首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Summary Mutant forms of the glyU (glycyl tRNA) gene cloned in M13mp8 were subjected to uninduced targeted UV mutagenesis; i.e. phage particles were irradiated and used to infect unirradiated umuC + or irradiated umuC mutant cells. The irradiated phage carried GAG at the anticodon triplet and transitions to GAA were scored. The uninduced targeted mutation rate was reduced by altering the sequence of the gene in the vicinity of the target purine (Pu) residue. In particular a triplet of pyrimidines (PyPyPy) 5 to the target G was changed to PyPuPy in order to prevent formation of cyclcobutane and 6-4 pyrimidine dimers close to the target. On this basis we suggest a mechanism for one type of uninduced regionally targeted UV mutagenesis.  相似文献   

2.
Summary In Escherichia coli, induction of the SOS functions by UV irradiation or by mutation in the recA gene promotes an SOS mutator activity which generates mutations in undamaged DNA. Activation of RecA protein by the recA730 mutation increases the level of spontaneous mutation in the bacterial DNA. The number of recA730-induced mutations is greatly increased in mismatch repair deficient strains in which replication errors are not corrected. This suggests that the majority of recA730-induced mutations (90%) arise through correctable, i.e. non-targeted, replication errors. This recA730 mutator effect is suppressed by a mutation in the umuC gene. We also found that dam recA730 double mutants are unstable, segregating clones that have lost the dam or the recA mutations or that have acquired a new mutation, probably in one of the genes involved in mismatch repair. We suggest that the genetic instability of the dam recA730 mutants is provoked by the high level of replication errors induced by the recA730 mutation, generating killing by coincident mismatch repair on the two unmethylated DNA strands. The recA730 mutation increases spontaneous mutagenesis of phage poorly. UV irradiation of recA730 host bacteria increases phage untargeted mutagenesis to the level observed in UV-irradiated recA + strains. This UV-induced mutator effect in recA730 mutants is not suppressed by a umuC mutation. Therefore UV and the recA730 mutation seem to induce different SOS mutator activities, both generating untargeted mutations.  相似文献   

3.
Summary We have studied spontaneous and UV mutagenesis of the glyU gene in Escherichia coli trpA461 (GAG) strains carrying the pIP11 plasmid, in which the dnaQ gene encoding the 3–5 exonuclease subunit (epsilon) of DNA polymerase III is fused to the tac(trp-lac) promoter. We have used a pair of M13glyU phage in which the gene encoding the glycyl-tRNA is cloned in opposite orientations, consequently the phage present either GGG or CCC anticodon triplets for mutagenesis. The presence of IPTG, the inducer of the tac-dnaQ fusion, results in about 100-fold decrease in frequency of spontaneous Su+ (GAG) mutations arising in the CCC phage. The enhanced expression of tac-dnaQ reduces 10-fold the frequency of UV-induced Su+ (GAG) mutations in the CCC phage and nearly completely prevents generation by UV of Su+ (GAG) mutations in the GGG phage, in which UV-induced pyrimidine photoproducts can be formed only in the vicinity of the target triplet. These results suggest that both locally and regionally targeted mutagenesis is affected by overproduction of the epsilon subunit. By delayed photoreversal mutagenesis we have shown that UV-induced chromosomal mutagenesis of the umuC36 trpA461 strain harboring pIP11 is completely abolished in the presence of IPTG. This result seems to indicate that the misinocorporation step of DNA translesion synthesis is affected by excess of the epsilon subunit. Finally, we have introduced the pIP13 plasmid carrying the dnaQ gene into the recA1207 strain, which is deficient in the recombinase activity of RecA but constitutive in the protease activity. We demonstrate that the transformant shows much higher UV sensitivity than recA1207 carrying the vector plasmid pBR325, indicating that translesion synthesis significantly contributes to DNA repair capacity of cells deficient in recombination.  相似文献   

4.
Summary E. coli recF mutants have a greatly reduced capacity for Weigle mutagenesis of ultraviolet light-irradiated lambda phage. A recF 332::Tn3 mutation was introduced into an E. coli recA441 lexA51 strain which constitutively expresses SOS functions. Weigle mutagenesis of phage lambda could occur in the resulting strain in the absence of host cell irradiation, and was increased when the recA441 (tif) allele was activated by increased temperature and excess adenine. The inability of recF strains to support Weigle mutagenesis can therefore be ascribed to a defect in expression of SOS functions after irradiation.  相似文献   

5.
Summary Two multicopy plasmids carrying either the umuDC or the mucAB operon were used to compare the efficiency of UmuDC and MucAB proteins in UV mutagenesis of Escherichia coli K12. It was found that in recA + uvr +bacteria, plasmid pIC80, mucAB +mediated UV mutagenesis more efficiently than did plasmid pSE117, umuDC +. A similar result was obtained in lexA51(Def) cells, excluding the possibility that this was due to a differential regulation by LexA of the umuDC and mucAB operons. We conclude that some structural characteristic of the UmuDC and MucAB proteins determines their different efficiency in UV mutagenesis. This characteristic could be also responsible for the observation that in the recA430 mutant, pIC80 but no pSE117 can mediate UV mutagenesis. In the recA142 mutant, pIC80 also promoted UV mutagenesis more efficiently than pSE117. In this mutant, the recombination proficiency, the protease activity toward LexA and the mutation frequency were increased by the presence of adenine in the medium. In recA + uvrB5 bacteria, plasmid pSE117,umuDC caused both an increase in UV sensitivity as well as a reduction in the mutation frequency. These nagative effects resulting from the overproduction of UmuDC proteins were higher in recA142 uvrB5 than in recA + uvrB5 cells. In contrast, overproduction of MucAB proteins in excision-deficient bacteria containing pIC80 led to a large increase in the mutation frequency. We suggest that the functional differences between UmuDC and MucAB proteins might be due to their different dependence on the direct role of RecA protease in UV mutagenesis.  相似文献   

6.
Summary The mucAB operon carried on plasmid pKM101, which is an analogue of the umuDC operon of Escherichia coli, is involved in UV mutagenesis and mutagenesis induced by many chemicals. Mutagenesis dependent on either the umuDC or mucAB operon requires the function of the recA gene and is called SOS mutagenesis. By treating the cell with agents that damage DNA, RecA protein is activated by conversion into a form (RecA*) that mediates proteolytic cleavage of the LexA repressor and derepresses the SOS genes including mucAB. Since UmuD protein is proteolytically processed to an active form (UmuD*) in a RecA*-dependent fashion, and MucA shares extensive amino acid homology with UmuD, we examined whether MucA is similarly processed in the cell, using antiserum against a LacZ-MucA fusion protein. Like UmuD, MucA protein is indeed proteolytically processed in a RecA*-dependent fashion. In recA430 strains, MucAB but not UmuDC can mediate UV mutagenesis. However, MucA was not processed in the recA430 cells treated with mitomycin C. We constructed, by site-directed mutagenesis, several mutant mucA genes that encode MucA proteins with alterations in the amino acids flanking the putative cleavage site (Ala25-Gly26). MucA(Cys25) was processed and was as mutagenically active as wild-type MucA; MucA(Asp26) and MucA(Cys25,Asp26) were not processed, and were mutagenically inactive; MucA-(Thr25) was not processed, but was mutagenically as active as wild-type MucA. The mutant mucA gene that encoded the putative cleavage product of MucA was as active as mucA + in UV mutagenesis. These results raise the possibility that both the nascent MucA and the processed product are active in mutagenesis.  相似文献   

7.
Summary We examined the possibility that the recA441 mutation, which partially suppresses the UV sensitivity of uvr recF mutant bacteria, exerts its effect by coding for an altered RecA protein that competes more efficiently than the RecA+ protein with SSB for ssDNA in vivo. Using an assay measuring recombination between UV-damaged DNA and intact homologous DNA, we found that the introduction of the recA441 mutation partially suppressed the defects in recombination in bacteria lacking RecF activity but not in bacteria with excess SSB, although recombination was affected more in recF mutants than in bacteria overproducing SSB. These results therefore do not support the hypothesis that RecA441 protein, or RecA protein with the help of RecF protein, is required during recombination of UV-damaged DNA to compete with SSB for ssDNA.  相似文献   

8.
UV mutagenesis of single-strand DNA phage can be divided into three types: induced untargeted; induced targeted; and uninduced targeted. We report the development of new tools to determine the number of processes which contribute to these types of mutagenesis. An E. coli tRNA gene, glyU, has been cloned using M13 derivatives mp8 and mp9 as vectors. The nucleotide sequence of glyU and its flanking regions is presented. In this paper, phage glyU anticodon mutants are detected by their ability to suppress GAA and GAT missense mutations in trpA. We used phage carrying GAG and CTC at the anticodon position and found results consistent with the hypothesis that two processes act to produce the transition to GAA suppression: an uninduced regionally targeted process; and an induced locally targeted process with some untargeted activity. The transversion frequency to GAT suppression on the other hand responded as if only an uninduced locally targeted process was involved. Thus, we hypothesize that the new tools have discriminated three different processes of mutagenesis and we discuss further work designed to test this hypothesis.  相似文献   

9.
UV-inducible sulAp expression, an indicator of the SOS response, is reduced by recF + overexpression in vivo. Different DNA-damaging agents and amounts of RecO and RecR were tested for their effects on this phenotype. It was found that recF + overexpression reduced sulAp expression after DNA damage by mitomycin C or nalidixic acid. recO + and recR + overexpression partially suppressed the reduction of UV-induced sulAp expression caused by recF + overexpression. The requirement for ATP binding to RecF to produce the phenotype was tested by genetically altering the putative phosphate binding cleft of recF in a way that should prevent the mutant recF protein from binding ATP that should prevent the mutant recF protein from binding ATP. It was found that a change of lysine to glutamine at codon 36 results in a mutant recF protein (RecF4115) that is unable to reduce UV-inducible sulAp expression when overproduced. It is inferred from these results that recF overexpression may reduce UV-inducible sulAp expression by a mechanism that is sensitive to the ability of RecF to bind ATP and to the levels of RecO and RecR (RecOR) in the cell, but not to the type of DNA damage per se. Models are explored that can explain how recF + overexpression reduces UV induction of sulAp and how RecOR overproduction might suppress this phenotype.  相似文献   

10.
Summary Mutants of E. coli defective in susceptibility to UV-induction of mutations were isolated by direct screening for their UV nonmutable phenotype (Umu). Screening of about 30,000 mutagenized clones of a uvrB derivative of AB1157 yielded six Umu strains. The mutants can be classified into three groups by the location of the mutations, umuA, umuB and umuC. Mutations umuA and umuB are, respectively, mapped close to lexA and recA genes and mutations at both loci partially reduce UV mutagenesis. The locus of umuC is between hemA and purB and the mutations at this new locus result in a moderate increase of UV sensitivity. The mutation diminishes UV mutagenesis and UV reactivation of phage without affecting the inducibility of phophage nor the inhibition of cell division following UV irradiation. Related properties of an isogenic strain of a recF mutant are compared with those of umuC .  相似文献   

11.
Summary We introduced the dnaE486 and polC74 mutations (which are associated with decreased DNA polymerase III replication fidelity) into excision defective Escherichia coli strains with varying SOS responses. These mutations increased the UV-induced frequency of base pair substitution mutations in all strains tested, except recA430 and umuC122 derivatives. This UV mutator effect therefore requires expression of the SOS error-prone repair system. In recA441 lexA51 strains where the SOS system is constitutively expressed, the UV mutator effect of the dnaE alleles was similar in relative terms (though greater in absolute terms). Since these dnaE alleles decrease rather than increase survival after UV it is argued that they promote a burst of untargeted mutations close to UV photoproducts (hitch-hiking mutations) rather than increase the number of translesion synthesis events. The fact that there was no UV mutagenesis in dnaE486 umuC122 or polC74 umuC122 strains indicates that infidelity associated with these dnaE alleles did not of itself enable translesion synthesis to occur. The spontaneous mutator effect conferred by dnaE486 and polC74 was not affected by umuC122 or recA430 indicating that it is not dependent upon error-prone repair ability. In recA441 lexA51 bacteria, where SOS error-prone repair is constitutively induced, the mutator effect of dnaE486 was greater and was largely blocked by umuC122. It is suggested that spontaneously occurring cryptic lesions that are themselves unable to induce the SOS system are subject to translesion synthesis under these conditions and trigger a burst of hitch-hiking mutations that are therefore effectively umuC dependent.  相似文献   

12.
Summary Escherichia coli rnh mutants deficient in ribonuclease H (RNase H) are capable of DNA replication in the absence of protein synthesis. This constitutive stable DNA replication (SDR) is dependent upon the recA + gene product. The requirement of SDR for recA + can be suppressed by rin mutations (for recA+-independent), or by lexA(Def) mutations which inactivate the LexA repressor. Thus, there are at least three genetically distinct types of SDR in rnh mutants: recA +-dependent SDR seen in rnh - rin+ lexA+ strains, recA +-independent in rnh - rin- lexA+, and recA +-independent in rnh - rin+ lexA(Def). The expression of SDR in rin - and lexA(Def) mutants demonstrated a requirement for RNA synthesis and for the absence of RNase H. The suppression of the recA + requirement by rin mutations was shown to depend on some new function of the recF + gene product. In contrast, the suppression by lexA-(Def) mutations was not dependent on recF +. The lexA3 mutation inhibited recA +-dependent SDR via reducing the amount of recA + activity available, and was suppressed by the recAo254 mutation. The SDR in rnh - rin- cells was also inhibited by the lexA3 mutation, but the inhibition was not reversed by the recAo254 mutation, indicating a requirement for some other lexA +-regulated gene product in the recA +-independent SDR process. A model is presented for the regulation of the expression of these three types of SDR by the products of the lexA +, rin+ and recF + genes.  相似文献   

13.
A generally applicable system for targeted mutagenesis of a chromosomal sequence is described. The Escherichia coli tufA gene was mutated using a recombinant M13mp9 phage vector carrying a tuf gene. Integration via crossing over with the chromosomal tufA target gene produced an M13 lysogen. These lysogens were screened for resistance to kirromycin. The M13 phage carrying tufA mutations were efficiently retrieved by a genetic procedure. Genetic mapping was performed with the M13 vectors. The same recombinant M13 phage was used for mutagenesis, lysogen formation, gene replacement, retrieval, mapping and sequencing of kirromycin mutants. Three different mutations yielding resistance to kirromycin were found: two of these have previously been found and characterised, while the third mutation, Gly316 Asp, is a new mutant. We also report the identification of a fourth kirromycin-resistant mutant, Gln124 Lys.  相似文献   

14.
The role of the error-prone misrepair pathway in mutagenesis was examined for a series of mutagens in umuC+ and umuC36 strains of Escherichia coli. Mutagenesis by ENU, MNU, MNNG and EMS was independent of the umuC+ gene function, while mutagenesis by MMS, 4NQO, γ-rays and UV was largely umuC+-dependent. Residual mutagenesis following UV-treatment of a umuC? strain showed the same mutational specificity seen in the umuC+ strain. In contrast, the umuC mutation altered specificity substantially in an excision-repair-defective strain that showed a UV-spectrum strikingly different from that seen in an excision-repair-proficient strain. Only one of nine trpE frameshift mutations examined was reverted by UV-light and its reversion was umuC-dependent. In comparison, the dependence of frameshift mutagenesis following ICR 191 treatment was site-specific, suggesting at least two mechanisms of frameshift mutagenesis, one dependent upon misrepair, the other not.The results, together with those of previous reports (Kato and Nakano, 1981; Shinoura et al., 1983), suggest that the umuC+ gene exerts it's mutator activity via misrepair of DNA lesions provoking the induction of all types of mutational events, though following UV-irradiation mainly transition events are recovered.  相似文献   

15.
Summary Degradation products of restricted T4 DNA induced filamentation, mutagenesis, and to a lesser extent, synthesis of recA protein in wild type cells but not in recA, lexA or recBC mutants of Escherichia coli. We conclude that the structural damage to the DNA caused by restriction cleavage and exonuclease V degradation can induce SOS functions. Degradation of restricted nonglucosylated T4 DNA by exonuclease V delayed cell division and induced filament formation and mutagenesis in lexA + but not in lexA - cells. Delay of cell division was also dependent upon recA and recBC funtions. Such degradation of DNA also dramatically increased mutagenesis in tif - Sfi- cells at 42°C. The synthesis of recA protein continued in the restricting host after infection by the nonglucosylated T4 phage, but enhanced synthesis is not induced to the extent seen in SOS induced tif - cells grown at 42°. We also found that restriction of nonglucosylated T4 was alleviated in UV irradiated cells. The UV induced alleviation of rgl and r K restriction depended upon post irradiation protein synthesis and was not observed in recA, lexA or recBC mutants.  相似文献   

16.
Summary We examined the possibility that the ssb-1 and ssb-113 mutants exert some of their effects by interfering with the normal function of wild-type RecF protein. Consistent with this possibility, we found that recA803, which partially suppresses recF mutations, also partially suppresses both ssb mutations, as detected by an increase in UV resistance. No evidence was obtained for suppression of the defect in lexA regulon inducibility caused by the ssb mutations. Consequently we suggest that suppression occurs by increasing recombinational repair. In vitro tests of Ssb mutant and wild-type proteins revealed that the single-stranded DNA dependent ATPase activity of RecA protein is more susceptible to inhibition than the joint-molecule-forming activity. All three Ssb proteins inhibit the ATPase activity of RecA wild-type protein almost completely while under similar conditions they inhibit the joint-molecule-forming activity only slightly. Both activities of RecA803 protein were found to be less inhibited by the three Ssb proteins than those of RecA wild-type protein. This is consistent with the suppressing ability of recA803. We found no evidence to contradict the previously proposed hypothesis that ssb-1 affects recombinational repair by acting as a weaker form of Ssb protein. We found, however, only very weak evidence that Ssb-113 protein interferes directly with recombinational repair so that the possibility that it interferes with a normal function of RecF protein must remain open.  相似文献   

17.
Summary Epsilon, a fidelity subunit of Escherichia coli DNA Polymerase III, is encoded by dnaQ +. dnaQ49 is a recessive allele that confers temperature-sensitive and saltsuppressible phenotypes for both replication fidelity and viability. SOS mutagenesis in E. coli is regulated by LexA and requires activated RecA (RecA*) and the products of the umuDC operon. dnaQ49 strains with various recA, lexA and umuDC alleles were constructed to determine if activities induced as part of the SOS response influence epsilon activity. We found: (1) both UmuDC and RecA* independently enhance the dnaQ49 mutator phenotype, and (2) expression of RecA* activity in the absence of UmuDC function increases the temperature sensitivity for viability of dnaQ49. These results support the hypothesis that RecA and one or both of the UmuDC proteins interact with the replication complex during SOS mutagenesis.  相似文献   

18.
The SOS system of Escherichia coli aids survival following damage to DNA by promoting DNA repair while cell division is delayed. Induction of the SOS response is dependent on RecA and also on the product of recF. We show that normal induction also requires the products of recO and recR. SOS induction was monitored using a sfiA-lacZ fusion strain. Induction was delayed to a similar degree by mutation in recF, recO or recR. A similar effect was observed following overexpression of RecR from a recombinant recR +plasmid. We show that the overexpression of RecR also reduces the UV resistance of a recBC sbcBC strain and of a sfiA strain, but not of a rec + sfiA +strain. The implications of these data for the kinetics of DNA repair are discussed.  相似文献   

19.
Summary In vitro photosensitization by visible light in the presence of methylene blue (MB-light) produces lesions in M13mpl8 lacZ phage DNA, the lethal and mutagenic potential of which was analyzed after transfection into various bacterial hosts. Mutagenesis was determined with a forward mutation assay using the lacZ gene of M13mp18 as a target. When, MB-light-treated double-stranded (ds) M13mp18 DNA was used to transfect wild-type cells which were not induced for SOS functions, a fivefold increase in mutation frequency was observed at 10% survival compared to that observed with untreated DNA. Mutation frequency obtained with MB-light-treated ds M13mp18 DNA was greater when transfected into the uvrA fpg-1 double mutant than that seen in uvrA, fpg-1, or umuC single mutants or in the wild-type. Sequence analysis shows that in the wild-type strain, MB-light treatment of ds M13mp18 DNA results mostly in single base substitutions. The most frequent base change is the GCTA transversion. MB-light treatment of single-stranded (ss) M13mp18 DNA also results in an increased mutation frequency after transfection into the wild-type strain, yielding mostly GT transversions. Our results show that MB-light-induced mutagenesis is at least partially independent of the induction of SOS functions in Escherichia coli. The mutation spectra suggest that 8-oxo-7,8-dihydroguanine is the major promutagenic lesion in DNA.  相似文献   

20.
Summary A new recombination gene called recR has been identified and located near dnaZ at minute 11 on the current linkage map of Escherichia coli. The gene was detected after transposon mutagenesis of a recB sbcB sbcC strain and screening for insertion mutants that had a reduced efficiency of recombination in Hfr crosses. The recR insertions obtained conferred a recombination deficient and extremely UV sensitive phenotype in both recB recC sbcA and recB recC sbcB sbcC genetic backgrounds. recR derivatives of recBC + sbc + strains were proficient in conjugational and transductional recombination but deficient in plasmid recombination and sensitive to UV light. Strains carrying recR insertions combined with mutations uvrA and other rec genes revealed that the gene is involved in a recombinational process of DNA repair that relies also on recF and recO, and possibly recJ, but which is independent of recB, recC and recD. The properties of two other insertions, one located near pyrE and the other near guaA, are discussed in relation to their proximity to recG and xse (the gene for exonuclease VII), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号