retina were reduced by 73.6 and 41.2%, respectively, compared with those in nondiabetic rats. In addition, neither preischemic insulin treatment of diabetic rats nor preischemic glucose infusion of nondiabetic rats significantly influenced leukocyte-endothelial cell interactions during reperfusion. The present study demonstrated that high blood glucose concentration before induction of ischemia did not exacerbate leukocyte involvement in the postischemic retinal injury. Furthermore, diabetic retina showed suppressed leukocyte-endothelial cells interactions after transient ischemia, perhaps due to an adaptive mechanism that developed during the period of induced diabetes.  相似文献   

9.
Neurotrophins induce neural cell survival and differentiation during retinal development and regeneration through the high-affinity tyrosine kinase (Trk) receptors. On the other hand, nerve growth factor (NGF) binding to the low-affinity neurotrophin receptor p75 (p75(NTR)) might induce programmed cell death (PCD) in the early phase of retinal development. In the present study, we examined the retinal cell types that experience p75(NTR)-induced PCD and identify them to be postmitotic retinal ganglion cells (RGCs). However, retinal morphology, RGC number, and BrdU-positive cell number in p75(NTR) knockout (KO) mouse were normal after embryonic day 15 (E15). In chick retina, migratory RGCs express p75(NTR), whereas layered RGCs express the high-affinity NGF receptor TrkA, which may switch the pro-apoptotic signaling of p75(NTR) into a neurotrophic one. In contrast to the chick model, migratory RGCs express TrkA, while stratified RGCs express p75(NTR) in mouse retina. However, RGC number in TrkA KO mouse was also normal at birth. We next examined the expression of transforming growth factor beta (TGFbeta) receptor, which modulates chick RGC number in combination with p75(NTR), but was absent in mouse RGCs. p75(NTR) and TrkA seem to be involved in the regulation of mouse RGC number in the early phase of retinal development, but the number may be later adjusted by other molecules. These results suggest the different mechanism of RGC number control between mouse and chick retina.  相似文献   

10.
The lens influences retinal growth and differentiation during vertebrate eye development but the mechanisms are not understood. The role of the lens in retinal growth and development was studied in the teleost Astyanax mexicanus, which has eyed surface-dwelling (surface fish) and blind cave-dwelling (cavefish) forms. A lens and laminated retina initially develop in cavefish embryos, but the lens dies by apoptosis. The cavefish retina is subsequently disorganized, apoptotic cells appear, the photoreceptor layer degenerates, and retinal growth is arrested. We show here by PCNA, BrdU, and TUNEL labeling that cell proliferation continues in the adult cavefish retina but the newly born cells are removed by apoptosis. Surface fish to cavefish lens transplantation, which restores retinal growth and rod cell differentiation, abolished apoptosis in the retina but not in the RPE. Surface fish lens deletion did not cause apoptosis in the surface fish retina or affect RPE differentiation. Neither lens transplantation in cavefish nor lens deletion in surface fish affected retinal cell proliferation. We conclude that the lens acts in concert with another optic component, possibly the RPE, to promote retinal cell survival. Accordingly, deficiency in both optic structures may lead to eye degeneration in cavefish.  相似文献   

11.
12.
Cell transplantation to treat retinal degenerative diseases represents an option for the replacement of lost photoreceptor cells. In vitro expandable cells isolated from the developing mammalian retina have been suggested as a potential source for the generation of high numbers of donor photoreceptors. In this study we used standardized culture conditions based on the presence of the mitogens FGF-2 and EGF to generate high numbers of cells in vitro from the developing mouse retina. These presumptive 'retinal stem cells' ('RSCs') can be propagated as monolayer cultures over multiple passages, express markers of undifferentiated neural cells, and generate neuronal and glial cell types upon withdrawal of mitogens in vitro or following transplantation into the adult mouse retina. The proportion of neuronal differentiation can be significantly increased by stepwise removal of mitogens and inhibition of the notch signaling pathway. However, 'RSCs', by contrast to their primary counterparts in vivo, i.e. retinal progenitor cells, loose the expression of retina-specific progenitor markers like Rax and Chx10 after passaging and fail to differentiate into photoreceptors both in vitro or after intraretinal transplantation. Notably, 'RSCs' can be induced to differentiate into myelinating oligodendrocytes, a cell type not generated by primary retinal progenitor cells. Based on these findings we conclude that 'RSCs' expanded in high concentrations of FGF-2 and EGF loose their retinal identity and acquire features of in vitro expandable neural stem-like cells making them an inappropriate cell source for strategies aimed at replacing photoreceptor cells in the degenerated retina.  相似文献   

13.
14.
Cell patterning in the vertebrate CNS reflects the combination of localized cell induction, migration and differentiation. A striking example of patterning is the myelination of visual system. In many species, retinal ganglion cell axons are myelinated in the optic nerve but are unmyelinated in the retina. Here, we confirm that rat and mouse retina lack oligodendrocytes and their precursors and identify multiple mechanisms that might contribute to their absence. Soluble cues from embryonic retina inhibit the induction of oligodendrocytes from neural stem cells and their differentiation from optic nerve precursors. This inhibition is mediated by retinal-derived BMPs. During development BMPs are expressed in the retina and addition of the BMP antagonist Noggin reversed retinal inhibition of oligodendrocyte development. The lack of retinal oligodendrocytes does not simply reflect expression of BMPs, since no oligodendrocytes or their precursors developed when embryonic retinal cells were grown in the presence of Noggin and/or inductive cues such as Shh and IGF-1. Similarly, injection of Noggin into the postnatal rat eye failed to induce oligodendrocyte differentiation. These data combined with the proposed inhibition of OPC migration by molecules selectively expressed at the nerve retina junction suggest that multiple mechanisms combine to suppress retinal myelination during development.  相似文献   

15.
The mechanisms of adhesion of the retinal and pigment epithelium cells, as well of cell interaction within each of these tissues were studied during development. It was shown by means of separation of retina from pigment epithelium in different dissociation media that the adhesion of these tissues in 5-6 day old chick embryos is realized via a Ca2+-independent mechanism. The adhesion of these tissues decreases between days 7 and 16. Starting from day 16, both Ca2+-independent and Ca2+-dependent mechanisms are involved in the interaction of the retinal and pigment epithelium cells. By measuring the output of single cells into the suspension after the treatment of retina and pigment epithelium with different dissociating agents, it was shown that from the 5th day of incubation on the adhesion of pigment epithelium cells is mediated by Ca2+-dependent mechanism. In the retina three types of cells were found: interacting via Ca2+-dependent mechanism only, Ca2+-independent mechanism only, and both the mechanisms. In the course of differentiation, the numbers of the population of cells interacting only via Ca2+-dependent mechanism increase, while those of cells interacting via Ca2+-independent mechanism decrease. It is suggested that at each developmental stage those retinal cell possess Ca2+-dependent mechanism of adhesion which are closest to the definitive state.  相似文献   

16.
Glutamate neurotoxicity is one of the causative factors leading to neural degeneration including retina. Inhibition of NMDA receptors has been shown neuroprotective effects. However, specifically inhibition of glycine subunit in NMDA receptors and its effects on retina neural protection has not been tested. In this study, using a glycine site‐specific NMDA receptor antagonist, we investigated its neuroprotective effects on rat retinal ganglion cells (RGCs) from a transient ischemic injury and its possible underlying mechanisms. Following an ischemia/reperfusion injury the structural damages of rat retinas were assessed by an immunofluorescence method and the apoptosis of retinal neural cells was evaluated by using a terminal deoxynucleotidyl transferase‐mediated dUTP nick‐end labeling (TUNEL) method. The survived RGCs were labeled by retrograde manner and counted on whole‐mounted retinas. In the presence of glycine site‐specific NMDA receptor antagonist, the thickness of retina was sustained, especially in the inner nuclear layers compared with mock controls. While a significantly higher numbers of TUNEL‐positive apoptotic cells and fewer of RGCs were observed in the retina without the glycine antagonist, indicating its strong protective roles. Some apoptotic factors such as Bax, Bcl‐2, CAMK II, COX1, COX4, Caspase‐3, and GRIN1 gene have been tested from retinal samples with or without the glycine antagonist. A significantly lower of expressions of Bax, CAMK II, COX1, COX4, Caspase‐3, and GRIN1 have been shown in the retinas with the antagonist. Bcl‐2/Bax ratio was significantly higher with the antagonist, suggested that the glycine site‐specific NMDA receptor antagonist protecting RGC death might through inhibition of apoptotic signaling. J. Cell. Physiol. 223:819–826, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
Pax-6 expression during retinal regeneration in the adult newt   总被引:4,自引:0,他引:4  
The present study examined the expression of Pax-6 during retinal regeneration in adult newts using in situ hybridization. In a normal retina, Pax-6 is expressed in the ciliary marginal zone, the inner part of the inner nuclear layer, and the ganglion cell layer. After surgical removal of the neural retina, retinal pigment epithelial cells proliferate into retinal precursor cells and regenerate a fully functional retina. At the beginning of retinal regeneration, Pax-6 was expressed in all retinal precursor cells. As regeneration proceeded, differentiating cells appeared at the scleral and vitreal margins of the regenerating retina, which had no distinct plexiform layers. In this stage, the expression of Pax-6 was localized in a strip of cells along the vitreal margin of the regenerating retina. In the late stage of regeneration, when the layer structure was completed, the expression pattern of Pax-6 became similar to that of a normal retina. It was found that Pax-6 is expressed in the retinal precursor cells in the early regenerating retina and that the expression pattern of Pax-6 changed as cell differentiation proceeded during retinal regeneration.  相似文献   

18.
Adherons are high molecular weight glycoprotein complexes which are released into the growth medium of cultured cells. They mediate the adhesive interactions of many cell types, including those of embryonic chick neural retina. The cell surface receptor for chick neural retina adherons has been purified, and shown to be a heparan sulfate proteoglycan (Schubert, D., and M. LaCorbiere, 1985, J. Cell Biol., 100:56-63). This paper describes the isolation and characterization of a protein in neural retina adherons which interacts specifically with the cell surface receptor. The 20,000-mol-wt protein, called retinal purpurin (RP), stimulates neural retina cell-substratum adhesion and prolongs the survival of neural retina cells in culture. The RP protein interacts with heparin and heparan sulfate, but not with other glycosaminoglycans. Monovalent antibodies against RP inhibit RP-cell adhesion as well as adheron-cell interactions. The RP protein is found in neural retina, but not in other tissues such as brain and muscle. These data suggest that RP plays a role in both the survival and adhesive interactions of neural retina cells.  相似文献   

19.
Aims:  The aim of this study was to extract information on cell number and colony volume dynamics of Salmonella Typhimurium colonies.
Methods and Results:  Both cell number and colony volume of Salmonella Typhimurium in gelatin were monitored during the exponential and the stationary phase with varying pH and water activity, by plate counts and microscopic image analysis respectively. The exponential growth rates of cell numbers and colony volumes were correlated. The exponential growth rate of cell numbers was estimated based on this correlation and a secondary model that describes the effect of pH and water activity on the growth rate of the colony volumes. During the stationary phase, the cell number was constant, while colony volume increased, thus indicating the formation of a dead fraction. Models were developed to describe the living and dead population.
Conclusions:  By comparing colony volumes and cell numbers, the formation of dead fraction can be noticed from the beginning of the stationary phase, which indicates that the stationary phase is a dynamic – including both cell death and cell growth – rather than a static phase.
Significance and Impact of the Study:  This study was the first to investigate the proportion of living and dead bacteria within a stationary colony quantitatively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号